arXiv:0906.5051v1 [cs.DS] 27 Jun 2009

Bin packing with general cost structures

Leah Epsteinh Asaf Levin®

Abstract

Following the work of Anily et al., we consider a variant ohlpacking, calledIN PACKING
WITH GENERAL COST STRUCTUREYGCBP) and design an asymptotic fully polynomial time
approximation scheme (AFPTAS) for this problem. In the silabin packing problem, a set of
one-dimensional items is to be assigned to subsets of tstahsmost 1, that is, to be packed into
unit sized bins. However, in GCBP, the cost of a bin is not Inadassic bin packing, but it is
a non-decreasing and concave function of the number of ipEroked in it, where the cost of an
empty bin is zero. The construction of the AFPTAS requiregehtechniques for dealing with
small items, which are developed in this work. In additior,develop a fast approximation algo-
rithm which acts identically for all non-decreasing and cave functions, and has an asymptotic
approximation ratio of 1.5 for all functions simultanegusl

1 Introduction

Classic bin packing [23.,19. 7] 8] is a well studied problemahhihas numerous applications. In the
basic variant of this problem, we are giventems of size in(0, 1] which need to be assigned to unit
size bins. Each bin may contain items of total size at moshd the goal is to minimize the number
of bins used.

Consider the following possible application. A multipreser system, where each bin represents
one processor, is available for one unit of time. Howevenaggssor that executes a large number
of short tasks causes the system a larger load than a prodbss@xecutes a smaller number of
long tasks, even if the total duration of the tasks is equaloith cases. This is one motivation to the
problemBIN PACKING PROBLEM WITH GENERAL COST STRUCTURE$GCBP) that we study here.
The problem has additional applications in reliabilityatity control and cryptography [1].

In the problem GCBP, the cost of a bin is not a unit cost, bueddp on the number of items
actually packed into this bin. More precisely, we define thebfgm as follows. The input con-

sists ofn itemsI = {1,2,...,n} with sizesl > s; > sy > --- > s, > 0, and a function
f:{0,1,2,...,n} — R}, wheref is a monotonically non-decreasing concave function, foictvh
f(0) = 0. The goal is to partition/ into some number of setS;, ..., S,,, called bins, such that

> jes; i < 1foranyl <i <m,and so thad ", f(|S;]) is minimized. We say that a functiof
is valid if it has the properties above, and an instance of GCBP isatkfiot only by its input item
sizes but also using the functigh We assume that(1) = 1 (otherwise we can apply scaling to the
cost functionf).

Anily, Bramel and Simchi-Levil[1] introduced GCBP and delsed the applications in detalil.
We describe their results in what follows. Further resuftSsSACBP appear in [4], but these additional

*Department of Mathematics, University of Haifa, 31905 ldalérael.lea@math.haifa.ac.il.
fChaya fellow. Faculty of Industrial Engineering and Marmaget, The Technion, Haifa, Israel.
levinas@ie.technion.ac.il.

http://arxiv.org/abs/0906.5051v1

results are not related to this paper. A related model wabestlby Li and Chen [19]. In this model
the cost of a bin is a concave and monotonically non-degrgdaiction of thetotal sizeof items in
it.

For an algorithmA, we denote its cost byl as well. The cost of an optimal algorithm is de-
noted byoPT. We define the asymptotic approximation ratio of an algamitd as the infimum
R > 1 such that there exists a constanivhich is independent of the input, so that any input safisfie
A < R -0PT+ c. The absolute approximation ratio of an algoritbfris the infimumR > 1 such
that for any input,A < R - OPT. An asymptotic polynomial time approximation scheme israifa
of approximation algorithms such that for every> 0 the family contains a polynomial time algo-
rithm with an asymptotic approximation ratio o+ . We abbreviateasymptotic polynomial time
approximation schemigy APTAS (also called an asymptotic PTAS). An asymptotityfpblynomial
time approximation scheme (AFPTAS) is an APTAS whose timapmexity is polynomial not only
in the input size but also ié. Polynomial time approximation schemes and fully polyraniime
approximation schemes, which are abbreviated as PTAS amd$;Rare defined similarly, but are
required to give an approximation ratio bff- £, according to the absolute approximation ratio.

Anily, Bramel and Simchi-Levil[l] analyzed the worst casefgenance of some natural bin-
packing heuritics when they are applied for GCBP. They shbthiat many common heuristics for
bin packing, such as First Fieg), Best Fit 8F) and Next Fit {F), do not have a finite asymptotic
approximation ratio. Even an application of the first twotgics on lists of items that are sorted by
size in a non-increasing order, i.e., the algorithms FitsDEcreasing kFD) and Best Fit Decreasing
(BFD), leads to similar results. However, Next Fit Decreasingd) behaves differently, and was
shown to have an asymptotic approximation ratio of exactlySarting the items in the opposite
order gives a better asymptotic approximation ratio of apipnately 1.691 (in this case, the three
algorithms First Fit Increasingr€1), Best Fit IncreasinggFi) and Next Fit Increasing\NF!) are the
same algorithm). Note that these heuristics are indepéralahe specific functionf. It is stated
in [1] that any heuristic that is independent phas an asymptotic approximation ratio of at Ieélst
Therefore, finding an algorithm with a smaller asymptotipragimation ratio, and specifically, an
asymptotic approximation scheme, requires a strong udate specific functionf.

In this paper, we develop an AFPTAS for GCBP. We develop adxannk, where the action of
the scheme for a given non-decreasing concave fungtiaith f(0) = 0 is based on its exact defi-
nition. We also develop a new approximation algorithramMHHALF (MH), which acts obliviously
of f, similarly to the behavior of the algorithms ofi [1]. We praotiet our algorithm has an asymp-
totic approximation ratio of at most 1.5 for any non-deciregsoncave functiory with f(0) = 0,
improving over the tight bound of approximately 1.691, mawy Anily et al. [1], on the asymptotic
approximation ratio oNFI.

The classic bin packing problem is clearly a special case©B8 as one can s¢t{0) = 0 and
f(i) = 1forall i > 1, where the resulting function is monotonically non-desiheg and concave.
Therefore, GCBP inherits the hardness proof of the classipacking problem. That is, GCBP
cannot be approximated within an absolute factor better gr(aunlessP = N P). This motivates our
use of asymptotic approximation ratio as the main analgtit to study approximation algorithms for
GCBP. In this metric we design the best possible result (agsuP # N P), i.e., an AFPTAS.

A study of this nature, where approximation schemes ardalewé for bin packing type problems,
and in particular, where the complexity of such a problemamgletely resolved by designing an
AFPTAS, is an established direction of research. Studieshafar flavor were widely conducted for
other variants of bin packing, see elg.![16],14,[20[22, 13].

Fernandez de la Vega and Lueker![10] showed that the classipdgking problem admits an
APTAS. This seminal work introduced rounding methods whiahsuitable for bin packing problems.

2

These methods, which were novel at that time, are widely nseagdays. Karmarkar and Karp |16]
employed these methods together with column generatiordasigned an AFPTAS [16]. In [13],
the complexity of two variants of bin packing with unit sizbohs are resolved, that is, an AFPTAS
is designed for each one of them. The first onBiis packing with cardinality constraintd 7, (5], in
which an additional constraint on the contents of a bin i®ohiced. Specifically, there is a parameter
k which is an upper bound on the number of items that can be gaokene bin. The goal is as
in classic bin packing, to minimize the number of bins usethe $econd one iBin packing with
rejection [12, [3,[11], in which each item has a rejection penalty asgediwith it (in addition to
the size). Each item has to be either packed or rejected,h@ngdal is to minimize the sum of the
following two factors: the number of bins used for the packeths and the total rejection cost of all
rejected items. Note that prior to the work pf [13], these twoblems were already known to admit
an APTAS [5,12| B]. The main new tool, used [in [13], which aMothe design of schemes whose
running time is polynomial ir%, is a treatment for small items using new methods developeiait
work. The treatment of small enough items for the classiblera is rather simple. Roughly, the
small items can be put aside while finding a good approximatéien, and can be added later in any
reasonable fashion. Already inl[5], it was shown that if thee treatment is applied to small items
in the case of cardinality constraints, this leads to po@raximation ratios. Therefore, Caprara,
Kellerer and Pferschy [5] developed an alternative metloodiéaling with small items. This method
still separates the packing of large items from the packingnmall items. The scheme enumerates
a large number of potential packings of the large items, angéch packing, tests the quality of a
solution that is constructed by adding the small items topteking in a close to optimal way. The
enumeration prevents this method from being used for diegjgrigorithms with running time which
is polynomial in%. The way to overcome this difficulty, used in [13], is to find @od packing of
large items, that takes into account the existence of steais, and allocates space for them. The
packing of large items is typically determined by a lineargram, therefore, the linear program needs
to define at least some properties for the packing of smatisteSpecifically, the linear program does
not decide on the exact packing of small items, but only ontype of a bin that they should join,
where a type of a bin is defined according to the size of laggastin the bin for bin packing with
rejection, and on both the size and number of large itemdyifopacking with cardinality constraints.

The problem studied in this paper, GCBP, is more complex tharones of[[13] in the sense
that the cost of a bin is not just 1. Therefore, even thougtinality constraints are not present, the
number of items packed into each bin must be controlled,demto be able to keep track of the cost
of this bin. In classic bin packing, and other well known aats, forcing all the bins of a solution
to be completely occupied, results in a perfect solutiondd@monstrate the difficulty of GCBP, we
show the existence of a non-decreasing concave fungtieith f(0) = 0, for which such a solution
may still lead to a poor performance with respecfto

In our scheme, cardinality constraints are implied by araaded decision on the cost that needs
to be paid for a given bin, that becomes a part of the type obthe The specific packing of small
items, which is based on the output of the linear programdsi¢e be done carefully, so that the
solution remains feasible, and to avoid large increasesarcost of the solution. An additional new
ingredient used in our AFPTAS is a pre-processing step, wisiperformed on small items, where
some of them are packed in separate bins which are not usathyasther items. In typical packing
problems, bins which contain only very small items are nedéit full, and thus the additional cost
from such bins is close to the total size of these items. Heweén our case, such a bin usually
contains many items, and may result in a high cost. Thergefarescheme always packs some portion
of the smallest items separately, before any methods ofipgdtems through a linear program are
invoked. We show that the increase in the cost of the solutloa to the pre-processing step, is small

3

enough, yet this allows more flexibility in the treatment t¢iier small items, i.e., an additional bin
would have a small cost comparedderT.

The structure of the paper is as follows. In Secfibn 2 we supphmples showing the unique
nature of the problem GCBP, accompanied with new propeditielssome properties used in previous
work. We use all these properties later in the paper. Wednte our fast approximation algorithm
and analyze it in Sectidd 3. Our main result is given in Se¢io

2 Préiminaries

In this section we demonstrate the differences betweesiclbi packing problems, and GCBP. We
also state some properties proved.in [1] and [2] to be used lat

As mentioned in the introduction, common heuristics do raveha finite approximation ratio for
GCBP [1], and other heuristics have a higher approximatadio than one would expect. Another
difference is that sorting items in a non-decreasing orflémeir sizes is better than a non-increasing
order.

A class of (concave and monotonically non-decreasing)tions{ f, } ,cn that was considered in
[1] is the following. These are functions that grow lineaflyith a slope of 1) up to an integer point
g, and are constant starting from that point. Specificgllyt) = ¢ for ¢t < g andf,(t) = g fort > q.

It was shown in[[1] that focusing on such functions is suffitihen computing upper bounds on
algorithms that act independently of the function.

For an integer’’ > 2, consider inputs consisting of items of two sizes: 1 — % andb = %

Assume first that there is a single item of sizeind2 K items of sizeb. NFD packs the large item
together withK of the small items in one bin, and additiondl items in another bin. Consider the
function fx. The cost of the solution i$x (K + 1) + fx(K) = 2K. A solution that packs all small
items in one bin and the large item in another bin has a coft 0f) + fx (2K) = K + 1. Thus, even
though both packings use the same number of bins, the cdst @if$t packing, which is produced by
NFD, is larger by a factor that can be made arbitrarily close @, the cost of the second packing.
Moreover, even though only two bins are used, this proveasgmptoticlower bound of 2 on the
approximation ratio oNFD (this bound is tight due to [1]).

Assume now that there a#€ items of sizex and K2 items of sizeb. An optimal packing for the
classic bin packing problem clearly consistsfofhins, such that each one is packed with one large
item andK small items. Using the functioffix, this gives a cost of2. A different packing collects
all small items in one bin, and has the cést fx (1) + fx(K?) = 2K. SinceK can be chosen to
be arbitrarily large, we get that the first packing, whichhis tinique optimal packing in terms of the
classic bin packing problem, does not have a finite appradamaatio. Note that this first packing
would be created byrFD andBFD, and also byrF, BF andNF, if the input is sorted appropriately.

Throughout the paper, if a specific cost functiprs considered, we usePTto denote the cost of
an optimal solutioroPT for the original input, which is denoted Wy with respect tof. For an input
J we useoPT(.J) to denote both an optimal solution (with respectfjdfor the input./ (whereJ is
typically an adapted input), and its cost. Tret = oPT(I). For a solution of an algorithmi, we
denote bym(.A) the number of bins in this solution. For an inputve letmin(7) to be cost of an
optimal solution with respect to the functigi for k£ = 1, that is, with respect to classic bin packing.
We let fi.(A(I)) be the cost of an algorithmd on I, calculated with respect to functiofy, and use
fr(A), if I is clear from the context.

We further state some lemmas provedlih [1] that allow us tgBfynour analysis in the next
section.

Lemmal [Property 3in [1]] fi(NFI(I)) = f1(NFD(I)), and therefored w(s;) > f1(NFI(I)) — 3.
iel

Lemma?2 [Theorem 1 in[[1]] Consider a packing heuristid that does not use information on the

function f. If the asymptotic approximation ratio of is at mostR, for any functionf;, (for k > 1),

then the asymptotic approximation ratio 4fis at mostR for any non-decreasing concave function
f with £(0) = 0.

A useful packing concept, defined in [1],éensecutive binsRecall that we assumg > s; >
.-+ >s,. Let By, Bs, ..., B, be the subsets of items packed into the bins created in sdote®ads
that packs the items im bins, whereB; is thei-th bin. The packing has consecutive bins if the union
Uj<sBj is a suffix of the sequencg 2,...,n foranyl < s < m. That is, if the firsts bins contain
n' items, then these are thé itemsn — n’ + 1,...,n — 1,n (and thus the smallest items). The
following lemma states thatri is the “best” heuristic among such with consecutive binsnster a
given input/, the cost functiorf, and a feasible packing with consecutive bfhs

Lemma3 [Corollary 3in [1]] fx(NFI(I)) < fr(B(I)).

A patrtition of the items (which is not necessarily a valid kiag) with consecutive bins is called

an overflowed packing for all 1 < i <m, > s; > 1. Clearly, ifm > 2, such a packing must be
JEB;

infeasible. The following lemma implies a lower bound on tlst of an optimal solution. Consider

a given input/, a cost functionf;, an overflowed packing with consecutive bisand a feasible

packingA.
Lemmad4 [Corollary 1in [I]] fx(B(I)) < fr(A(I)).

Using these properties, in order to analyw, it is enough to consider the functiorig for £ > 1.
It was shown in[[1] that the asymptotic approximation rafiael for the functionf, (k > 2) is at most
1+ % The asymptotic approximation ratio efi for f, that is, for classic bin packing, follows from

o0
the results ofi[2] and from Lemniad 1. This ratio}s ﬁ ~ 1.691. Thus the upper bound df691
=1
[1] follows. In the next section we use these properties @elbp a new algorithm. The algorithm
needs to carefully keep the approximation ratio foe= 2 while improving the approximation ratio

fork =1.

3 A fast approximation algorithm MH

In this section we describe a simple and fast algoritiin that does not need to know the functign
in advance. This algorithm is a modification i that tries to combine a part of the relatively large
items (of size larger thaé) in bins together with one additional item. Note that exdeptpossibly
one item,NFI packs all such items in dedicated bins.

As mentioned aboveyFI has an asymptotic approximation ratio of at m@# for the function
fr with k£ > 2. Therefore, the difficult case is actually the classic peabl On the other hand, using
heuristics that perform well for the classic problem, sugehrD, may lead to worse results fér> 2
(which in fact is the case foFFD). Therefore, we define an algorithm that acts identically o,
except for the usage of a pre-processing step.

Algorithm MATCHHALF (MH)
1. Let¢ be the number of items ihwith size in(%, 1] (which are calledarge item§.

2. LetMy = {[1],...,t}, thatis, M is the set of smallestt] large items, and let/; =
{1,..., 521} be the remaining large items. L6t= {t +1,...,n} be called the set of
small items.

3. Define the following bipartite graph. One set of verticensists of the large items a@ff,.
The other set of vertices consists of all small items. An edgé) between vertices of
items of sizess, > % ands, < % exists ifs, + s, < 1, i.e., if these two items can be
placed in a bin together. If this edge occurs, its cost is défasc(a, b) = w(b) (using the
functionw of Sectior).

4. Find a maximum cost matching in the bipartite graph. Thasaming can actually be found
using the following greedy process. Insert the items$ofto a queue in a sorted order,
with item¢t + 1 at the top, and the item¥, are inserted into a queue in a sorted order with
item¢ at the top. At each time, lgtbe the item at the top of the first queue, d@rite item
at the top of the second queuesjf+ s; < 1, these items are matched, and removed filom
the queues. Otherwise, itefrtannot be matched to any item of the second queue (sjnce
is minimal in that queue), spis removed from the first queue. This process is done until
one of the queues is empty, and is performed in linear time.

5. Each pair of matched items is removed frémEvery matched pair is packed into a hin
together.

6. Pack the remaining items USINGI.

The greedy process of step 4 finds an optimal matching by deiexgchange argument. We note
that only (approximately) half of the large items are pdgsibatched in the pre-processing step. A
larger fraction may cause an asymptotic approximatiow eibvel .5, as can be seen in the following
example. LetK be an integer such tha > 2. The input set/ consists ofK items of size% and
K items of sizel — &. RunningNFi on this input results in one bin containirg items of size+
and K bins containing one larger item. However, if we matchaafraction (for some) < a < 1)
of the larger items in a pre-processing step, there wouldppeoaimatelya K bins with two items.
Consider the functiorf,. We getfy(NFI(1)) = K + 2, whereas the cost with pre-processing is at
leasta K 4+ K. This would give an approximation ratio of at ledst «.

For the analysis ofiH, we use weighting functions. This type of analysis was wideded for
classic bin packing, and many variants of bin packing. Thadiechnique was used as early as in
1971 by Ullman [[23] (see als6 15, 18,]21]). We make use of tdimm of the following function
w : [0,1] — R (that is equal to the functiofil’; (p) defined in([2] for anyp > 0). We first define
the well known sequence;, i > 1, which often occurs in bin packing. Let = 2, and fori > 1,
Tip1 = mi(m — 1) + 1. Thusmy = 3, m3 = 7, my = 43, etc. Fomp € (717,], we definew(p) = 1,
if k = m; — 1 for somei > 1, and otherwisew(p) = &£ - p. Finally, we letw(0) = 0. Note
that w is a monotonically non-decreasing function. It was showi2jnthat for a given inputf,

>~ w(s;) > fi1(NFD(I)) — 3. Even though both [2] and [1] assume that no zero sized itedss, e
i€l

clearly, the number of bins used By¥D andNFI does not increase as a result of the existence of such
items, unless all input items are of size zero, and thergtbie property on the weights still holds

even if zero sized items are allowed.
We start with proving the asymptotic approximation ratio fo.

Lemma5 For any input/, m(MH(I)) <

[\SJ[eN]

min(7) + 3.
Proof. We use the following theorem.

Theorem 6 Consider an algorithmA for classic bin packing. Letv;,ws be two weight measures
defined on the input itemsy; : I — R, for: = 1,2. Let W (I) and Wx(I) denote the sum of
weights of all input items of, according tow; and wo respectively, and assum&, (1) < Wi(I).
Assume that for every input of the algorithm, the number i bised by the algorithid is at most
Wh(I) 4+ T, for a constant value which is independent af. Denote byiW; the supremum amount
of weight that can be packed into a bin of the optimal solytexcording to measure,. Then the
asymptotic approximation ratio o4 is no larger thani¥;.

Proof. Given an input/ we haveA < Wy(I) + 7. Since an optimal algorithm haseT(1) bins, with
a weight of at most¥/; in each one of them, we get the upper bound on the weight, diocpto w ;
Wi(I) < Wr-oPT(I). UsingWa(I) < Wi (1), we getA < W;opPT(I) + 7 and the theorem follows.
[]

We define a weight measute on items as follows. For every iteinwe letws (i) = w(s;), except
for small items that are matched to large items in the pregssing step afiH. These items receive
a weight of zero according t-. Let X be the number of bins created by the pre-processing step and
Y the number of bins created by (i.e., in Sted b of the algorithm). Ldt be the input after the
removal of items in the pre-processing step. By Leriina 1, we Bg wq (i) = > w(s;) > Y — 3.

On the other hand, every bin created in the pre-processepghsts éetlotal weighltecI)f 1, since each such
bin contains a large item (that has a weight of 1) and a sneal of weight 0. Thusy ® ws(i) = X,

gl
andintotal) wq(i) > X +Y — 3 = fi(MH) — 3. ’

Next, wzeeélefine a weight measure. Consider the large items, and their packing in an optimal
solution opPT. For any large itermu, which is packed in a bin with at least one other (small) item,
consider the largest small item which is packed withnd denote it by,. If z, is not well-defined,
one of the possible items is chosen arbitrarily to be defireed, a If no such item exists, i.eq is
packed as a single item in a binoPT, we add an item of size zero to this bin@PT and define it to
bez,. Thereforez, exists and is defined uniquely for every large itenWe define the weight of every
itemi asw (i) = w(s;), except for the items, fora = 1, ..., ¢, for which we letw; (z,) = W

In order to showlVy(I) < W;(I), we define a valid matching in the auxiliary graph. This
matching is based on the packinga#T. Let Z = {z,|1 < a < ¢} and denote a set of the largésf]
items inZ = {z,]1 < a < t} by Z'. We initialize the matching with the items &f being matched
to the large items from their bins inPT. This matching is valid since by definition af, each item
in this set is packed ioPTin a different bin, with a different large item. If thie] items matched to
them are not exactly itenﬁ#}, ..., t, itis possible to replace some large items in the matching by
smaller large items, until this situation is reached. Weehay < s;, fori; € Z\ Z' andiy € Z'.

Since the functionov is monotonically non-decreasing, we gét. w(s.,) < 2 > w(s,,). Let

Za€Z za€Z'
n

W(I) = > w(s;). We haveWs(I) = W(I) — ¢(M), wherec(M) is the cost of a matching in the
i=1
auxiliary graph, with a maximum cost, abidy () = W(I)— >_ W >W(I)— > w(sy,) >

1<a<t zq€Z’

W(I) — ¢(M) = W(I), sincec(M) is a maximum cost matching on the smallgst large items,
and > w(s,,) s the cost of one such matching, which we defined above.

[<a<t

Fir21ally, we need to find an upper bound on the total weight imaoboprT, according tow,. We
first consider bins that do not contain a large item. For agmyit of sizes;, = 5 € (0, %], we have
wy (1) < %ﬂ. For items of size 0 the weight is 0. Therefore, the total Wega items in such a bin is
no larger than 1.5 (a tighter upper bound of 1.423 is provdd]in

Consider next a bin which contains a large item. bdie the large item of this bin, ang, is
chosen as above. if, = 0, then the only item in the bin that has a non-zero weight attogrtow,

is a, and thus the total weight is 1. Otherwise, jdte such that,, € (m, 1. Any other itemi in

the bin (except for andza) satisfiesws (i) < J“sl (sinces; < s,, < }). If j = m; — 1 for some
i > 1, we havews(z,) = 5. Otherwisews(z,) = Ls..,.
We have a total weight of at most 'wg(za) + 8L (15, — sza) <14 wy(za) + L2 (5 = 52,),

sinces, > 5. Inthe first case we usg, > g+1' and get at most + 5- ;T ”1 % = 3. In the second
case we get at most+ Lits,, + Lt — s, = 3H _ IH, Usmg 'the same property we get
at most3 again. m

Next, we perform an analysis for functiorfs with k& > 2. Let I be the original input on which
MH is executed. Lef denote an input in which every small item, which is matcheth ailarge item
in the pre-processing step oifH, is replaced with an item of siz¢. Thus, at mosf%} items are
increased to the size,. We consider the following solutions and compare their £o3the cost of
the solution ofvH on I, with respect tofy, is denoted byAy(I). The cost of the solution afiFi
on I, with respect tofy, is denoted bwFIx (1) The next solution that we consider is an overflowed
solution that is created faf as follows. The items are sorted by size in a non-decreasithgr ¢that
is, order by indices in a decreasing order). At each time,rammim prefix of the items of total size
larger than 1 is assigned to the next bin. The cost of thistisolwith respect tof, is denoted by
Ox(I). The cost of an optimal solution fdr, with respect tofy, is denoted by Pt (7). Finally, we
consider a solution fof with consecutive bins, which is constructed from the overéid solution for
I as follows (the construction is similar to the oneih [1], emtfor the treatment of items ih) and the
fact that the corresponding items irare simply removed). For every bin of the overflowed solytion
if the total size of items exceeds 1 (this is the case withia8l bxcept for possibly the last bin, or bins
with removed items), remove the last item and open a new liit.fa he additional large items of
f, which existed as smaller items Inrand were removed fror, are assigned to dedicated bins. The
cost of this solution, with respect t is denoted by?k(f).

By Lemmal3, we haveiri,(I) < Cy(I). By Lemma%, we have),(I) < OPTk(I). We next
prove two lemmas after which we will be able to conclutig) < %OPTk(I) +3.5

Lemma7 A,(I) < NFIx() + 1

Proof. Since all small items of that are packed in the pre-processing stepfare large in, the
small items packed byFi in the two algorithms are the same ones, and bins creatediby the two
algorithms are identical, except for bins that contain gdatem. If any of the two applications o
outputs a bin that contains a large item together with otieens, we adapt the solution by moving this
item into a separate bin, this modification cannot decrdasedst of a solution, but it may increase
the cost by at most 1. The small items bins, resulting frormmoNFI in both solutions (the solution
of MH and the solution ofiF1, possibly with the modification) are now identical. The rémreg items

are packed in both solutions either in singles or in pairsisithe costs of such bins are equal in both
solutions (sincé& > 2). Therefore, the claim followsm

Lemmas Cy(I) < 30x(I) + 2.5.

Proof. We first modify both solutions so that none of them combinegelatems with some small
item in one bin (but the overflowed solution may still havesoimith two large items, which are not
modified here). For the overflowed solution, this may reqoi@ing one or two large items from a
shared bin to a dedicated bin, so it may increase the costrpsit2. For the other solution, this may
involve moving one large item to a dedicated bin, and caneotahse the cost of the solution. We
consider first the bins with small items, that contain attléas 1 items in the overflowed solution.
For every such bin, its cost is at ledstAs a result of moving the last item to a dedicated bin (in the
process of creation of the feasible solution), an additionat of at most 1 is incurred. Thus the cost
increases by at most a factor gxf For any bin containing at mostitems, there is no additional cost
from this step. Note that all bins with large items are in thisiation. The cost of bins with large
items in the overflowed solution with the modification is siyjnp, no matter how they are exactly
packed, so packing each one in a dedicated bin does not ctiangest. Together with the additional
[Iarg? items, the cost of large items beconﬁé%} < % + % Removing small items that do not
exist inI may only decrease the cost. This proves the claam.

Using LemmaR, we have proved the following.

Theorem 9 The asymptotic approximation ratio H is at most 1.5. for any non-decreasing concave
function f with f(0) = 0.

We have shown above that fér= 2 (and similarly, for any constarit), the bound 1.5 is tight.
Note that the bound 1.5 is tight fdr = 1 as well. Consider an input wittv large items of size
1+ 5, andN (K — 1) small items of sizej; (for large enoughV, K, such thatV is divisible by

WED-5 _ NE-3) e with 2K

2
) e = T 2K
_3
small items each, an%(bins with one large item. This gives a total cost\of- N(fK 2 An optimal

solution combined(— 1 small items with every large item, for a cost&f For large enougli, the
ratio is arbitrarily close td.5. It can be seen that this ratio is achieved for any fradfich o < 1 of
large items that participate in the pre-processing step.

4K). MH creates% bins with one large and one small ite

4 An AFPTASfor GCBP

In this section we present our main result, that is, an AFPT#&S5CBP. We give a sketch which
presents the main ideas and technical difficulties, andtbiedull description of the AFPTAS and its
analysis later. We first present an auxiliary algorithmesiractional Next-Fit Increasing

4.1 Theanalysisof FNFI

We prove a property which is helpful in the design of our AFISTA is related to the property on
NFI in Lemmal3, but it is stronger since it is proved for any nonrdasing concave functiofiwith
f£(0) = 0, for fractional packing of items. A packing is fractionaltéms can be cut into pieces, where
pieces of one item can possibly be packed in different binsaggume without loss of generality that
in every fractional packing, every bin contains at most oz pf each item. If this property does not
hold, it is possible to unite parts of items within a bin witih@hanging the cost.

9

We consider an algorithm which creates a fractional packirthe items according to the variant
of the NFI heuristic, called RACTIONAL NFI (FNFI). This algorithm sorts items by size in non-
decreasing order. At each time, a bin is filled completelfpigemoving on to the next bin. For this,
we allow the splitting of items into several parts, thatl& last item that is packed in a bin is possibly
just a part of an item. Consequently, the first item packedhénniext bin may be the remaining part
of the same item. Note that each bin in the outputnfi contains at most two split items and that in
total only at mosin — 1 items are split (wheren is the number of bins used B Fi).

Note that there is no advantage in packing fractions of s&ze of items, except for zero sized
items, which we assume that are split between bins. If a gagize « of an item of size > 0 is
packed in a given bin, we say that the fraction of this itent ith@acked in this bin i%. If an itemis
packed in a bin completely, we say that its fraction packeithénbin is 1. The number of items in a
bin which is packed fractionally is the sum of fractions infibis number is not necessarily an integer
and it is unrelated to sizes of these fractional items, blyt tmtheir fractions.

To be able to analyze fractional packings, we next defiffer any (real and not necessarily
integral) valueg € [0,n] as follows. We defingf(¢), fori < ¢ < i+ 1,tobe(i+1—gq)- f(i) +
(g — 1) - f(i +1). The values off for integer values of are unchanged. We lgt(z) = f(n) for
anyz > n. This function is piecewise linear and continuous, andesibés an extension of a non-
decreasing concave function on integers, it is monotoyicain-decreasing and concaven|. The
cost of a fractional packing is calculated according toghreralizedunction f, using the numbers
of items packed into the bins as defined above.

A simple property ofFNFI is that it creates bins that are sorted in a non-increasidgraf the
number of items in them. This holds since given two kins: i, bin 4, is completely occupied, and
every item that has a part packed in bjrhas a size no larger than any item that has a part packed in
bin 5.

For any non-decreasing concave functipwith f(0) = 0, the following lemma states thatFi
is the “best” heuristic among packings with fractionallyckad bins. Consider a given inplita cost
function f and a fractional packing3.

Lemmal0 f(FNFI(])) < f(B(I)).

Proof. Assume by contradiction that for an inplta fractional packind and a functionf, we have
F(FNFI(])) > f(B(I)). Assume that the bins @ are sorted according to a non-increasing numbers
of items. If the packings that satisfies the condition is not unique, consider suclckipg5 which
maximizes the suffix of bins that are packed identically tophcking offNFI. Consider the first bin

of 5 that is packed differently from the packing mifiFi. If bin 7 is the very last bin of the packing,
then the bind, ... ,i — 1 are packed as in the packingmiiFi, and therefore, bimalso has the same
contents foi3 as it has folFNFI. Therefore we assume thais not the last bin of5.

Letj,7 +1,..., 75 be the indices of items th&wNFI packs in bin (the first and last items, which
have the indiceg’ andj respectively, may be packed fractionally in this bin). et j; < 5/ be an
index of an item such thdt packs a smaller part gf; (possibly of size zero) in binthanFNFI does.
Such an item must exist by the following argumentenir fills bin ¢ completely, then since bihof
B is packed differently, it cannot have at least the sameitnmacif every item. OtherwisesNFI packs
all the remaining items in bim, so a different packing of bin means that some item has a smaller
fraction inB.

We next consider the case that there exists an jtefar which 5 packs a larger part in binthan
the packing ofFNFI. Since the two algorithms pack biis. .., i — 1 identically, only the items of
index up toj’ are available for packing in bins: + 1, ..., where the item of inde¥’ may already

10

be fractional. Out of these itemeNFI packs a maximum prefix into biiy so this item must satisfy
Jjo < j. We get thays < j < j1. Sincej; # jo by their definitions, we get, < j;.

Denote the fractions of; andj» in bin i of B by 77, and~,, and the fractions of; andjs in bini
of FNFI by §; andd,. We haved; > v, > 0 and~y, > 02 > 0. Sincey; < 61, and binsl, ... i —1
are packed identically in both algorithms, there existsrth&r bin:’ that contains a part of item in
the packing of3. Lete; > 0 be the fraction ofj; in bin i’ of B.

We would like to swap parts of items in the packing®fspecifically, a part of iterj; from bin
i/ with a part of itemj, in bin <. We useu to denote the size of the swapped part. There are three
restrictions oru. The resulting fraction of; in bin ¢ of 5 cannot exceed the fraction of this item in
bini of FNFI, thusp < (61 —71)s;,. We can swap at most a fractien of j;. Moreover, we can swap
at most a fraction ofi, — - of j5, in order to keep a fraction gh in bin i that is at least as large as
the one in bini of FNFI. Therefore, we letr = min{(y1 — 01)sj,, (y2 — 02)sj,, €155, }. We adapt3
by swapping a part of size of item j; from bin ' with a part of size: from j, in bin 7. By definition
of all variables, > 0, and thus some change occurred.

Let n; andn; be the original numbers of items in binand:’ of B. By our assumptiom; > n,.

Let a; anday be the fractions of itemg; andj, that are swapped. Singe= a1 - s;, = a2 - 5j,,
ands;, < sj,, we havea; > as. Thus, the change in the costfi$n;, — as + a;1) + f(ny — a1 +
az) — f(ni)+ f(ny) <0, by concavity. As a result of this process, the total numtbé@ems in bin:
remains no smaller than the numbers of items in each of trei binl, 7 + 2,

If an item j> does not exist, it means that hihas a total size of items that is smaller than the total
size of items in biri of FNFI. In particular, it means that bihis not fully packed. We defingy, 41,

i ande; as before. In this case we can defijne= min{(y1 — 61)s;,, 155, }. We defineay, n; and
n; as before. Thus, the change in the cost(8; + a1) + f(ny —aq) — f(ni) + f(ny) <0, by
concavity.

It is possible to perform this process on bimultiple times, until there is no item that has an item
for which a smaller fraction of it is packed in birof B than it is packed in the same bin fexFI. At
this time these bins become identically packed.

We next show that this situation, where no itgnexists, is reached after a finite number of swaps.
For every itemjy, it can be performed for every itega and for every successive bin. This gives a
total of at most® swaps, and possibly? movements of items to biwithout swaps.

After we reach the situation where biris identical for3 and FNFI, the bins1, ... i of B are
sorted by a non-increasing number of items. Each remainm@fo5 has a number of items that is
no larger than biri. Moreover, bins + 1,7 + 2,... can be sorted so that the list of bins becomes
sorted as required. The changes above can only decreasestta# the solution, and therefore we get
a contradiction to our assumptiom

4.2 Thesketch of the scheme

We define an item to be a small item if its size is smaller thand otherwise it is a large item. Denote
by S the set of small items and by the set of large items. Our first step is to apply linear grogpi
[10] of the large items, that is we sort them by size and watpartthem into€—13 (almost) equal-sized
sets of consecutive items (in the sorted list). We pack e&ech of the set of the largest items in its
own bin, and we round-up the size of the items in each othd@odbe largest size of an item in its set.
We next partition the items if into S’ U S” whereS” contains the smallest items such that the
total size of the items irb” is close to a constant which we define depending:.ohe items of
S” are packed nearly optimally using th&Fi heuristic and packing any split item using a dedicated
bin. These bins will enable us to use a constant number ofbitiisan arbitrary content (of items

11

in L U S’) while paying at most times the cost of the bins which are used to pack the itens&’in
We note that packing” using theNnFi heuristic is also possible and leads to a similar performanc
guarantee. However, the analysis of usimg is simpler.

Our next step is to approximate the cost functfamsing a staircase (step) function witl{log f (n))
steps. We use concavity gfto show that this number of steps in the function is sufficienget a
1 4 ¢ approximation off.

We next move on to finding a packing of the itemdZinJ S’ (neglecting the largest items which
are packed in dedicated bins). In such an instance, ther lpregram, which we construct, allows
the small items ofS” to be packed fractionally. To construct this linear programdefine a set of
configurations of large items (this is the standard definjti@nd a set of extended configurations
which also define the space and cardinality of small itemsdnreiguration (this is a non-standard
idea). The linear program will decide how many bins with aegiextended configuration to open
and what type of bins each small item need to be packed in. eTtypes are called windows, and
we define them as the pair consisting of the total space fosrihal items and the total cardinality
of small items in a bin with this window. Hence in this lineangram we have a constraint for each
size of large items (a constant number of constraints) at@nsof each small item (a linear number
of such constraints), and two constraints for each type otlaivs. We apply the column generation
technique of Karmarkar and Karip [16] to solve approximatbby resulting linear program (we use a
separation oracle which applies an FPTAS for the Knapsaaiigm with cardinality constraint given
by [6]).

Unfortunately the number of fractional entries in a basicigon for this linear program (as we
can assume our solution is indeed a basic solution), isrlimetne number of windows types (plus
a constant). The number of windows is indeed polynomial aitiput size allowing us to solve the
linear program, but it is not a constant, and we will incur @ large error if we would like to round
up the fractional solution.

Hence, we define a restricted set of windows types with a mudiler set of windows, and
we show how to project cleverly our solution to a new solutidrich is not worse than the original
solution, whose support uses only windows from this regiticet of windows. Therefore, when we
count the number of constraints, we can eliminate the caingsr corresponding to windows which
do not belong to the restricted set of windows. Thus the newnon the number of fractional
components in the projected solution is now much smalleat) our projected solution which is
an approximated solution to the original linear programise an approximated solution to the linear
program with additional constraints setting the varialdezero if the corresponding window does not
belong to the restricted set of windows.

The next step is to round up the resulting projected soluticeasmall item is packed fractionally,
then we pack it in its own dedicated bins. If the fractionduton needs to pack fractional copies of
bins with a given extended configuration, then we round umtimber of such bins. The large items
clearly can be packed in these bins according to the confignsaof the large items. The small items
are now assigned to windows (by an integral assignment)nantb specific bins. Therefore, our last
steps are devoted to packing the small items.

We first place the small items which are packed in a common ewntype into the bins with
this window as part of their extended configuration in a roewstain fashion where the small items
are sorted according to their size (this ensures us thatuh@er of items in each such bin will be
approximately the same, and the total size of these itemsgimisins will be approximately the same).
Hence, the excess of volume of small items in a bin is relgtismall (with respect to the total size of
small items in this bin). In fact it is at most one excess itanlgpn plus a small volume of additional
small items (this small volume is due to a rounding we haveedeimen we define the set of windows).

12

The excess items are packed in dedicated bins suc% thatess items are packed in each dedicated
bin. The small volume items are packed again in dedicatesidunh that these items frognbins are
packed into one common dedicated bin. The items which arevedhfrom a bin after the process
of the round-robin allocation are the largest small itemshef given excess volume. The resulting
scheme is an AFPTAS for GCBP, as claimed by the following rtieo

Theorem 11 The above scheme is an AFPTASG&GEBP.

4.3 A detailed description and analysis of the AFPTAS for GCBP

Let0 < e < 3 be such that is an integer. Recall that(0) = 0 and f(1) = 1.

The input for this problem includes in addition to the listteims, also the functiorf. Therefore,
the running time needs to be polynomial in the following f@arameters:n, % and the binary
representations of the numbers in the input, including tamisizes, and the values ¢fon the
integersl, ..., n. The length of the representation pfs at leastog f(n).

If n < % we pack each item into a separate bin. In this case, the €tis¢ golution is at most

) < (1 4+ £)oPT+ L. We therefore assume that> L.

Linear grouping. An item j islargeif s; > <. All other items aresmall We denote by the set
of large items, and by the set of small items. We perform linear grouping of thedatgms. That
is, if || > %, then form = % we partitionL into m classes.s, .. ., Ly, such thaff|L|e3] = |L,| >
|Lo| > -++ > |Lm| = ||L|€?], and L, receives the largest items from\ [L; U--- U L,_1]). The
two conditions uniquely define the allocation of items intasses up to the allocation of equal size
items. For every = 2,3,...,m we round up the size of the elements/ofto the largest size of an
element ofL;. For an itemi, we denote by the rounded-up size of the item.|If| < Z, then each
large item has its own sét; such thatl,; is an empty set, and for a large iteiwe Iets; = s; (i.e.,
we do not apply rounding in this case). In both cases we hape< 2¢3|L)|.

For items inL;, we do not round the sizes, and we den@te: sjforallj € L. Forj € S
we also lets; = s;. We denote by’ = L\ L;. We consider the instandé consisting of the items
in L' U S with the (rounded-up) sizeg. Then, using the standard arguments of linear grouping we
concludeopT(I’) < opPT(I). The items inL; are packed each in a separate bin. We next describe the
packing of the items ir’.

Dealing with the set of the smallest items. We define a partition of the sétinto two partsS’
andS”, such thatS” is a suffix of the list of input items (i.e., a set of smallestits). Specifically,
if i € S"andj € S, thens] > s;-. Let S” be a maximum suffip, ... ,n}, such thats” C S, for
which the total size is at most+ h(e), whereh(e) is a function ofe that we will define later. This
function is defined such thafe) > 1 is an integer for any valid choice ef Note that if the total size
of the small items is smaller than+ h(c) then we letS” = S and.S” = (). We will pack the items
from S” independently from other items. That is, there are no mixad bontaining as items from
S” as items not front”.

The first packing step of the algorithm is to pack the itemS’6bfising the following heuristic. We
apply FNFI (processing the items in an order which is reverse to théeron the input). This results
in 1+ h(e) bins, unlesss” = S. Afterwards, a new dedicated bin is used for every item ttet gplit
between two bins bgNFI. There are at most(s) such items.

In order to focus on solutions that pack the itemsS6fas we do, we next bound the cost of a
solution that packs the items i{’ in this exact way (packed byNFI in separate bins, where split
items are moved to an additional bin). On the other hand, {@& mr requirements of a solution and
allow fractional packing of the items ifi’. The solution clearly needs to pack the itemd.iras well

13

(no fractional packing can be allowed for large items). Weale the optimal cost of such a solution
by opT(I’). The motivation for allowing fractional packing of the iterof S’ is that our goal is to
bound the cost of solutions to a linear program that we intcedater, and this linear program allows
fractional packing of small items that are considered byitich are exactly the items o (while
the items ofS” remain packed as defined above).

Lemmal12 opT(I') < (1 +¢)oPT(I’) + (3h(e) + 3) - f(%) < (1+¢e)oPT+ (3h(e) +3) - f(%)_

Proof. Consider an optimal solutioaPT to the following relaxation GCBR’of our packing prob-
lem. We need to pack the items 8f (with rounded-up sizes) bl the items ofS can be packed
fractionally. The difference with the packirap1 (I’) is that items ofS” can be packed in an arbi-
trary way, and not necessarily into dedicated bins, as isritesl above. In particular, they can be
packed fractionally. The difference with the packingT(I’) is the possibility to pack the small items
fractionally. The cost 0bPT is clearly at mosopPT(I’) < OPT.

We sort the bins 0bPT in a non-increasing order, according to the number of itdras the sum
of fractions of items) packed in the bin (including largant®. Leto; be the total free space in bin
that is left after packing its large items in it. This is thesp which is used by small items, together

7
with all the free space, if exists. L&; = 3° 0. Letp = min{i[¥; > > s’}. The integep must
j=1 jes”
exist since all items of” must be packed.

We show that without loss of generality, we can assume thaeats of S” are packed in bins
1,2,...,pin OPT. To show this, consider an optimal solution to GCB#at minimizes the following
function (among all optimal solutions): the number of eérigtquadruplesa, i1, ag, i2), wherea; <
p < ag, i1 € 5,4y € §”, and there is a non-zero fraction of itempacked in bing;, for j = 1,2.
Assume by contradiction that such a quadruplg i1, as, i2) exists. Lety be the fraction of; in bin
a1 andé the fraction ofis in bin as.

Let u = min{~y - s;,,d - s;, }. Denote the fractions af andi, of sizey by v = ﬁ andy’ = %
We swap a part of size of item, in bin ay with a part of sizeu of itemi; in bina;. Sinces;, > s;,
(recall thatS” contains the smallest items), we get that the fractionsfgatl < ¢§’. The number of
items in bina; was changed b¥ —+/, and in bina, it was changed by’ —¢’. The sorted order of bins
may have changed as a result, but djrcan be moved to an earlier spot whilgmay be moved to a
later spot, so the set of the figgsbins does not change. Moreover, we destroyed at least ockeuple,
and did not create new ones, since no parts of iten® afere moved to bing, . . ., p and no items of
S were moved to bing+1,p+2, Letn; andny be the numbers of items in bias anda, before
the change. The change in the cost functiofi(is; +¢' —~')+ f(ne— (6’ —=+')) — f(n1) — f(n2) > 0,
sincen; > ng, 8’ —+' > 0, and by concavity. Therefore, the resulting solution hasst of at most
OPT, and the minimality is contradicted.

If no such quadruple exists then there are two cases. If sl pi- 1,p + 2,... contain only
fractions of items ofS’ (possibly in addition to large items), then all items$$f are in binsl, ... p
and our assumption holds. Otherwise, we have that all hins , p contain no fractions of items in
S’. In this case, if there are items 6f in any of the bing + 1,p + 2, .. ., then there must be empty
space in bind, ..., p. Parts of items of5” can be repeatedly moved to these bins, until no parts of
items of S” exist in binsp + 1,p + 2,.... In each such step, the number of items in some bin in
1,...,pincreases, and the number of items in some bim+nlL, p+ 2, . .. decreases. Sorting the bins
again after every such step (according to a non-increadingpers of items) will contain the same
set of bins in the prefix op bins, and our assumption holds as well. Due to concavity,samzk the
target bin cannot contain less items than the source biny eueh step cannot increase the cost.

14

We next adapDPT by creating at most (<) + 2 additional bins, and move the small items of the
first p bins into these bins usingNFI (that is, the list of items is processed in a reverse orden fro
their order in the input and packed fractionally into birshte that this set of small items may contain
items of S’ of total size at most 1 (out of these items%f at most one is split between two bins), and
the total size of items o§” is at mosti(e) + 1. We denote this set of items that is moved$yWe
compute the change in the cost and afterwards adapt théosofutther so that it complies with the
requirement that the items 6f’ are packed integrally in separate bins, as is done above.

We define an auxiliary monotonically non-decreasing coedawction f as follows. f(x) =
f(z+ 1) — f(1). Note thatf(0) = 0. Consider the bins of GPT from which the small items are
removed. Let; anda; denote the numbers of large and small items in these original Clearly,

r; < 1. By removing the small items, the cost of such a bin decrebge&(a; + r;) — f(r;) >
fla; + 1) — (1) = f(a;), where the inequality is due to concavity. For every bin Wticcreated
for small items, if it containg; small items, its cost ig (b;) < f(b; + 1) = f(b;) + f(L), where the
inequality is due to monotonicity.

Consider now the packing of the iteristhat is implied by the solutio®PT, with respect to the
function f, and neglecting the large items. The cost of this packindiiot is f(ai). Let A denote
the total cost of all the bins that contain itemsfofthat is, of the firsp bins. LetB denote the total

cost with respect tg of all the bins that are created i for S. In this case the cost of a biris
f(b;). Thatis, A = ij f(a;) andB = h(%JrQ f(b;). By LemmdI0 (that holds even though the value
f(1) can be arbitralr;;, we havé > B. .

Let A denote the difference in the cost for the itemsSofVe haveA = h(%+2 f(b;)—

i=1 %

(Fb) + f(1)) - ij fla;) < (h(e) +2)f(L) (by the previous claims and
=1

e

(f(ri+

1

~

h(e
a;) = f(re)) <
A> B).

We next convert the packing of small items as follows. If ¢hexists a mixed bin, that is, a bin
containing items from botl$” and.S’, we split it into two bins, so that the two subsetsSfand of
S” are separated. If a mixed bin indeed exists; (), and the total size of thg” items is more than
h(e), but not more tham(s) + 1. Therefore, the split bin appears as ti{e) + 1-th bin created by
FNFI. Moreover, the number of items in tti€s) + 1-th bin is no larger than the number of items in
every earlier bin. Therefore, if the number of items in #te) + 1-th bin is NV, then the current cost is
at leastf(N)(h(e) + 1) and as a result of the split, the cost increases by an adéhiter of at most
f(IN). So the multiplicative factor of the increase in the cost isastl + <1+ ¢ where the
inequality holds bya(e) > 2.

For a pair of consecutive bins createdrri (excluding the bins with items of N S’), if an item
was split between the two bins, it is removed from these bints@acked completely in a new bin
dedicated to it. There are at mdsgk) such items so this increases the cost by at rh@st- f(1). At
this time, the items of” are packed exactly as wPT (I’).

The total cost is at mogt + &) (OPT+ (h(e) +2) f(1)) + h(e) < (1+¢)(OPT) + ((2+¢e)h(e) +
24 2¢)f(1) < (1+¢)(OPT) + (3h(e) + 3)f(1) (usinge < 1). m

We next need to pack the itemsifi = I' \ S”. Letd = {21311 s;. Clearly, for anyi € S” we have

/ _ 1
We next consider the instandé. In the temporary solutions, we allow fractional packinghuf
items ofS” and we us@PT(I”) to denote an optimal packing #f where small items may be packed

]

+2
1

.
I

1
h(e)+1

15

fractionally. This does not change the fact that any binkedavith items of a total size of at most 1,
can contain a total number of items of at masteven if it contains fractions of items.

We denote the cost of the bins packed with the items’bby F(S”). By definition we have
oPT(I') = oPT(I")+ F(S”). The items of5”, if packed byrNFI (which by Lemma&dD is a minimum
cost packing for them) require at ledsfe) full bins, with at leastA items in each. Therefore, we
have F(S”) > h(e) - f(A). On the other hand, at this time, any other valid bin can dorgaotal
number of items of at mogA.

These properties are true unleégs= (. In that case, only large items remain to be packed, so the
number of items in any additional bin is at mcéstln this case we lef\ = =

Approximating thecost function f. Given the functionf we compute a staircase function, which
is an (1 + ¢)-approximation off, with O(log,,. f(n)) breakpoints. That is, we find a sequence

ofintegers0 = kg < k1 =1 < -+ < k1 = % < ki < .-+ < kg = n such that for all
i=21141,...,0-1,wehavef(kis1) < (1+a)f(k:) The sequence is constructed as follows. We
definek; = jforj =0,1,... 1 . Every subsequent valug; for j > 1 - is defined as the maximum

integert > k; such thatf (t) < (1 +¢) f(k;). Note that this definition is S valid since fgr> 1 we have
fG+1D) < f((1+¢e)j) < (1+¢)f(j), where the first inequality holds by the monoton|C|tyfofand
the second inequality holds by the concavityfofThen, by the definition of the sequence, for every
i=2141,...,0-2 wehavef(ki,2) > (1+¢)f(k;). Note that by the definition of this sequence,
we havel = O(+ log1+af(n)) and? < n. Letpa be such thak,, > A andk,,_1 < A. If
S' =0, we haveA =z sokpA = % The staircase function, which is &h+ ¢)-approximation of
f,is defined as the vaIue gffor valuesk;, and it remains constant between these points.

Constructing the linear program. Given the instancé”, we let a configuration of a bi@' be a
(possibly empty) set of items df’ whose total (rounded-up) size is at most 1. We denote thefset o
all configurations byf. For each configuratio6’ we definepa + 1 < ¢ 4 1 extended configurations
(C, ko), (C,k1),...(C, kp,). Abin packed according to an extended configurafionk,) has large
items according to configuratia@i, and at mosk:,, items in total (that are either large or small items,
i.e., including the large items of this configuration). Weetsslightly relax this condition and allow to
increase the number of items in a bin (in favor of possiblykpag a slightly larger number of small
items) in a way that the cost of this bin only increases by tfadf 1+ <. We denote by the set of all
extended feasible configurations, where an extended coafign (C, k,) is infeasible if the number
of large items inC' is strictly abovek,, and otherwise it is feasible. Léf be the set of different
rounded-up sizes of large items. For each H we denote by:(v, C') the number of items with size
v in configurationC', and we denote by (v) the number of items i’ with sizev.

We denote the minimum size of an item by, = min;cs s, (note thats,,;, # 0), and we let
, (1+€) < smm} to be an apprOX|mated value &f,;, which is an integer

power of1 +¢. The valueloglJﬁE s, is polynomial in the size of the input and gn We define

the following setW = {(+——=¢ 1+€ £)|O <t <logy,. 77— +1,0 < a < ¢}. Awindowis defined
as a member ofV. The mtumve meaning of a wmdéW here is a pair consistifiga @ound on the
remaining capacity for small items in a bin (this bound ismded to an integer power af+), and a
bound on the number of small items packed into a bihis also called the set of all possible windows.
Then,|W| < (¢ +1) - (log,,. —— + 2). For two windows,w' andw? wherew’ = (w!, w?,) for
i = 1,2, we say thatv! < w? if zﬁlfg w? andw! < w?.

Note that each bin that contains large items, packed acwprii an extended configuration
(C, kp), may leave space for small items. For an extended configaréti, &,) we denote thenain
window of(C, k,) to bew(C, k) = (w(C),n(C, ky)), wherew(C') is an approximation of the avail-

s = max{ = 1+€ —|teZ

16

able size for small items in a bin with configuratiéh andn(C, k,) is an upper bound on the total
number of small items that can fit into this bin. More pregiselssume that the total (rounded-up)
size of the items irC' is s'(C). We letw(C) = ﬁ wheret is the maximum integer such that

0<t< 1og1+€ﬁ + 1 and thats'(C) +ﬁ > 1.

Corollary 13 Given an extended configurati@qd’, k), the real cost (after adding small items such
that their number is not larger than the number in the maindeiw of(C, k,)) of a bin that is packed
according to this extended configuration, is at mdst- <) f (k).

Proof. Assume that in configuratiod’ we packnc = > n(v,c) large items, then let be the
veH
smallest integer such thag —nc < k;. It can be seen that< p always holds. We let(C, k,) = k.

Note that ifk, — nc # k; thenk; > % andt > % so we have, —nc > k;—1. Hence in this case we
conclude thalf (n(C, k,) + nc) = f(kt +ne) < fke + kp — ki—1) < f(kp) + f(ke) — f(kim1) <
flkp) + ef(ke—1) < (1 +¢)f(kp), where the first inequality holds by the definition oéind the
monotonicity of f, the second inequality holds by the concavity fofsincek;, > k;_1), the third
inequality holds becausgk;) < (1+¢)f(k:—1) and the last inequality holds by the monotonicity of
[(sincek,_y < kp, —nc < kp). Moreover, ifk, — nc = k;, thenf(n(C, ky) +nc) < (1+¢)f(kp)
clearly holds as wellm

The main window of an extended configuration is a window,(itebelongs to/V), but YW may
include windows that are not the main window of any extendedfiguration. We note thgt/V|
is polynomial in the input size and ib, whereadC| may be exponential iri (specifically, |C| <
0. (5—13 4 1)'/¢). We denote the set of windows that are actual main windoves tafast one extended
configuration byV’. We first define a linear program that allows the usage of amgew in V.
After we obtain a solution to this linear program, we modtfgo that it only uses windows a#’.

We define a generalized configurati6has a pair of pair€’ = ((C, k,), W = (w, k;)), for some
feasible extended configuratig®, k,,) and somd?V € W. The generalized configuratiafi is valid
if W <w(C, k). The set of all valid generalized configurations is denoted b

ForW € W denote byC'(W) the set of valid generalized configuratiofis= ((C, k,,), W) such
that W is their window, i.e.C(W) = {((C, k,), W) € C: W' = W}.

We next consider the following linear program. In this lingogram we have a variable
denoting the number of bins with generalized configuratigrand variables’ y indicating if the
small itemi is packed in a window of typ® (the exact instance of this window is not specified in a
solution of the linear program).

min > f(kp)za
C=((C,kp),W)eC
s.t. > n(v,C)zs > n(v) Yve H (1)
C=((C,kp),W)eC
> Yiw>1 Vie S)
Wew
w- Y xp> Y s Yaw VW= (w,k)eW (3)
Cec(w) ieS’
K- Yy xa> > Yiw YW = (w,k) € W 4)
CeCc(W) €S’
T >0 Vé S é
Yiw >0 YW e W,Vie S

17

Constraints[{l1) and12) ensure that each item (large or ymfll” will be considered. The large
items will be packed by the solution, and the small items wdid assigned to some type of window.
Constraints[(3) ensure that the total size of the small itdraswe decide to pack in window of type
W is not larger than the total available size in all the bing #va packed according to a generalized
configuration, whose window is of tygé” (according to the window size). Similarly, the family of
constraints[(4) ensures that the total number of the sneatistthat we decide to pack in a window of
typeW is not larger than the total number of small items that caraoéed (in accord with the second
component of1’) in all the bins whose generalized configuration of largmgenduces a window of
type W. In the sequel we show how to deal with small items and spadifichow to pack most of
them into the windows allocated for them, and how to furthesaldvith some unpacked small items.

Lemma 14 There is a feasible solution to the above linear program tieg a cost of at most +
g)opPT(I").

Proof. The (1 + ¢) factor results from the fact that we define extended conftguns, where the
number of items per bin i5, (for some value op). The fact that we use a windofw,) only for
values ofx that belong to the same sequence of vakiesill result in an additional factor of + ¢
on the cost of the linear program.

To convert the solution, we do not need to modify packing efmis, but we change the cost
calculation of each bin to comply with costs of generalizedfigurations. For this, the number of
items in every bin must be converted (in favor of cost cakiofes) as follows.

Given a bin withn; > 0 items, we defing to be minimal value such tha}, > n;. The increase
in the cost can occur ik, > n;. In this casep > 0 and we havek,_; < n; < k, and thus
using monotonicity off and the properties of the sequerigeve havef(k,) < (1 +¢)f(kp—1) <
(14€)f(n1). Since windows are never smaller than the real space inliotis with respect to size and
with respect to the difference between the number of laggastand the valuk, of the configuration,
the solution clearly satisfies the constrainis (3) and (4herpacking of small items, and the packing
of large items satisfies the constrairits (1). Therefore tlapted solution is a feasible solution of the
linear program. Moreover, the adapted solution implieslatiem to the linear program in which all
variablesr, that correspond to generalized configuratiGhs- (C,w) for which w is not the main
window of C, are equal to zero, and all variabl¥s,, wherew ¢ V' are equal to zero as well. The
linear program calculates the cost of a packing using theegal, of the extended configurations, and
as shown above, this increases the cosbmf(I”) by a multiplicative factor of at most + ¢ (see
Corollary[13). m

The column generation technique. We invoke the column generation technique of Karmarkar
and Karp [16] as follows. The above linear program may havexgonential number of variables
and polynomial number of constraints (neglecting the negativity constraints). Instead of solving
the linear program we solve its dual program (that has a pohlyal number of variables and an
exponential number of constraints) that we describe next.

The dual variablesy, correspond to the item sizes i, and the dual variables; correspond to
the small items of’. The intuitive meaning of these two types of variables casd®n as weights of
these items. For eadly € VW we have a pair of dual variablegy, dy-. Using these dual variables,
the dual linear program is as follows.

max Yoon(v)ay + Y. G

veEH €S’

18

st n(v,)y +wyw + kdw < f(ky) VC = ((C,ky), W = (w,r)) €C (5)

veH
,Bi — S;’YW — 0w <0 Vi € SI,VW eWw (6)
a, >0 Yve H
Bi >0 Vie S
Yw, 0w > 0 YW e W.

First note that there is a polynomial number of constraiffitype (8), and therefore we clearly
have a polynomial time separation oracle for these comssraif we would like to solve the above
dual linear program (exactly) then using the ellipsoid rodtlwe need to establish the existence of
a polynomial time separation oracle for the constraints F)wever, we are willing to settle on an
approximated solution to this dual program. To be able tdyaihe ellipsoid algorithm, in order to
solve the above dual problem within a factorlof- ¢, it suffices to show that there exists a polyno-
mial time algorithm (polynomial im, % andlog —-— andlog f(n)) such that for a given solution

a* = (a*, f*,v*,0*) decides whethei* is afeasit?lé dual solution (approximately). That is, ibeit

provides a generalized configurati6h= ((C, k,), W = (w,k;)) € C for which 3" n(v,C)a, +
veEH
wygy + kedyyy > 1, or outputs that an approximate infeasibility evidencesduat exist, that is, for all

generalized configuratiors = ((C, k), W = (w, k) € C, 3 n(v, O +wyiy + kb, < 1+¢
veH

holds. In such a casq‘f%e is a feasible dual solution which also satisfies constrg@itsthat can be

used.

Our algorithm for finding an approximate infeasibility egitte uses the following problem as
an auxiliary problem. Th&NAPSACK PROBLEM WITH A MAXIMUM CARDINALITY CONSTRAINT
(KCC) problem is defined as follows. Given a set of item typesnd an integer valug, where
each item type € H has a given multiplicityz(v), a volumez;, and a sizev, the goal is to pack a
multiset of at most items (taking the multiplicity, in which items are takentdraccount, and letting
the solution contain at most(v) items of typev) and a total size of at most 1, so that the total volume
is maximized. To provide an FPTAS for KCC, note that one cgtace an item with size by n(v)
copies of this item and then one can apply the FPTAS of Cajettaath [6] for the knapsack problem
with cardinality constraints. The FPTAS of [6] clearly hadymomial time in the size of its input,
and%. Since the number of items that we give to this algorithm psiiis at most, we can use this
FPTAS and still let our scheme have polynomial running time.

A configurationC, that is an approximate infeasibility evidence, can be ébby the follow-
ing procedure: For eacW = (w,k;) € W, and for every0 < p < /¢, we look for an extended
configuration(C, k,,) € C such that((C, k,), W) is a valid generalized configuration, and such that

> n(v,C)al is maximized. If a configuratior® is indeed found, the generalized configuration,
veEH
whose constraint is checked,(&”, k,), W). To find C, we invoke the FPTAS for the KCC problem
with the following input: The set of items i# where for eachv € H there is a volumey), and a size
v, the goal is to pack a multiset of the items, so that the tatlime is maximized, under the following
conditions. The multiset should consist of at mbst- k;_; — 1 large items, (taking the multiplicity
into account, but an item can appear at most a given numbanes}. Ift = 0, we instead search for
a multiset with at mosk,, large items. The total (rounded-up) size of the multiseughbe smaller
thanl — 1%8 unlessw < s..., where the total size should be at most 1 (in this case, thdamin
does not leave space for small items). Since the number ditappns of the FPTAS for the KCC
problem is polynomial (i.e(¢ + 1)|W)|), this algorithm runs in polynomial time.

If it finds a solution, that is, a configuratiafi, with at mostk, — k;—; — 1 large items (o, if

19

t = 0), and a total volume greater thgiik,) — w~;, — £dy;,, we argue that(C, k), (w, k¢)) is indeed

a valid generalized configuration, and this implies thatehexists a generalized configuration, whose
dual constraint[(5) is violated. First, we need to show fldatk,) is a valid extended configuration.
This holds sinc&” has at mosk, — k;—1 — 1 < k,, large items (ift = 0 the bound on the number of
items holds immediately).

By the definition of windows, the property < s/ . is equivalent tow = 81'? which is the
smallest size of window (and the smallest sized window foamalid generalized configuration with
any configuration, provided that the value lgfis small enough). I > 0, sinceC' has at most
k, — ki—1 — 1 items, the second component of the main window’ah this case is larger thak}_;
and thus no smaller thaky, and the window is no smaller thdw, k;). Therefore, the generalized
configuration((C, k), (w, k)) is valid. If t = 0 then the window(w, 0) is clearly valid with any
extended configuration (for the current valueu9f

If w> s ., recall that the main window oiC, k), w(C, k,) = (w(C),n(C, k,)) is chosen so
thats'(C) + w(C) > 1, and thatC is chosen by the algorithm for KCC so thd{C) < 1 — .
We getl — w(C) < §'(C) < 1 — 1% and therefores < (1 + e)w(C), i.e.,w < w(C) (since the
sizes of windows are integer powersbof- €). SinceC' contains at mosk, — k;_; — 1 items, we
haven(C, k,) > k: and so we conclude th&t’ < w(C, k,), and((C, k,), W) is a valid generalized
configuration (the same property holds to= 0). Thus in this case we found that this solution is a
configuration whose constraint in the dual linear programoissatisfied, and we can continue with
the application of the ellipsoid algorithm.

Otherwise, for any pair of a windoW = (w, k;), and a valué < p < ¢, and any configuration
C of total rounded-up size less than- % (or at most 1, ifw < s7,;,,), with at mostk, — k1 — 1
items, has a volume of at mo@§t + €)(1 — wyjy, — kdyy) < (14 ¢) — wrygy — kdyy,. We prove that
in this case, all the constraints of the dual linear prograensatisfied by the solutioﬁf—a. Consider
an arbitrary valid generalized configuratiéh= ((C, k,), (0, k;)), where(C, k,) is a valid extended
configuration. We havew, k;) < (w(C),n(C, ky)), where(w(C'),n(C, ky)) is the main window of
C. Ifw(C) < s, thenw = w(C). Sinces'(C') < 1 for any configuration, and; < n(C,k,),
we prove that the number of items @i is at mostk, — k;_; — 1 (if j = 0 then the number of
items inC is immediately at most, and there is nothing to prove). Assume by contradiction tthet
number of items irC' is at leastk, — k;_;. Then by definition, we have(C, k,) < k;_1, which is
impossible. Thus(C, k,) is a possible extended configuration to be used with the winda ;) in
the application of the FPTAS for KCC, @f is a possible configuration to be used with the parameter
and the window(w, k;) in the application of the FPTAS for KCC. Assume next tiat 1, then when

the FPTAS for KCC is applied oW = (w, k;), C' is a configuration that is taken into account ¥r

sinces’(C) < 1— lifa) <1- 1%8 where the first inequality holds by definitionof (C'), andC has

at mostk, — k;_; — 1items. Ifw = 1thenl > w(C) > @ = 1, sow,(C) = 1. A configurationC
that contains at least one large item satisfié§’) > ¢, sos'(C1) + 1= > %=t° > 1. Therefore

if the main window of a configuration is of size 1, this configiion is empty. We therefore have
that C' is an empty configuration, thus(C) = 0. The extended configuratiofC, k,) is valid for
any0 < p < {. We haven(C,k,) = k, for the empty configuration, and for aly < j < p,

k, —kj—1 —1 >0, and forj = 0, k, > 0. This empty configuration is considered with any window
W = (w, k;) € W wherej > 0 in the application of KCC. Note that jf = 0, the configuration has
no items at all (large or small).

We denote by X*, Y*) the solution to the primal linear program that we obtained.

Lemma 15 The cost of X*, Y*) is at most(1 + £)20PT(I").

20

Proof. The solution(X™*,Y™*) is a(1+¢) approximation for the optimal solution to the linear pragra
Since we showed that there exists a feasible solution to ingaplinear program with a cost of at
most(1 + ¢)oPT(I"”), we conclude that > fRp) X5 < (1+)2oPT(I"). m
C=((C,kp),(w,ks))eC

M odifying the solution to thelinear program sothat all windowsin W\’ can be neglected.
We modify the solution to the primal linear program, into Hatient feasible solution of the linear
program, without increasing the goal function. We creatisteof generalized configurations whose
X* component is positive. From this list of generalized configjons, we find a list of windows that
are the main window of at least one extended configurationded by a generalized configuration in
the list. This list of windows is a subset Bf’ defined above. We would like the solution to use only
windows fromW'.

The new solution will have the property that any non-zero ponents ofX*, Xg corresponds

to a generalized configuratiofi = ((C, kp), W), such that € W'. We still allow generalized

configurationsC' = ((C, k), W) whereW is not the main window ofC, k), as long asV € W'

This is done in the following way. Given a window’ ¢ W', we defineBy» = Y x5, The
CreCc(w")

following is done in parallel for every generalized configlion C" = ((C, k), W'), whereW’ ¢ W'

and such thatX %, > 0, where the main window ofC’ k) is W' = W’ (but W' # W). We let

C = ((C,kp), W). The windows allocated for small items need to be modified, finsis an amount
of ;(Vi’ Yy is transferred front’’y,, to Y7,,. We modify the values\ 5, and X, as follows. We
increase the value of %, by an additive factor o %, and letX®, = 0.

To show that the new vectdX *, Y*) still gives a feasible solution of the same value of objec-
tive function, we consider the modifications. For every egtsl configuratior{C, k), the sum of
componentsX*, that correspond to generalized configurations whose égtboonfiguration of large
items is(C, k,,), does not change. Therefore, the value of the objectivetibmés the same, and the
constraints[(1) still hold. We next consider the constr@@for :, for a given small item € S’. Since
the sum of variable’";;, does not change, this constraint still holds.

As for constraints[]?;) and4), for a windo’ ¢ ', the right hand side of each such constraint
became zero. On the other hand, for window3/\ity every increase in some variabIéf(g for C =
((C,kp), W = (w,r)), that is originated in a decrease &, for C = ((C k), W' = (w',K)) is

_ _ _ X* X
accompanied with an increase ef~“——Y, = 3
1")

cec(w')

*
!
!

C
w

Yy in Y7y, for everyi € S, thus is,

X*
an increase ofy_ vi/’, s; - Y5, in the right hand size of the constraifil (3) fidf, and an increase
icS ’
of w - Xg, in the left hand side. Since we haue- By > w' - By > ; s - Y{,kW' before the
(2
modification occurs (since constraifif (3) holds for the soiubefore modification for the window
W'), we get that the increase of the left hand side is no smdiker the increase in the right hand

side. There is an increase of,
ieS’
increase ok - Xg, in the left hand side. Since we haxe By > &' - By > % Y{,kww we get that
€S’
the increase of the left hand side is no smaller than theasere the right hand side.
Now, we can temporarily delete the constraints[df (3) dddtla} correspond to windows in
W\ W'. We call the resulting linear prograip;,,,,. We consider a basic solution éfP;,,,;,, that is
not worse than the solution we obtained above (which wasemless a solution of. F;,,,, too). Such

a basic solution can be found in polynomial time. We denatelihsic solution byxX™*, *). This is

X%
BVCV’, - Y}y in the right hand size of the constraihi (4) fdf, and an

21

clearly a basic solution to the original linear program ai.we
In order to obtain a feasible packing, we need to use theisplut™, Y*). However, this solution
may contain fractional components. We can show the follgvniound on these components.

Lemma 16 Consider the solutioX™, Y*). Let Fy- be the number of small items that are assigned to
windows fractionally according to the solution, i.&y = |{i € S, such that the vectoi)}";,)wew

is fractional}|. Let F’x be the number of fractional components¥f, i.e., the number of configura-
tions assigned a non-integer number of copies in the saolufibenFy + Fx < |H| + 2|W'|.

Proof. The linear progrand P,,,,,, consists of H|+2|W'|+ 5’| inequality constraints, and hence in a
basic solution (a property that we assume tht,)*) satisfies) there are at md#f| + 2|W'| + |9’
basic variables. For evedyc S, there is at least one windoiW such thatY; v is a basic variable,
and therefore there are at m¢&t| + 2/V'| additional fractional components {i*, V*). m

Rounding the solution. We apply several steps of rounding to obtain a feasible pgckf the
items into bins. Let”;p be the cost obtained in the linear program by the ve¢iot, V*). By
LemmdI5, this cost is at mogt + £)2oPT(1").

For eachi € S’ such that the vecta);;,)wew Is fractional,i is packed in a dedicated bin. We
can therefore assume that for every small iteen S’ to be packed(y;fW)WeW is integral. Without
loss of generality, we assume that it has one component &miahnd all other components are zero.
(If this is not the case, we can modify the vector without ahag the feasibility of the solution, or
the value of the objective function.)

Let X be the vector such thaf(@ = {Xé} for all C € C. The number of bins allocated to

generalized configuratiof' is X .
We pack the items of. first. We initialize bins according to generalized configiaras, and
assign large items into these bins according to the assdotanfigurations (some slots may remain

empty).

Lemma 17 The cost of the additional bins, dedicated to small itemsafoich ()},)w ey is frac-

tional, and the cost of additional bins that are created assult of replacingt* by X is at most
f(kpa) - ([H[4 2DV')).

Proof. We calculate the cost of bins opened in addition to the cogliéd by the solution(x™, V*).
At most one bin containing at mo&},, items was opened for every fractional componenﬂ,’gf At
most one bin containing a single item was opened for everyl gie& that was assigned fractionally
to windows. The cost of a bin of the first type is at mgsk,,,). The cost of every bin of the second
typeisf(1) = 1 < f(2) < f(kp,). The total number of the two types of bins together is at most
|H| + 2|)W'| by Lemmd16.m
Before moving on to the specific assignment of small items,cemplete the packing of the
original large items. Each large item of the rounded-upainst is replaced by the corresponding item
of I. The method of rounding implies that the space allocateddadunded items is sufficient for the
original items. Moreover, every item is replaced by at mos ibem, so the cost does not increase.
Each item ofL; is packed into one dedicated bin.

Lemma 18 The cost of the bins dedicated to the item& pfs at most2e2opPT(1”).

Proof. It suffices to show thaf (1)|L| < 2e20PT(I”). To see this last claim note thidt;| < 2|L|e3
and each item il has size at least and therefore the number of bins usedd®t(”) is at least
|L|e, where each of them costs at legél). Therefore,f(1)|L1| = |L1| < 2c20PT(I"). m

22

By the constraintd (1), the allocation of the itemsl6to slots reserved for such items is success-
ful. At this time, we have removed some small items into nemgpand possibly increases the space
allocated to other small items.

We next consider the packing of the small items that are ssgabto be packed (according)
in bins with windowWW. Assume that there at& (W) such bins (i.e. X (W) = > Xé).

C=((C,kt),W)
Denote byS (W) the set of small items &’ that we decided to pack in bins with windd# (for some
of these items we will change this decision in the sequelenT by the feasibility of the linear program
we conclude that >~ s} <w- X(W)and|S(W)| <k, - X(W) foranyW = (w,k,) € W'.
ieS(W)

We next show how to allocate almost all the itemsSg#V) to the X (1) bins with window
W = (w, kp) such that the total size of items S{IV) in each such bin will be at most+ =~ and
the total number of items & (17) in each such bin will be at most,.

To do so, we sort the items ifi(1W) according to non-increasing size (assume the sorted list of
item indices ish; < by < ...bsw))- Then, allocate the items to the bins in a round-robin manne
so that binj (1 < j < S(W)) receives items of indicel; ;. x () for all integersg > 0 such that
j+q- X(W) <|S(W)|. We call the allocation of items for a given valuezofround of allocations

If w= Slng then there are no small items assigned to this window. Wefher assumey > s/ . .
We claim that the last bin of indeX (W) received at most agf(lv) fraction of the total size of
SV
the items, whose sum is equal tQ | s;,. To prove this, we artificially add at mo&t(1¥) — 1 items

of size zero to the end of the |iét 1(these items are added gughé sake of the proof), and allocate
them to the bins that previously did not receive an item inldis¢ round of allocations, that is, bins
T, ..., X (W) such that binr — 1 < X (W) originally received the last item. If biiX (W) received
the last item then no items are added. Now the total size ofl #emmas remained the same, but every
bin got exactly one item in each round. Since the last binivedethe smallest item in each round,
the claim follows. On the other hand, we can apply the foltmwprocess, at every time< X (W),
remove the first (largest) small item from hin As a result, the round-robin assignment now starts

from bin ¢ + 1 and bini becomes the bin that receives items last in every round, taunsl iy the
IS
Sb,

previous proof, the total size of items assigned to it is a$tmgg‘zw—)L (since the total size of items
does not increase in each step of removal).

We create an intermediate soluti®i®) L;,.;.,, by removing the largest small item from each such
bin (call themthe removed small itepsEach removed item is small and therefore its size is at most
e. We pack the removed small items in new bins, so that eachctuita'msé items. There may be at
most one resulting bin with less théritems.

The solutionSOL;,.., is not necessarily valid, but if we temporarily relax the dition on the
total size of items in a bin, we can compute its cost. Sinceaggnment of small items into bins
is done using a round-robin method, the number of small itienasbin with a window(w, k,,) is at
mostk,,.

Lemma 19 The total cost oSO L;,., iSs at most the sum g‘f(%) plus (1 + ¢)? times the cost of the
solution prior to the allocation of the small items into hins

Proof. The first factor ofl 4 ¢ follows from Corollary(18. We calculate the cost of the aiddtial bins.
We allocate a cost aff (1) to each removed small item. Then, the total allocated caarsdhat cost
of all new bins except for at most one bin that has a cost of zﬂt[f@). Consider a removed item

23

1 and leta be the real number of items (including large items) that tineflom which i is removed,

contains before the removal. Thus, the bin is charged withsaaf at leastf (a) (the linear program

may have charged it witlfi(k,) for somek, < a, but the current charge for this bin in our estimation

of the total cost ig1 +¢) f(k,) > f(a), by Corollary(13B). As a result of removal afthe real cost of

the bin is no larger thayf(a — 1). We therefore showf (1) + f(a —1) < (1 +¢)f(a). If a > 1,

then using monotonicityf(%) < f(a) and f(a — 1) < f(a) so the claim holds. Otherwise, we
1

have f(1) = f(a) + S (f(j) - f(j — 1)). By concavity, we have for every + 1 < j < 1,
j=a+1

fla) = fla—1) > f(j) — f(j — 1). Thereforef (1) < f(a) + 2(f(a) — f(a — 1)). Rewriting this

gives the required claimm

We note that the total size of small items assigned to sugbiriaf) bin is at mostv (as before
removing the items we allocate the first bin a total size that mostv and after the removal of items
each bin has total size which is at most the total size of telin before the removal).

The intermediate solutio®OL;,..- is infeasible because our definition afis larger than the
available space for small items in such bin. We create thédolation SOL f;,,,; as follows.

Consider a bin such that the intermediate solution in whichd items are packed according to
configurationC', and small items with total size at mast We do not change the packing of large
items. As for the small items, we remove them from the bin dad packing the small items into this
bin greedily in non-decreasing order of the item sizes, ag s the total size of items packed to the
bin does not exceed 1. The first item that does not fit into théshialled thespecial item Additional
items that do not fit are called tlexcess items

We collect the special items from all bins, and we pack th&sag in separate bins, so that each
such separate bin will conta@ special items for different bins §O L;,,;.,, except for the last such
bin. Similarly to the above argument in the proof of Lenimath@se are feasible bins and they add
an additive factor ot times the cost o060 L;,,., to the total cost of the packing (pllfié)).

By the definition of windows, the actual space in a bin withaaw (w,), that is free for the use
of small items, is at least of siziéﬁ—e. After the removal of the packed items and the special iteen, w
are left with the excess items, and their size is at most ;. = 71 < . Similar considerations
can be applied to the cardinality of these items. Since werinlke items into the window sorted by
a non-decreasing order of size, the largest items are thetbatbecome excess items, and thus for a
window (w, k), the number of excess items is at mest

The last rounding step is defined as follows. We can pack tpacked (excess) items of every
% bins of SOL;,... Using one additional bin. Specifically, we sort the subséxoess items ac-
cording to a non-increasing order of the second componeheoaiindows to which these items were
originally assigned, we call it thimdex of the subsefThen, according to this order, we assign every
consecutiveé subsets to a bin. The last bin may contain a smaller numberbsiess. This completes
the scheme. We get our final solutiSi® L 7.

Lemma 20 The cost ofSOL ¢y, is at most(1 + 2¢) times the cost a§O Lipe, plus f(kp,).

Proof. We usex; to denote the index of thieth subset. Let denote the number of bins created, and
u the number of subsets (we hai#gl <u < g). The number of items in théth bin, fori > 2,

1
is at most) | ERiz1 < ki=1. The number of items in the first bin is at maAt < k,,. The cost
J:1 € €

v—1
of the bins is therefore at mog(A) + 5 f (m). On the other hand, the cost 80 L;y., that is
=1 €

24

charged to the bins which was supposed to get-tiesubset of excess items is at lefisk;) (since
for a generalized configuratioftC, k), (w, k,)) we havek, < k;), thus the cost 06O L., is at

u v—1
least) | f(k;) > % i (@). Thus the additional cost is at mastimes the cost 05O L;,ze plus
j=1 j=1 €

f(Aa). m

By concavity off we havef(z) < z- f(1) = zforanyz > 1. We havéW'| < [C| < ¢-(&+1)Y/¢
and we also havgl| < [C|. If S" = (), we getk,, = % sof(k,,) < L.

The cost ofSOL f;y,; is at most

(1429 (14 &2) - (4 POPTI) + F(kp) - (1420 + 2220PTI") + F(2)) k)

1
< (1+2e)(1+¢)°0PT(I") + 3f(kpy) - (|H| +2W'| +1) + 3f(2)-
Therefore, the total cost of the returned solution (inalgdihe cost of the packing ¢f”) is at most

([H|+2W]+1)
h(e)
(14 25)(1 +<)°0PT") + (14 3)F(S") + 3f(2)

(1+2¢)(1 4 ¢)’0PT(I") + (3 +1> F(S”)+3f(§)

IN

IN

(1+25)(1 4 (0PTU") + F(S")) + 3£ ()

= (14 2)(1 +) 0PT(I) +3()

(1+2)(1 +<)°0PT+ (3h(e) + 6)(1 +2)(1 +) £(2)

IN

. 1 1
< (1428)(1+¢)%oPT+ (186(5 + DY +6)(1 +2¢)(1 + 5)55—2

, 1 1 1
< (142)(1+¢)8oPT+ (18(; + log;_ . OPT) - (5_3 + DY +6)(1 4 2¢)(1 + 5)55—2.
We note that the last bound can be writte{s- O(¢)) - OPT+ t(¢) - logy OPT+ T'(¢) wheret and
T are some (exponential) functions -ab.f To show that the resulting scheme is an AFPTAS it suffices

2
to argue that(e) - log, OPT < cOPT+ (@) . To see this last inequality note thatig, OPT < He)

2
the claim clearly holds. Otherwiskg, oPT > ti—i) and therefor®pPT > 16 (where the last inequality
holds since(<) > 16). Note that forz > 16 we have,/z > log, « and byopT > 16, we get,/OPT >

log, OPT > “e) ThereforezoPT = £,/OPT\/OPT > @\/OPT > @ logy OPT > () log, OPTand

2

the claim follows. Therefore, we have established the ctmess of Theorem 11.

References

[1] S. Anily, J. Bramel, and D. Simchi-Levi. Worst-case afsid of heuristics for the bin packing
problem with general cost structure@perations Researcid2(2):287-298, 1994.

[2] B. S.Baker and E. G. Coffman, Jr. A tight asymptotic bofmchext-fit-decreasing bin-packing.
SIAM J. on Algebraic and Discrete Method$2):147-152, 1981.

25

[3] W. W. Bein, J. R. Correa, and X. Han. A fast asymptotic appnation scheme for bin packing
with rejection. Theoretical Computer Sciencg93(1-3):14-22, 2008.

[4] J. Bramel, W.T. Rhee, and D. Simchi-Levi. Average-casalysis of the bin packing problem
with general cost structuredlaval Res. Logist44(7):673-686, 1998.

[5] A. Caprara, H. Kellerer, and U. Pferschy. Approximatiechemes for ordered vector packing
problems.Naval Research Logistic§2:58—-69, 2003.

[6] A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger.pfgximation algorithms for knapsack
problems with cardinality constraint&uropean Journal of Operational Researd23:333-345,
2000.

[7] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approxioratilgorithms for bin packing: A
survey. In D. Hochbaum, editoApproximation algorithmsPWS Publishing Company, 1997.

[8] E. G. Coffman Jr. and J. Csirik. Performance guaranteestie-dimensional bin packing. In
T. F. Gonzalez, editoklandbook of Approximation Algorithms and Metaheuristasapter 32.
Chapman & Hall/Crc, 2007. 18 pages.

[9] J. Csirik and G. J. Woeginger. On-line packing and cawgmroblems. In A. Fiat and G. J.
Woeginger, editorgnline Algorithms: The State of the Achapter 7, pages 147-177. Springer,
1998.

[10] W. Fernandez de la Vega and G. S. Lueker. Bin packing easobved withinl + ¢ in linear
time. Combinatorica 1(4):349-355, 1981.

[11] G. Dbsa and Y. He. Bin packing problems with rejectianalties and their dual problems.
Information and Computatiqr204(5):795-815, 2006.

[12] L. Epstein. Bin packing with rejection revisited. Rroc. of the 4th Workshop on Approximation
and online Algorithms (WAOA20Qg)ages 146—-159, 2006. Also in Algorithmica, to appear.

[13] L. Epstein and A. Levin. AFPTAS results for common vat&of bin packing: A new method
to handle the small items. Manuscript, 2007.

[14] K. Jansen and R. van Stee. On strip packing with rotatidn Proc. of the 37th Annual ACM
Symposium on Theory of Computing (STOC20pajes 755761, 2005.

[15] D. S. Johnson, A. Demers, J. D. Uliman, Michael R. Gaesy] Ronald L. Graham. Worst-
case performance bounds for simple one-dimensional pgcdgorithms. SIAM Journal on
Computing 3:256-278, 1974.

[16] N. Karmarkar and R. M. Karp. An efficient approximatioacheme for the one-dimensional bin-
packing problem. IfProceedings of the 23rd Annual Symposium on Foundation®ofgter
Science (FOCS’82pages 312-320, 1982.

[17] K. L. Krause, V. Y. Shen, and H. D. Schwetman. Analysiseferal task-scheduling algorithms
for a model of multiprogramming computer systerdsurnal of the ACM22(4):522-550, 1975.

[18] C.C.LeeandD.T. Lee. A simple online bin packing algfom. Journal of the ACM32(3):562—
572, 1985.

26

[19] C.-L. Li and Z.-L. Chen. Bin-packing problem with comeacosts of bin utilization. Naval
Research Logistic$3(4):298-308, 2006.

[20] F. D. Murgolo. An efficient approximation scheme for iednie-sized bin packingsIAM Journal
on Computing16(1):149-161, 1987.

[21] S. S. Seiden. On the online bin packing problelmurnal of the ACM49(5):640-671, 2002.

[22] H. Shachnai and O. Yehezkely. Fast asymptotic FPTAS&mking fragmentable items with
costs. InProc. of the 16th International Symposium on Fundamenta{Samputation Theory,
(FCT2007) pages 482—-493, 2007.

[23] J.D. Ullman. The performance of a memory allocatioroabym. Technical Report 100, Prince-
ton University, Princeton, NJ, 1971.

27

	Introduction
	Preliminaries
	A fast approximation algorithm mh
	An AFPTAS for GCBP
	The analysis of fnfi
	The sketch of the scheme
	A detailed description and analysis of the AFPTAS for GCBP

