Skip to main content
Log in

Newton’s method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider the generalized Nash equilibrium problem (GNEP), where not only the players’ cost functions but also their strategy spaces depend on the rivals’ decision variables. Existence results for GNEPs are typically shown by using a fixed point argument for a certain set-valued function. Here we use a regularization of this set-valued function in order to obtain a single-valued function that is easier to deal with from a numerical point of view. We show that the fixed points of the latter function constitute an important subclass of the generalized equilibria called normalized equilibria. This fixed point formulation is then used to develop a nonsmooth Newton method for computing a normalized equilibrium. The method uses a so-called computable generalized Jacobian that is much easier to compute than Clarke generalized Jacobian or B-subdifferential. We establish local superlinear/quadratic convergence of the method under the constant rank constraint qualification, which is weaker than the frequently used linear independence constraint qualification, and a suitable second-order condition. Some numerical results are presented to illustrate the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allgower E., Georg K.: Simplicial and continuation methods for approximating fixed points and solutions to systems of equations. SIAM Rev. 22, 28–85 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arrow K.J., Debreu G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin J.-P.: Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  4. Billups S.C.: A homotopy-based algorithm for mixed complementarity problems. SIAM J. Optim. 12, 583–605 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. John Wiley, New York (1983) reprinted by SIAM, Philadelphia (1990)

  6. Contreras J., Klusch M., Krawczyk J.B.: Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets. IEEE Trans. Power Syst. 19, 195–206 (2004)

    Article  Google Scholar 

  7. Debreu G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. 38(10), 886–893 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dempe S., Pallaschke D.: Quasidifferentiability of optimal solutions in parametric nonlinear optimization. Optimization 40, 1–24 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dempe S., Vogel S.: The generalized Jacobian of the optimal solution in parametric optimization. Optimization 50, 387–405 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Facchinei F., Fischer A., Piccialli V.: Generalized Nash equilibrium problems and Newton methods. Math. Program. 117, 163–194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Facchinei F., Kanzow C.: Generalized Nash equilibrium problems 4OR. Q. J. Oper. Res. 5, 173–210 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fukushima, M.: Restricted generalized Nash equilibria and controlled penalty algorithm. Comput. Manag. Sci. (to appear)

  13. Govindan S., Wilson R.: A global Newton method to compute Nash equilibria. J. Econ. Theory 110, 65–86 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Herings P.J.-J., Peeters R.: Homotopy methods to compute equilibria in game theory. Econ. Theory 42, 119–156 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. von Heusinger A., Kanzow C.: SC1 optimization reformulations of the generalized Nash equilibrium problem. Optim. Methods Softw. 23, 953–973 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. von Heusinger A., Kanzow C.: Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions. Comput. Optim. Appl. 43, 353–377 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. von Heusinger A., Kanzow C.: Relaxation methods for generalized Nash equilibrium problems with inexact line search. J. Optim. Theory Appl. 143, 159–183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hogan, W.W.: Point-to-set maps in mathematical programming. SIAM Rev. 15, 591–603 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Janin, R.: Directional derivative of the marginal function in nonlinear programming. Math. Program. Study 21, 110–126 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kesselman A., Leonardi S., Bonifaci V.: Game-theoretic analysis of internet switching with selfish users. Lect. Notes Comput. Sci. 3828, 236–245 (2005)

    Article  Google Scholar 

  21. Kojima M., Shindo S.: Extension of Newton and Quasi–Newton methods to systems of PC 1 equations. J. Oper. Res. Soc. Jpn. 29, 352–372 (1986)

    MathSciNet  MATH  Google Scholar 

  22. Krawczyk J.B.: Coupled constraint Nash equilibria in environmental games. Resour. Energy Econ. 27, 157–181 (2005)

    Article  Google Scholar 

  23. Krawczyk J.B., Uryasev S.: Relaxation algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 5, 63–73 (2000)

    Article  Google Scholar 

  24. Nabetani, K., Tseng, P., Fukushima, M.: Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints. Comput. Optim. Appl. (to appear)

  25. Nash J.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nikaido H., Isoda K.: Note on noncooperative convex games. Pac. J. Math. 5, 807–815 (1955)

    MathSciNet  Google Scholar 

  27. Outrata J., Kocvara M., Zowe J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  28. Outrata, J., Zowe, J.: A numerical approach to optimization problems with variational inequality constraints. Math. Program. 68, 105–130 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Pang, J.-S., Ralph, D.: Piecewise smoothness, local invertibility, and parametric analysis of normal maps. Math. Oper. Res. 21, 401–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rosen J.B.: Existence and uniqueness of equilibrium points for concave N-person games. Econometrica 33, 520–534 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun D., Fukushima M., Qi L.: A computable generalized Hessian of the D-gap function and Newton-type methods for variational inequality problems. In: Ferris, M.C., Pang, J.-S. (eds) Complementarity and Variational Problems: State of the Art, pp. 452–472. SIAM, Philadelphia (1997)

    Google Scholar 

  33. Uryasev S., Rubinstein R.Y.: On relaxation algorithms in computation of noncooperative equilibria. IEEE Trans. Autom. Control 39, 1263–1267 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna von Heusinger.

Additional information

This research was supported by a grant from the international doctorate program “Identification, Optimization, and Control with Applications in Modern Technologies” within the Elite-Network of Bavaria. This research was also supported in part by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Heusinger, A., Kanzow, C. & Fukushima, M. Newton’s method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation. Math. Program. 132, 99–123 (2012). https://doi.org/10.1007/s10107-010-0386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0386-2

Keywords

Mathematics Subject Classification (2000)

Navigation