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Abstract The natural linear programming formulation of the maximum s-t-flow
problem in path variables has a dual linear program whose underlying polyhedron is
the dominant P↑

s-t-cut of the s-t-cut polytope. We present a complete characterization
of P↑

s-t-cut with respect to vertices, facets, and adjacency.
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1 Introduction

We study the dominant of the s-t-cut polytope denoted by P↑
s-t-cut. This polyhe-

dron occurs as the set of feasible dual solutions when formulating the maximum
s-t-flow problem as a linear program in path variables. The primal pricing and dual
separation problem of this pair of linear programs is a shortest s-t-path problem. This
is one way to reduce the maximum s-t-flow problem to a series of shortest path com-
putations. This connection has already been pointed out by Ford and Fulkerson [6] in
the more general context of the maximum multiflow problem. The dual linear program
is the most natural linear programming formulation of the minimum s-t-cut problem.
With linear programming duality, this primal-dual pair of linear programs also yields
the famous max-flow min-cut theorem [4,5].
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Within the past 50 years, polyhedral combinatorics has proved to be a tremendous-
ly successful tool for tackling structural as well as algorithmic problems arising in
combinatorial optimization. Polyhedra corresponding to many basic combinatorial
optimization problems have been extensively studied in the literature. Surprisingly,
and despite its fundamental role in network flow theory and related areas, not much
is known about the polyhedron P↑

s-t-cut. The only work we are aware of is by Garg
and Vazirani [9,10] who study an extended linear programming formulation of the
minimum s-t-cut problem in directed graphs. They characterize vertices and edges of
the set of feasible solutions which is a lifted version of P↑

s-t-cut.
In this paper we provide a complete characterization of the vertices, facets, and

adjacency structure of P↑
s-t-cut for undirected as well as directed graphs.

Notation Let G = (V, E) be an undirected or directed graph and s, t ∈ V two dis-
tinct source and target nodes. Throughout this paper we assume that G is connected
and, if G is a directed graph, that there is a directed s-t-path in G. Moreover, P and C
denote the set of all s-t-paths and s-t-cuts, respectively, in G. We use the convention
that s-t-paths are simple and that s-t-cuts are defined by

C := {C ⊆ E | C = δ(U ) for some U ⊆ V \{t} with s ∈ U } .

Here δ(U ) denotes the set of edges connecting U to V \U—for the case of directed
graphs we let δ(U ) := δ+(U ) := {(u, v) ∈ E | u ∈ U and v ∈ V \U }. For arbi-
trary subsets of nodes X1, X2 ⊆ V we let E(X1, X2) = EG(X1, X2) denote the set
of edges connecting X1 to X2 in G. In particular, δ(U ) = E(U, V \U ). An s-t-cut
C ∈ C is called inclusionwise minimal, or simply minimal, if there is no C ′ ∈ C with
C ′ ! C .

The incidence vector of an s-t-cut C ∈ C is denoted by χC ∈ {0, 1}E . Analogously,
χ P ∈ {0, 1}E denotes the incidence vector of an s-t-path P ∈ P . For a subset of
nodes X ⊆ V we denote by G[X ] the subgraph of G induced by X . We say that X is
connected if the graph G[X ] is connected.

The polyhedron P↑
s-t-cut With yP denoting the amount of flow being sent along path

P ∈ P , the problem of finding a maximum s-t-flow obeying edge capacities c ∈ R E
+

can be formulated as the following linear program:

max
∑

P∈P

yP

s.t.
∑

P∈P

yPχ P ≤ c

y ≥ 0

The corresponding dual linear program is:

min x' c

s.t. x' χ P ≥ 1 for all P ∈ P (1)

x ≥ 0

123



On the dominant of the s-t-cut polytope

We study the associated polyhedron that is defined by the constraints of the dual linear
program. It is not difficult to see that this polyhedron is the dominant of the s-t-cut
polytope

Ps-t-cut := conv
{
χC | C ∈ C

}
⊆ RE .

That is,

P↑
s-t-cut : = Ps-t-cut + R E

+
=

{
x ∈ RE | x ≥ 0, x'χ P ≥ 1 for all P ∈ P

}
;

see [12, Corollary 13.1b]. The vertices of this polyhedron are integral (0/1) as they
are incidence vectors of s-t-cuts. We refer to the book of Schrijver [12, Chapter 13]
for further details.1

Results from the literature There is a close connection between P↑
s-t-cut and the dom-

inant of the s-t-path polytope

Ps-t-path := conv
{
χ P | P ∈ P

}

that is given by

P↑
s-t-path : = Ps-t-path + R E

+

=
{

y ∈ RE | y ≥ 0, y'χC ≥ 1 for all C ∈ C
}
.

The two polyhedra P↑
s-t-path and P↑

s-t-cut form a blocking pair of polyhedra. This is one
interesting way to prove the max-flow min-cut theorem; see, e.g., [11, Section 9.2] for
details.

Chapter 13.1a of Schrijver’s book [12]1 gives a complete characterization of ver-
tices, adjacency, and facets of the polyhedron P↑

s-t-path. The vertices of P↑
s-t-path are

precisely the incidence vectors of s-t-paths. Moreover, two vertices are adjacent if
and only if the symmetric difference of the corresponding s-t-paths is an undirected
circuit consisting of two internally node-disjoint (directed) paths. For C ∈ C , the
inequality y'χC ≥ 1 determines a facet of P↑

s-t-path if and only if C is an (inclusion-
wise) minimal s-t-cut.

Surprisingly, and in contrast to the situation for the polyhedron P↑
s-t-path, much less is

known about its blocking polyhedron P↑
s-t-cut. While some information on the vertices

and facets of P↑
s-t-cut can be easily derived from the facets and vertices of its blocking

polyhedron P↑
s-t-path, nothing is known about the adjacency of vertices of P↑

s-t-cut.

1 While [12, Chapter 13] only deals with the case of directed graphs, it is not difficult to see that the results
mentioned here hold for undirected graphs as well.
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Garg and Vazirani [9,10] study a variant of P↑
s-t-cut for the case of directed graphs.

Their interest lies on the polyhedron which is represented by the dual of the LP for-
mulation of the maximum s-t-flow problem in edge-variables. This polyhedron lives
in RE ·∪ V and is given by the following constraints:

xe + πu − πv ≥ 0 for all e = (u, v) ∈ E ,

πt − πs ≥ 1 (2)

x,π ≥ 0

It is easy to see that the projection of this polyhedron onto the subspace corresponding
to the x-variables is precisely P↑

s-t-cut. In other words, the linear programming formu-
lation of the minimum s-t-cut problem considered by Garg and Vazirani is an extended
formulation of the linear program (1) of polynomial size.

Garg and Vazirani show that the vertices of the polyhedron (2) correspond exactly to
s-t-cuts in which the s-side is connected. Moreover, two distinct vertices are adjacent
if and only if the corresponding s-t-cuts δ+(X1) and δ+(X2) have the property that,
up to exchanging X1 and X2, the set X1 is properly contained in X2 and X2\X1 is
connected. It can be observed that the stated results hold for undirected graphs as well.

A related object that has received considerable attention in the literature is the
dominant of the cut polytope which is given by

conv
{
χδ(U ) | ∅ += U ! V

}
+ R E

+ .

See, for example, [1–3]. Compared to P↑
s-t-cut, much less is known about the facial

structure of this polyhedron which is also considerably more complicated.

Our contribution We give a complete characterization of vertices, facets, and adja-
cency for the polyhedron P↑

s-t-cut. This closes a surprising gap in the literature on
geometric representations of paths, flows, and cuts.

From what is known about the blocking polyhedron P↑
s-t-path, it follows that the

inequalities in (1) are all facet-defining for P↑
s-t-cut. For the case of undirected graphs,

the vertices of P↑
s-t-cut correspond exactly to s-t-cuts δ(X) in which X and V \X are

connected. For directed graphs, the vertices of P↑
s-t-cut correspond exactly to s-t-cuts

δ+(X) with the following property: For each edge (u, v) ∈ δ+(X) there is an s-u-path
in G[X ] and a v-t-path in G[V \X ]. These preliminary observations are presented in
Sect. 2.

In Sect. 3 we give a complete characterization of the adjacency of vertices of P↑
s-t-cut.

For the case of undirected graphs, two distinct vertices are adjacent if and only if the
corresponding s-t-cuts δ(X1) and δ(X2) have the property that, up to exchanging X1
and X2, the set X1 is properly contained in X2 and X2\X1 is connected; see Sect. 3.1.
Notice that this adjacency structure is identical to the one observed by Garg and
Vazirani for the lifted polyhedron (2). In Sect. 3.2 we consider directed graphs. Sur-
prisingly, the adjacency structure turns out to be considerably more complicated in
this case. The necessary and sufficient condition for the adjacency of two s-t-cuts in
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the undirected case is only necessary but no longer sufficient in the directed case. We
obtain a more elaborate condition which is necessary and sufficient for the adjacency
of two s-t-cuts in directed graphs.

2 Vertices and facets

In this section, we characterize the vertices and facets of the polyhedron P↑
s-t-cut. The

following observation is an immediate consequence of well known results on the
blocking polyhedron P↑

s-t-path.

Observation 1 A vector x is a vertex of P↑
s-t-cut if and only if x = χC for some minimal

s-t-cut C. For each s-t-path P ∈ P , the inequality x'χ P ≥ 1 determines a facet of
P↑

s-t-cut.

Proof For a blocking pair of polyhedra Q1, Q2, Fulkerson [7,8] shows that the ver-
tices of Q1 correspond exactly to the facets of Q2 and the facets of Q1 correspond
exactly to the vertices of Q2; see also [11, Sect. 9.2]. Since P↑

s-t-path and P↑
s-t-cut form

a blocking pair of polyhedra, the claimed results follow from the characterization of
vertices and facets of P↑

s-t-path discussed above in Sect. 1. ,-

Since the nonnegativity constraints also determine facets of P↑
s-t-cut, the following

constraints from linear program (1) form a minimal description of P↑
s-t-cut:

x'χ P ≥ 1 for all P ∈ P ,

x ≥ 0

Not surprisingly, the vertices of P↑
s-t-cut are, in general, highly degenerate. Consider

a minimal s-t-cut C and the corresponding vertex χC . The number of inequalities
x'χ P ≥ 1, P ∈ P , which are tight at vertex χC is equal to the number of s-t-paths
P ∈ P which cross the s-t-cut C exactly once. In the worst case, this number is expo-
nential in the dimension |E | of the polyhedron P↑

s-t-cut. There is, however, a somewhat
canonical way of choosing |E | linearly independent inequalities from (1) that define
χC . This will be discussed in more detail after Corollary 1 below and will turn out to
be useful for proving adjacency of certain vertices later on in Sect. 3.

In the remainder of this section we give a more detailed characterization of the
vertices of P↑

s-t-cut by deriving necessary and sufficient conditions for an s-t-cut to be
minimal. In the following, a minimal s-t-cut is also called a basic s-t-cut. We start
with the case of undirected graphs.

Corollary 1 For an undirected graph and a point x ∈ RE , the following statements
are equivalent:

(i) x is a vertex of P↑
s-t-cut,

(ii) x = χC for some basic s-t-cut C,
(iii) x = χC for some s-t-cut C = δ(X) with X and V \X being connected.
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Fig. 1 If X is not connected,
then the s-t-cut C = δ(X) is not
basic. For the connected
component X1 of X containing
s, the s-t-cut C ′ := δ(X1) is a
proper subset of C

Fig. 2 The sets X and V \X are
both connected but the cut
C = δ+(X) is not basic; notice
that δ+(X ∪ {v}) ! δ+(X)

As a consequence of property (iii), it is easy to determine a subset of |E | linearly
independent inequalities from (1) that define χC for a minimal s-t-cut C : Take the
nonnegativity constraints corresponding to edges in E\C and, for each e ∈ C , the
inequality x'χ Pe ≥ 1 for some s-t-path Pe with Pe ∩ C = {e}.

Proof It remains to prove the equivalence of (ii) and (iii). That is, an s-t-cut δ(X) is
basic if and only if X and V \X are connected.
(iii)⇒(ii): Let C = δ(X) with X and V \X connected. We assume by contradiction
that the s-t-cut C = δ(X) is not basic. That is, there exists an edge e = uv ∈ δ(X)

and an s-t-cut C ′ ⊆ C\{e}. Because X is connected and s, u ∈ X , there is an s-u-path
that does not intersect δ(X) ⊃ C ′. Thus, u is also on the s-side of cut C ′. Similarly, v

is on the t-side of C ′. This yields the contradiction e = uv ∈ C ′.
(ii)⇒(iii): We assume that X is not connected and prove that C is not basic in this case;
the other case that V \X is not connected is symmetric. Let X1 and X2 be nonempty
such that X = X1 ·∪ X2, s ∈ X1, and E(X1, X2) = ∅; see Fig. 1. Since G is connected,
E(X2, V \X) += ∅. Thus, the s-t-cut

C ′ := δ(X1) = C\E(X2, V \X) ! C

shows that C is not basic. This concludes the proof. ,-

For the case of directed graphs, the equivalence of the minimality of an s-t-cut
δ+(X) and the connectivity of the sets X and V \X no longer holds; a small counter-
example is given in Fig. 2. In the following we present a stronger condition.

Corollary 2 For a directed graph and a point x ∈ RE , the following statements are
equivalent:

(i) x is a vertex of P↑
s-t-cut,
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Fig. 3 C1 = δ(X1) and
C2 = δ(X2) are crossing
s-t-cuts if X1 " X2 and
X2 " X1 (i.e., X1\X2 += ∅ and
X2\X1 += ∅). The s-t-cuts
δ(X1 ∩ X2) and δ(X1 ∪ X2) are
noncrossing

(ii) x = χC for some basic s-t-cut C,
(iii) x = χC for some s-t-cut C = δ+(X) with the following property: for each

edge e = (u, v) ∈ C there exists a directed s-u-path in G[X ] and a directed
v-t-path in G[V \X ].

Proof It remains to prove the equivalence of (ii) and (iii). That is, an s-t-cut
C = δ+(X) is basic if and only if for each edge e = (u, v) ∈ C there exists a
directed s-u-path in G[X ] and a directed v-t-path in G[V \X ]. The proof of the direc-
tion (iii)⇒(ii) is identical to the corresponding part in the proof of Corollary 1.
(ii)⇒(iii): Suppose that there exists an edge e = (u, v) ∈ C such that there exists no
directed s-u-path in G[X ]—the case where there is no directed v-t-path in G[V \X ]
is symmetric. Let

Y := {w ∈ X | there is a directed s-w-path in G[X ]} ⊆ X\{u}.

By definition, E(Y, X\Y ) = ∅. We conclude that the s-t-cut δ+(Y ) ⊆ C\{e} is a
proper subset of C . In particular, C is not basic. This concludes the proof. ,-

3 Adjacency

We characterize when two basic s-t-cuts C1 and C2 correspond to adjacent verti-
ces χC1 and χC2 of P↑

s-t-cut. In this case we also say that the two basic s-t-cuts C1
and C2 are adjacent. The case of undirected graphs is treated in Sect. 3.1. Results for
the more complicated case of directed graphs are presented in Sect. 3.2.

3.1 Undirected graphs

Throughout this section let G = (V, E) be an undirected graph.

Definition 1 Let C1 = δ(X1) and C2 = δ(X2) be two s-t-cuts in G. We say that C1
and C2 are crossing if X1 " X2 and X2 " X1, i.e., X1\X2 += ∅ and X2\X1 += ∅.
Otherwise, C1 and C2 are called noncrossing.

Figure 3 illustrates the idea of crossing cuts. It is not difficult to show that crossing
basic s-t-cuts are not adjacent.
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Fig. 4 If X2\X1 can be
decomposed into subsets Z1 and
Z2 with E(Z1, Z2) = ∅, then
the s-t-cuts δ(X1) and δ(X2) are
not adjacent since
χδ(X1) + χδ(X2) =
χδ(X1∪Z1) + χδ(X1∪Z2)

Lemma 1 Let δ(X1) and δ(X2) be two basic s-t-cuts. If δ(X1) and δ(X2) are cross-
ing, then they are not adjacent.

Proof Let δ(X1) and δ(X2) be crossing basic s-t-cuts. Assume by contradiction that
χδ(X1) and χδ(X2) are adjacent vertices of P↑

s-t-cut. Then there exists a vector c ∈ R E
+

such that δ(X1) and δ(X2) are the only two minimum cuts with respect to c. By
submodularity of the cut function we know that

c(δ(X1 ∩ X2)) + c(δ(X1 ∪ X2)) ≤ c(δ(X1)) + c(δ(X2)).

In particular, δ(X1 ∩ X2) and δ(X1 ∪ X2) are minimum s-t-cuts as well. But since X1
and X2 are both connected, δ(X1 ∩ X2) is different from δ(X1) and δ(X2). This is a
contradiction and concludes the proof. ,-

We have shown that adjacent basic s-t-cuts are noncrossing. Consequently, the cut-
defining node set of a basic cut is contained in or contains the cut-defining node set of
an adjacent basic cut. Now we will have a closer look at these cut-defining node sets.

Lemma 2 Let δ(X1) and δ(X2) be two adjacent basic s-t-cuts with X1 ! X2. Then,
X2\X1 is connected.

Proof Suppose by contradiction that there exist two nonempty disjoint subsets
Z1, Z2 ⊆ X2\X1 with Z1 ·∪ Z2 = X2\X1 and E(Z1, Z2) = ∅; see Fig. 4 for an
illustration. Then

χδ(X1) + χδ(X2) = χδ(X1∪Z1) + χδ(X1∪Z2).

This leads to the same contradiction as in the proof of Lemma 1. ,-

We have shown that the adjacency of two basic s-t-cuts implies that they are non-
crossing and that the set difference of the cut-defining node sets is connected. Now
we show the reverse direction.

Lemma 3 Let C1 = δ(X1) and C2 = δ(X2) be two basic s-t-cuts with X1 ! X2. If
X2\X1 is connected, then C1 and C2 are adjacent.
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Proof It suffices to find |E | − 1 linearly independent inequalities from the system

x'χ P ≥ 1 for all P ∈ P ,

x ≥ 0

that are simultaneously tight for x = χC1 and for x = χC2 . Obviously,

(
χC1

)
e =

(
χC2

)
e = 0 for each e ∈ E\(C1 ∪ C2).

The nonnegativity constraints corresponding to edges in E\(C1 ∪ C2) build the first
part of the solution.

It remains to find |C1 ∪C2|−1 inequalities corresponding to s-t-paths that are tight
for x = χC1 and for x = χC2 . For each e ∈ C1 ∩ C2 let Pe be an s-t-path with the
property that

Pe ∩ C1 = Pe ∩ C2 = {e}. (3)

Notice that such an s-t-path exists since X1 and V \X2 are connected; see Corol-
lary 1 (iii). Due to (3), it holds that

(
χC1

)'
χ Pe =

(
χC2

)'
χ Pe = 1 for each e ∈ C1 ∩ C2.

The corresponding tight constraints constitute the second part of the solution.
It remains to find another |C1\C2| + |C2\C1| − 1 tight inequalities. Notice that

C1\C2 and C2\C1 cannot be empty since C1 and C2 are basic and distinct. Consider
the complete bipartite graph H on the set of nodes (C1\C2) ·∪ (C2\C1) and a spanning
tree T of H . Notice that T contains |C1\C2|+ |C2\C1|−1 edges; the edge set of T is
denoted by E(T ). For each e1e2 ∈ E(T ) with e1 ∈ C1\C2 and e2 ∈ C2\C1, let Pe1e2

be an s-t-path with the property that

Pe1e2 ∩ C1 = {e1} and Pe1e2 ∩ C2 = {e2}. (4)

Such an s-t-path exists since X1, X2\X1, and V \X2 are connected. Moreover, due
to (4), it holds that

(
χC1

)'
χ Pe1e2 =

(
χC2

)'
χ Pe1e2 = 1 for each e1e2 ∈ E(T ).

The corresponding tight constraints constitute the third and last part of the solution.
It remains to show that the chosen |E |−1 constraints are linearly independent. This

can easily be seen as follows. Choose an arbitrary edge e0 ∈ C1\C2 and assume that
the tree T is rooted at e0. We describe a sorting of the remaining edges e ∈ E\{e0}
and a sorting of the chosen tight constraints with the following property: the resulting
(|E | − 1) × (|E | − 1)-matrix whose columns correspond to edges e ∈ E\{e0} and
whose rows correspond to tight constraints is lower triangular with diagonal entries
all one.
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– First take the edges e ∈ E\(C1 ∪ C2) in any order. The same order is used for the
corresponding tight nonnegativity constraints. Thus, the upper left corner of the
final matrix is an identity matrix.

– Then, add the edges e ∈ C1 ∩C2 in any order. Use the same order for the tight con-
straints corresponding to s-t-paths Pe, e ∈ C1∩C2. The diagonal block correspond-
ing to this second part is again an identity matrix. Notice that there can be additional
non-zero entries in previous columns corresponding to edges e ∈ E\(C1 ∪ C2).

– Finally, sort the edges e ∈ (C1\(C2 ∪ {e0})) ·∪ (C2\C1) in order of nondecreasing
distance from the root e0 in T . Sort the tight constraints corresponding to s-t-paths
Pe1,e2 , e1e2 ∈ E(T ), accordingly. More precisely, if we assume that the edges
e1e2 ∈ E(T ) are directed away from the root e0, we sort them according to the
given sorting of their head nodes e2. In particular, we get a lower triangular matrix
and also the diagonal entries of this last block are all one.

This concludes the proof of the theorem. ,-

The main result of this section is summarized in the following theorem.

Theorem 1 For undirected graphs, two basic s-t-cuts δ(X1) and δ(X2) are adjacent
if and only if X1 ! X2 and X2\X1 is connected, or X2 ! X1 and X1\X2 is connected.

3.2 Directed graphs

Throughout this section let G = (V, E) be a directed graph. As in the case of undi-
rected graphs, we need the concept of crossing s-t-cuts. However, in the directed case,
the definition is slightly more complicated.

Definition 2 Let C1 and C2 be two s-t-cuts in the directed graph G. We say that C1
and C2 are crossing if X1 " X2 and X2 " X1 for all X1, X2 ⊆ V with C1 = δ+(X1)

and C2 = δ+(X2). Otherwise, C1 and C2 are noncrossing.

In other words, in order for two s-t-cuts to cross, for any pair of cut-defining node
sets one set must not contain or be contained in the other one. The example in Fig. 5
illustrates why this more complicated definition is essential in the case of directed
graphs.

It is easy to observe that an equivalent definition of crossing s-t-cuts is as fol-
lows. For an s-t-cut C , let XC ⊆ V be the inclusionwise minimal subset of nodes

Fig. 5 The two depicted
s-t-cuts C1 and C2 seem to cross
but are indeed identical. Both
just contain the two horizontal
edges that go from left to right
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Fig. 6 An example of a directed
graph with two s-t-cuts

Fig. 7 The undirected bipartite
graph H corresponding to the
two s-t-cuts depicted in Fig. 6

with C = δ+(XC ); notice that XC is the set of nodes which can be reached from s
via a directed path not containing edges from C . Then two s-t-cuts C1 and C2 are
crossing if and only if XC1 " XC2 and XC2 " XC1 .

Lemma 4 Let C1 = δ+(X1) and C2 = δ+(X2) be two basic s-t-cuts. If C1 and C2
are crossing, then they are not adjacent.

Proof The proof is almost identical to the proof of Lemma 1. The only difference is the
argument for δ+(X1∩X2) being distinct from δ+(X1) and δ+(X2). For directed graphs
this follows directly from the refined definition of crossing s-t-cuts; see Definition 2.,-

As in the undirected case, we show now that the adjacency of two (noncrossing)
basic s-t-cuts implies that the node set in-between is connected.

Lemma 5 Let C1 = δ+(X1) and C2 = δ+(X2) be two adjacent basic cuts with
X1 ! X2. Then X2\X1 is connected.

Proof The proof is identical to the proof of Lemma 2. ,-
For the case of directed graphs, however, we derive an even stronger result. Given

two noncrossing s-t-cuts we define a bipartite graph as follows; an illustrating example
is given in Figs. 6 and 7.

Definition 3 Let C1 = δ+(X1) and C2 = δ+(X2) be two s-t-cuts with X1 ! X2
and let Z := X2\X1. Let H be the (undirected) bipartite graph with node set
V (H) := (C1\C2) ·∪ (C2\C1) and the following edge set: e1 ∈ C1\C2 and
e2 ∈ C2\C1 are connected by an edge e1e2 in H if and only if there is a directed
head(e1)-tail(e2)-path in G[Z ].
Lemma 6 If C1 = δ+(X1) and C2 = δ+(X2) are adjacent basic s-t-cuts, then H is
connected.
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Proof By contradiction assume that H is not connected, i.e., there exist disjoint non-
empty subsets U ′

1, U ′
2 ⊆ V (H) with V (H) = U ′

1
·∪ U ′

2 and EH (U ′
1, U ′

2) = ∅. As in
Definition 3, we set Z := X2\X1. For i = 1, 2, let Ui ⊆ Z denote the set of nodes
that can be reached in G[Z ] from a head-node of some edge e ∈ C1 ∩U ′

i via a directed
path. That is,

Ui := {v ∈ Z | ∃ e ∈ C1 ∩ U ′
i : ∃ directed head(e)-v-path in G[Z ]}.

Before we proceed with the proof, we shortly discuss the definition of U1 and
U2 for the example depicted in Figs. 6 and 7. The graph H in Fig. 7 is not
connected and we can set U ′

1 := {e1, e2, e3, e4} and U ′
2 := {e5, e6}. Thus,

U1 = {v1, v3, v4, v5} and U2 = {v5, v7, v8}; see Fig. 6.
We show that the s-t-cuts C3 := δ+(X1 ∪U1) and C4 := δ+(X1 ∪U2) are different

from C1 and C2 and satisfy

χC1 + χC2 = χC3 + χC4 . (5)

This leads to the same contradiction as in the proof of Lemma 1. In order to prove (5),
we show that

C3 = (C1 ∩ C2) ·∪ (C1 ∩ U ′
2) ·∪ (C2 ∩ U ′

1) (6)

and

C4 = (C1 ∩ C2) ·∪ (C1 ∩ U ′
1) ·∪ (C2 ∩ U ′

2). (7)

Since (C1 ∪ C2)\(C1 ∩ C2) = U ′
1
·∪ U ′

2, Eq. (5) follows immediately from (6) and (7).
Notice that (6) and (7) hold for the example depicted in Figs. 6 and 7. Here we
get C3 = {e2, e4, e5} and C4 = {e1, e3, e6}.

It remains to prove (6)—the proof of (7) is symmetric. By definition of C3 we get

C3 = δ+(X1 ·∪ U1) = E(X1 ·∪ U1, (V \X2) ·∪ (Z\U1))

= E(X1, V \X2)︸ ︷︷ ︸
!=C1∩C2

·∪ E(X1, Z\U1)︸ ︷︷ ︸
!=C1∩U ′

2

·∪ E(U1, V \X2)︸ ︷︷ ︸
!=C2∩U ′

1

·∪ E(U1, Z\U1)︸ ︷︷ ︸
!=∅

.

We thus have to prove the four equations “ !=”. Again, for the example depicted in
Figs. 6 and 7, those equations hold.

An illustration of the general situation is given in Fig. 8. It is clear that
E(X1, V \X2) = C1 ∩ C2. Moreover, E(U1, Z\U1) = ∅ by definition of U1.

We now show that E(X1, Z\U1) = C1 ∩ U ′
2. Since head(e) ∈ U1 for each

e ∈ C1 ∩ U ′
1 by definition of U1, it remains to prove the following claim.

Claim head(e) +∈ U1 for each e ∈ C1 ∩ U ′
2.

123
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Fig. 8 An illustration of the
proof of Eq. (6)

Fig. 9 An illustration of the
proof that head(e) +∈ U1
if e ∈ C1 ∩ U ′

2

Since C1 is a basic cut, it follows from Corollary 2 (iii) that there is a directed path
in G[V \X1] from head(e) to the target node t . This path crosses the cut C2. Let e′ be
the first edge on this path that is contained in C2; see Fig. 9 for an illustration. Then,
by Definition 3, e and e′ are connected by an edge in H and thus e′ ∈ U ′

2 as well. If, by
contradiction, head(e) was contained in U1, there must exist an edge e′′ ∈ C1 ∩U ′

1 and
a directed head(e′′)-head(e)-path in G[Z ]. Concatenating this path with the directed
path from head(e) to tail(e′) yields a directed head(e′′)-tail(e′)-path in G[Z ]. Thus, by
Definition 3, e′′e′ is an edge in H which is a contradiction since e′′ ∈ U ′

1 and e′ ∈ U ′
2

are in different connected components of H . This concludes the proof of the claim.
Finally, E(U1, V \X2) = C2 ∩ U ′

1 since U1 contains tail(e) for each e ∈ C2 ∩ U ′
1

(again due to Corollary 2 (iii)) but U1 does not contain tail(e) for any e ∈ C2 ∩ U ′
2.

This concludes the proof of the lemma. ,-

Next we will show the reverse direction of Lemma 6.

Lemma 7 Let C1 = δ+(X1) and C2 = δ+(X2) be two basic cuts with X1 ! X2. If
the bipartite graph H is connected, then C1 and C2 are adjacent.

Proof The proof is almost identical to the proof of Lemma 3. We therefore only give
a rough sketch; all remaining details are analogous to the proof of Lemma 3.
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Again, we have to find |E | − 1 linearly independent inequalities from the system

x'χ P ≥ 1 for all P ∈ P ,

x ≥ 0

that are simultaneously tight for x = χC1 and for x = χC2 .
As above, the nonnegativity constraints corresponding to edges in E\(C1 ∪ C2)

build the first part of the solution. The second part consists again of tight path-
constraints, one for each e ∈ C1 ∩ C2. More precisely, for each e ∈ C1 ∩ C2, let
Pe be a directed s-t-path with the property that Pe ∩ C1 = Pe ∩ C2 = {e}. In the
directed case, such an s-t-path exists due to Corollary 2 (iii).

For the third part of the solution we consider the connected bipartite graph H
from Definition 3 and a spanning tree T of H . For each e1e2 ∈ E(T ) with
e1 ∈ C1\C2 and e2 ∈ C2\C1, let Pe1e2 be an s-t-path with the property that
Pe1e2 ∩ C1 = {e1} and Pe1e2 ∩ C2 = {e2}. Such an s-t-path exists by definition
of H and Corollary 2 (iii).

As in the proof of Lemma 3 it can be shown that the described |E | − 1 constraints
are linearly independent. This concludes the proof. ,-

The main result of this section is summarized in the following theorem.

Theorem 2 For directed graphs, two basic s-t-cuts δ(X1) and δ(X2) are adjacent if
and only if X1 ! X2 (or X2 ! X1) and the bipartite graph H from Definition 3 is
connected.
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