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Bin packing with general cost structures

Leah Epstein∗ Asaf Levin†

Abstract

Following the work of Anily et al., we consider a variant of bin packing, calledBIN PACKING

WITH GENERAL COST STRUCTURES(GCBP) and design an asymptotic fully polynomial time
approximation scheme (AFPTAS) for this problem. In the classic bin packing problem, a set of
one-dimensional items is to be assigned to subsets of total size at most 1, that is, to be packed into
unit sized bins. However, in GCBP, the cost of a bin is not 1 as in classic bin packing, but it is
a non-decreasing and concave function of the number of itemspacked in it, where the cost of an
empty bin is zero. The construction of the AFPTAS requires novel techniques for dealing with
small items, which are developed in this work. In addition, we develop a fast approximation algo-
rithm which acts identically for all non-decreasing and concave functions, and has an asymptotic
approximation ratio of 1.5 for all functions simultaneously.

1 Introduction

Classic bin packing [23, 9, 7, 8] is a well studied problem which has numerous applications. In the
basic variant of this problem, we are givenn items of size in(0, 1] which need to be assigned to unit
size bins. Each bin may contain items of total size at most 1, and the goal is to minimize the number
of bins used.

Consider the following possible application. A multiprocessor system, where each bin represents
one processor, is available for one unit of time. However, a processor that executes a large number
of short tasks causes the system a larger load than a processor that executes a smaller number of
long tasks, even if the total duration of the tasks is equal inboth cases. This is one motivation to the
problemBIN PACKING PROBLEM WITH GENERAL COST STRUCTURES(GCBP) that we study here.
The problem has additional applications in reliability, quality control and cryptography [1].

In the problem GCBP, the cost of a bin is not a unit cost, but depends on the number of items
actually packed into this bin. More precisely, we define the problem as follows. The input con-
sists ofn items I = {1, 2, . . . , n} with sizes1 ≥ s1 ≥ s2 ≥ · · · ≥ sn ≥ 0, and a function
f : {0, 1, 2, . . . , n} → R

+
0 , wheref is a monotonically non-decreasing concave function, for which

f(0) = 0. The goal is to partitionI into some number of setsS1, . . . , Sm, called bins, such that
∑

j∈Si
sj ≤ 1 for any1 ≤ i ≤ m, and so that

∑m
i=1 f(|Si|) is minimized. We say that a functionf

is valid if it has the properties above, and an instance of GCBP is defined not only by its input item
sizes but also using the functionf . We assume thatf(1) = 1 (otherwise we can apply scaling to the
cost functionf ).

Anily, Bramel and Simchi-Levi [1] introduced GCBP and described the applications in detail.
We describe their results in what follows. Further results on GCBP appear in [4], but these additional
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results are not related to this paper. A related model was studied by Li and Chen [19]. In this model
the cost of a bin is a concave and monotonically non-decreasing function of thetotal sizeof items in
it.

For an algorithmA, we denote its cost byA as well. The cost of an optimal algorithm is de-
noted byOPT. We define the asymptotic approximation ratio of an algorithm A as the infimum
R ≥ 1 such that there exists a constantc, which is independent of the input, so that any input satisfies
A ≤ R · OPT+ c. The absolute approximation ratio of an algorithmA is the infimumR ≥ 1 such
that for any input,A ≤ R · OPT. An asymptotic polynomial time approximation scheme is a family
of approximation algorithms such that for everyε > 0 the family contains a polynomial time algo-
rithm with an asymptotic approximation ratio of1 + ε. We abbreviateasymptotic polynomial time
approximation schemeby APTAS (also called an asymptotic PTAS). An asymptotic fully polynomial
time approximation scheme (AFPTAS) is an APTAS whose time complexity is polynomial not only
in the input size but also in1ε . Polynomial time approximation schemes and fully polynomial time
approximation schemes, which are abbreviated as PTAS and FPTAS, are defined similarly, but are
required to give an approximation ratio of1 + ε, according to the absolute approximation ratio.

Anily, Bramel and Simchi-Levi [1] analyzed the worst case performance of some natural bin-
packing heuritics when they are applied for GCBP. They showed that many common heuristics for
bin packing, such as First Fit (FF), Best Fit (BF) and Next Fit (NF), do not have a finite asymptotic
approximation ratio. Even an application of the first two heuristics on lists of items that are sorted by
size in a non-increasing order, i.e., the algorithms First Fit Decreasing (FFD) and Best Fit Decreasing
(BFD), leads to similar results. However, Next Fit Decreasing (NFD) behaves differently, and was
shown to have an asymptotic approximation ratio of exactly 2. Sorting the items in the opposite
order gives a better asymptotic approximation ratio of approximately 1.691 (in this case, the three
algorithms First Fit Increasing (FFI), Best Fit Increasing (BFI) and Next Fit Increasing (NFI) are the
same algorithm). Note that these heuristics are independent of the specific functionf . It is stated
in [1] that any heuristic that is independent off has an asymptotic approximation ratio of at least4

3 .
Therefore, finding an algorithm with a smaller asymptotic approximation ratio, and specifically, an
asymptotic approximation scheme, requires a strong usage of the specific functionf .

In this paper, we develop an AFPTAS for GCBP. We develop a framework, where the action of
the scheme for a given non-decreasing concave functionf with f(0) = 0 is based on its exact defi-
nition. We also develop a new approximation algorithm MATCHHALF (MH), which acts obliviously
of f , similarly to the behavior of the algorithms of [1]. We provethat our algorithm has an asymp-
totic approximation ratio of at most 1.5 for any non-decreasing concave functionf with f(0) = 0,
improving over the tight bound of approximately 1.691, proved by Anily et al. [1], on the asymptotic
approximation ratio ofNFI.

The classic bin packing problem is clearly a special case of GCBP as one can setf(0) = 0 and
f(i) = 1 for all i ≥ 1, where the resulting function is monotonically non-decreasing and concave.
Therefore, GCBP inherits the hardness proof of the classic bin packing problem. That is, GCBP
cannot be approximated within an absolute factor better than 3

2 (unlessP = NP ). This motivates our
use of asymptotic approximation ratio as the main analytic tool to study approximation algorithms for
GCBP. In this metric we design the best possible result (assumingP 6= NP ), i.e., an AFPTAS.

A study of this nature, where approximation schemes are developed for bin packing type problems,
and in particular, where the complexity of such a problem is completely resolved by designing an
AFPTAS, is an established direction of research. Studies ofsimilar flavor were widely conducted for
other variants of bin packing, see e.g. [16, 14, 20, 22, 13].

Fernandez de la Vega and Lueker [10] showed that the classic bin packing problem admits an
APTAS. This seminal work introduced rounding methods whichare suitable for bin packing problems.
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These methods, which were novel at that time, are widely usednowadays. Karmarkar and Karp [16]
employed these methods together with column generation anddesigned an AFPTAS [16]. In [13],
the complexity of two variants of bin packing with unit sizedbins are resolved, that is, an AFPTAS
is designed for each one of them. The first one isBin packing with cardinality constraints[17, 5], in
which an additional constraint on the contents of a bin is introduced. Specifically, there is a parameter
k which is an upper bound on the number of items that can be packed in one bin. The goal is as
in classic bin packing, to minimize the number of bins used. The second one isBin packing with
rejection [12, 3, 11], in which each item has a rejection penalty associated with it (in addition to
the size). Each item has to be either packed or rejected, and the goal is to minimize the sum of the
following two factors: the number of bins used for the packeditems and the total rejection cost of all
rejected items. Note that prior to the work of [13], these twoproblems were already known to admit
an APTAS [5, 12, 3]. The main new tool, used in [13], which allows the design of schemes whose
running time is polynomial in1ε , is a treatment for small items using new methods developed in that
work. The treatment of small enough items for the classic problem is rather simple. Roughly, the
small items can be put aside while finding a good approximate solution, and can be added later in any
reasonable fashion. Already in [5], it was shown that if the same treatment is applied to small items
in the case of cardinality constraints, this leads to poor approximation ratios. Therefore, Caprara,
Kellerer and Pferschy [5] developed an alternative method for dealing with small items. This method
still separates the packing of large items from the packing of small items. The scheme enumerates
a large number of potential packings of the large items, and for each packing, tests the quality of a
solution that is constructed by adding the small items to thepacking in a close to optimal way. The
enumeration prevents this method from being used for designing algorithms with running time which
is polynomial in 1

ε . The way to overcome this difficulty, used in [13], is to find a good packing of
large items, that takes into account the existence of small items, and allocates space for them. The
packing of large items is typically determined by a linear program, therefore, the linear program needs
to define at least some properties for the packing of small items. Specifically, the linear program does
not decide on the exact packing of small items, but only on thetype of a bin that they should join,
where a type of a bin is defined according to the size of large items in the bin for bin packing with
rejection, and on both the size and number of large items, forbin packing with cardinality constraints.

The problem studied in this paper, GCBP, is more complex thanthe ones of [13] in the sense
that the cost of a bin is not just 1. Therefore, even though cardinality constraints are not present, the
number of items packed into each bin must be controlled, in order to be able to keep track of the cost
of this bin. In classic bin packing, and other well known variants, forcing all the bins of a solution
to be completely occupied, results in a perfect solution. Todemonstrate the difficulty of GCBP, we
show the existence of a non-decreasing concave functionf with f(0) = 0, for which such a solution
may still lead to a poor performance with respect tof .

In our scheme, cardinality constraints are implied by an advanced decision on the cost that needs
to be paid for a given bin, that becomes a part of the type of thebin. The specific packing of small
items, which is based on the output of the linear program, needs to be done carefully, so that the
solution remains feasible, and to avoid large increases in the cost of the solution. An additional new
ingredient used in our AFPTAS is a pre-processing step, which is performed on small items, where
some of them are packed in separate bins which are not used forany other items. In typical packing
problems, bins which contain only very small items are relatively full, and thus the additional cost
from such bins is close to the total size of these items. However, in our case, such a bin usually
contains many items, and may result in a high cost. Therefore, our scheme always packs some portion
of the smallest items separately, before any methods of packing items through a linear program are
invoked. We show that the increase in the cost of the solution, due to the pre-processing step, is small
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enough, yet this allows more flexibility in the treatment of other small items, i.e., an additional bin
would have a small cost compared toOPT.

The structure of the paper is as follows. In Section 2 we supply examples showing the unique
nature of the problem GCBP, accompanied with new propertiesand some properties used in previous
work. We use all these properties later in the paper. We introduce our fast approximation algorithm
and analyze it in Section 3. Our main result is given in Section 4.

2 Preliminaries

In this section we demonstrate the differences between classic bin packing problems, and GCBP. We
also state some properties proved in [1] and [2] to be used later.

As mentioned in the introduction, common heuristics do not have a finite approximation ratio for
GCBP [1], and other heuristics have a higher approximation ratio than one would expect. Another
difference is that sorting items in a non-decreasing order of their sizes is better than a non-increasing
order.

A class of (concave and monotonically non-decreasing) functions{fq}q∈N that was considered in
[1] is the following. These are functions that grow linearly(with a slope of 1) up to an integer point
q, and are constant starting from that point. Specifically,fq(t) = t for t ≤ q andfq(t) = q for t > q.
It was shown in [1] that focusing on such functions is sufficient when computing upper bounds on
algorithms that act independently of the function.

For an integerK > 2, consider inputs consisting of items of two sizes;a = 1− 1
K , andb = 1

K2 .
Assume first that there is a single item of sizea, and2K items of sizeb. NFD packs the large item

together withK of the small items in one bin, and additionalK items in another bin. Consider the
functionfK . The cost of the solution isfK(K + 1) + fK(K) = 2K. A solution that packs all small
items in one bin and the large item in another bin has a cost offK(1)+fK(2K) = K+1. Thus, even
though both packings use the same number of bins, the cost of the first packing, which is produced by
NFD, is larger by a factor that can be made arbitrarily close to 2,than the cost of the second packing.
Moreover, even though only two bins are used, this proves anasymptoticlower bound of 2 on the
approximation ratio ofNFD (this bound is tight due to [1]).

Assume now that there areK items of sizea andK2 items of sizeb. An optimal packing for the
classic bin packing problem clearly consists ofK bins, such that each one is packed with one large
item andK small items. Using the functionfK , this gives a cost ofK2. A different packing collects
all small items in one bin, and has the costK · fK(1) + fK(K2) = 2K. SinceK can be chosen to
be arbitrarily large, we get that the first packing, which is the unique optimal packing in terms of the
classic bin packing problem, does not have a finite approximation ratio. Note that this first packing
would be created byFFD andBFD, and also byFF, BF andNF, if the input is sorted appropriately.

Throughout the paper, if a specific cost functionf is considered, we useOPT to denote the cost of
an optimal solutionOPT for the original input, which is denoted byI, with respect tof . For an input
J we useOPT(J) to denote both an optimal solution (with respect tof ) for the inputJ (whereJ is
typically an adapted input), and its cost. ThusOPT = OPT(I). For a solution of an algorithmA, we
denote bym(A) the number of bins in this solution. For an inputI we letmin(I) to be cost of an
optimal solution with respect to the functionfk for k = 1, that is, with respect to classic bin packing.
We letfk(A(I)) be the cost of an algorithmA on I, calculated with respect to functionfk, and use
fk(A), if I is clear from the context.

We further state some lemmas proved in [1] that allow us to simplify our analysis in the next
section.
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Lemma 1 [Property 3 in [1]] f1(NFI(I)) = f1(NFD(I)), and therefore
∑

i∈I
w(si) ≥ f1(NFI(I)) − 3.

Lemma 2 [Theorem 1 in [1]] Consider a packing heuristicA that does not use information on the
functionf . If the asymptotic approximation ratio ofA is at mostR, for any functionfk (for k ≥ 1),
then the asymptotic approximation ratio ofA is at mostR for any non-decreasing concave function
f with f(0) = 0.

A useful packing concept, defined in [1], isconsecutive bins. Recall that we assumes1 ≥ s2 ≥
· · · ≥ sn. LetB1, B2, . . . , Bm be the subsets of items packed into the bins created in some solution B
that packs the items inm bins, whereBi is thei-th bin. The packing has consecutive bins if the union
∪j≤sBj is a suffix of the sequence1, 2, . . . , n for any1 ≤ s ≤ m. That is, if the firsts bins contain
n′ items, then these are then′ itemsn − n′ + 1, . . . , n − 1, n (and thus the smallestn′ items). The
following lemma states thatNFI is the “best” heuristic among such with consecutive bins. Consider a
given inputI, the cost functionfk and a feasible packing with consecutive binsB.

Lemma 3 [Corollary 3 in [1]] fk(NFI(I)) ≤ fk(B(I)).

A partition of the items (which is not necessarily a valid packing) with consecutive bins is called
an overflowed packingif for all 1 < i < m,

∑

j∈Bi

sj > 1. Clearly, ifm > 2, such a packing must be

infeasible. The following lemma implies a lower bound on thecost of an optimal solution. Consider
a given inputI, a cost functionfk, an overflowed packing with consecutive binsB, and a feasible
packingA.

Lemma 4 [Corollary 1 in [1]] fk(B(I)) ≤ fk(A(I)).

Using these properties, in order to analyzeNFI, it is enough to consider the functionsfk for k ≥ 1.
It was shown in [1] that the asymptotic approximation ratio of NFI for the functionfk (k ≥ 2) is at most
1+ 1

k . The asymptotic approximation ratio ofNFI for f1, that is, for classic bin packing, follows from

the results of [2] and from Lemma 1. This ratio is
∞
∑

i=1

1
π1−1 ≈ 1.691. Thus the upper bound of1.691

[1] follows. In the next section we use these properties to develop a new algorithm. The algorithm
needs to carefully keep the approximation ratio fork = 2 while improving the approximation ratio
for k = 1.

3 A fast approximation algorithm MH

In this section we describe a simple and fast algorithmMH, that does not need to know the functionf
in advance. This algorithm is a modification ofNFI that tries to combine a part of the relatively large
items (of size larger than12 ) in bins together with one additional item. Note that exceptfor possibly
one item,NFI packs all such items in dedicated bins.

As mentioned above,NFI has an asymptotic approximation ratio of at mostk+1
k for the function

fk with k ≥ 2. Therefore, the difficult case is actually the classic problem. On the other hand, using
heuristics that perform well for the classic problem, such as FFD, may lead to worse results fork ≥ 2
(which in fact is the case forFFD). Therefore, we define an algorithm that acts identically toNFI,
except for the usage of a pre-processing step.
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Algorithm MATCHHALF (MH)

1. Let t be the number of items inI with size in(12 , 1] (which are calledlarge items).

2. LetM0 = {⌈ t+1
2 ⌉, . . . , t}, that is,M0 is the set of smallest⌈ t

2⌉ large items, and letM1 =
{1, . . . , ⌈ t−1

2 ⌉} be the remaining large items. LetS = {t + 1, . . . , n} be called the set of
small items.

3. Define the following bipartite graph. One set of vertices consists of the large items ofM0.
The other set of vertices consists of all small items. An edge(a, b) between vertices of
items of sizessa > 1

2 andsb ≤ 1
2 exists if sa + sb ≤ 1, i.e., if these two items can be

placed in a bin together. If this edge occurs, its cost is defined asc(a, b) = w(b) (using the
functionw of Section 2).

4. Find a maximum cost matching in the bipartite graph. This matching can actually be found
using the following greedy process. Insert the items ofS into a queue in a sorted order,
with item t+1 at the top, and the itemsM0 are inserted into a queue in a sorted order with
item t at the top. At each time, letj be the item at the top of the first queue, andi the item
at the top of the second queue. Ifsi + sj ≤ 1, these items are matched, and removed from
the queues. Otherwise, itemj cannot be matched to any item of the second queue (sincesi
is minimal in that queue), soj is removed from the first queue. This process is done until
one of the queues is empty, and is performed in linear time.

5. Each pair of matched items is removed fromI. Every matched pair is packed into a bin
together.

6. Pack the remaining items usingNFI.

The greedy process of step 4 finds an optimal matching by a simple exchange argument. We note
that only (approximately) half of the large items are possibly matched in the pre-processing step. A
larger fraction may cause an asymptotic approximation ratio above1.5, as can be seen in the following
example. LetK be an integer such thatK > 2. The input setI consists ofK items of size 1

K and
K items of size1 − 1

K . RunningNFI on this input results in one bin containingK items of size 1
K

andK bins containing one larger item. However, if we match anα fraction (for some0 ≤ α ≤ 1)
of the larger items in a pre-processing step, there would be approximatelyαK bins with two items.
Consider the functionf2. We getf2(NFI(I)) = K + 2, whereas the cost with pre-processing is at
leastαK +K. This would give an approximation ratio of at least1 + α.

For the analysis ofMH, we use weighting functions. This type of analysis was widely used for
classic bin packing, and many variants of bin packing. The basic technique was used as early as in
1971 by Ullman [23] (see also [15, 18, 21]). We make use of adaptation of the following function
w : [0, 1] → R (that is equal to the functionW1(p) defined in [2] for anyp > 0). We first define
the well known sequenceπi, i ≥ 1, which often occurs in bin packing. Letπ1 = 2, and fori ≥ 1,
πi+1 = πi(πi − 1) + 1. Thusπ2 = 3, π3 = 7, π4 = 43, etc. Forp ∈ ( 1

k+1 ,
1
k ], we definew(p) = 1

k ,

if k = πi − 1 for somei ≥ 1, and otherwise,w(p) = k+1
k · p. Finally, we letw(0) = 0. Note

that w is a monotonically non-decreasing function. It was shown in[2] that for a given inputI,
∑

i∈I

w(si) ≥ f1(NFD(I)) − 3. Even though both [2] and [1] assume that no zero sized items exist,

clearly, the number of bins used byNFD andNFI does not increase as a result of the existence of such
items, unless all input items are of size zero, and therefore, this property on the weights still holds
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even if zero sized items are allowed.
We start with proving the asymptotic approximation ratio for f1.

Lemma 5 For any inputI, m(MH(I)) ≤ 3
2 min(I) + 3.

Proof. We use the following theorem.

Theorem 6 Consider an algorithmA for classic bin packing. Letw1, w2 be two weight measures
defined on the input items,wi : I → R, for i = 1, 2. Let W1(I) and W2(I) denote the sum of
weights of all input items ofI, according tow1 andw2 respectively, and assumeW2(I) ≤ W1(I).
Assume that for every input of the algorithm, the number of bins used by the algorithmA is at most
W2(I) + τ , for a constant valueτ which is independent ofI. Denote byWI the supremum amount
of weight that can be packed into a bin of the optimal solution, according to measurew1. Then the
asymptotic approximation ratio ofA is no larger thanWI .

Proof. Given an inputI we haveA ≤ W2(I) + τ . Since an optimal algorithm hasOPT(I) bins, with
a weight of at mostWI in each one of them, we get the upper bound on the weight, according tow1;
W1(I) ≤ WI · OPT(I). UsingW2(I) ≤ W1(I), we getA ≤ WIOPT(I) + τ and the theorem follows.

We define a weight measurew2 on items as follows. For every itemi, we letw2(i) = w(si), except
for small items that are matched to large items in the pre-processing step ofMH. These items receive
a weight of zero according tow2. LetX be the number of bins created by the pre-processing step and
Y the number of bins created byNFI (i.e., in Step 6 of the algorithm). LetI ′ be the input after the
removal of items in the pre-processing step. By Lemma 1, we have

∑

i∈I′
w2(i) =

∑

i∈I′
w(si) ≥ Y − 3.

On the other hand, every bin created in the pre-processing step has a total weight of 1, since each such
bin contains a large item (that has a weight of 1) and a small item of weight 0. Thus

∑

i/∈I′
w2(i) = X,

and in total
∑

i∈I
w2(i) ≥ X + Y − 3 = f1(MH)− 3.

Next, we define a weight measurew1. Consider thet large items, and their packing in an optimal
solution OPT. For any large itema, which is packed in a bin with at least one other (small) item,
consider the largest small item which is packed witha and denote it byza. If za is not well-defined,
one of the possible items is chosen arbitrarily to be defined as za. If no such item exists, i.e.,a is
packed as a single item in a bin ofOPT, we add an item of size zero to this bin ofOPT and define it to
beza. Thereforeza exists and is defined uniquely for every large itema. We define the weight of every
item i asw1(i) = w(si), except for the itemsza for a = 1, . . . , t, for which we letw1(za) =

w(sza)
2 .

In order to showW2(I) ≤ W1(I), we define a valid matching in the auxiliary graph. This
matching is based on the packing ofOPT. LetZ = {za|1 ≤ a ≤ t} and denote a set of the largest⌈ t

2⌉
items inZ = {za|1 ≤ a ≤ t} by Z ′. We initialize the matching with the items ofZ ′ being matched
to the large items from their bins inOPT. This matching is valid since by definition ofZ, each item
in this set is packed inOPT in a different bin, with a different large item. If the⌈ t

2⌉ items matched to
them are not exactly items⌈ t+1

2 ⌉, . . . , t, it is possible to replace some large items in the matching by
smaller large items, until this situation is reached. We have si1 ≤ si2 for i1 ∈ Z \ Z ′ andi2 ∈ Z ′.
Since the functionw is monotonically non-decreasing, we get

∑

za∈Z

w(sza) ≤ 2
∑

za∈Z′

w(sza). Let

W (I) =
n
∑

i=1
w(si). We haveW2(I) = W (I) − c(M), wherec(M) is the cost of a matching in the

auxiliary graph, with a maximum cost, andW1(I) = W (I)− ∑

1≤a≤t

w(sza)
2 ≥ W (I)− ∑

za∈Z′

w(sza) ≥

7



W (I) − c(M) = W2(I), sincec(M) is a maximum cost matching on the smallest⌈ t
2⌉ large items,

and
∑

⌈ t+1
2

⌉≤a≤t

w(sza) is the cost of one such matching, which we defined above.

Finally, we need to find an upper bound on the total weight in a bin of OPT, according tow1. We
first consider bins that do not contain a large item. For any item i of sizesi = β ∈ (0, 12 ], we have
w1(i) ≤ 3

2β. For items of size 0 the weight is 0. Therefore, the total weight of items in such a bin is
no larger than 1.5 (a tighter upper bound of 1.423 is proved in[2]).

Consider next a bin which contains a large item. Leta be the large item of this bin, andza is
chosen as above. Ifsza = 0, then the only item in the bin that has a non-zero weight according tow1

is a, and thus the total weight is 1. Otherwise, letj be such thatsza ∈ ( 1
j+1 ,

1
j ]. Any other itemi in

the bin (except fora andza) satisfiesw2(i) ≤ j+1
j si (sincesi ≤ sza ≤ 1

j ). If j = πi − 1 for some

i ≥ 1, we havew2(za) =
1
2j . Otherwise,w2(za) =

j+1
2j sza.

We have a total weight of at most1+w2(za)+
j+1
j (1− sa− sza) ≤ 1+w2(za)+

j+1
j (12 − sza),

sincesa > 1
2 . In the first case we usesza > 1

j+1 , and get at most1+ 1
2j +

j+1
2j − 1

j = 3
2 . In the second

case we get at most1 + j+1
2j sza +

j+1
2j − j+1

j sza = 3j+1
2j − j+1

2j sza . Using the same property we get

at most32 again.
Next, we perform an analysis for functionsfk with k ≥ 2. Let I be the original input on which

MH is executed. Let̂I denote an input in which every small item, which is matched with a large item
in the pre-processing step ofMH, is replaced with an item of sizes1. Thus, at most⌈ t

2⌉ items are
increased to the sizes1. We consider the following solutions and compare their costs. The cost of
the solution ofMH on I, with respect tofk, is denoted byAk(I). The cost of the solution ofNFI

on Î, with respect tofk, is denoted byNFIk(Î). The next solution that we consider is an overflowed
solution that is created forI as follows. The items are sorted by size in a non-decreasing order (that
is, order by indices in a decreasing order). At each time, a minimum prefix of the items of total size
larger than 1 is assigned to the next bin. The cost of this solution with respect tofk is denoted by
Ok(I). The cost of an optimal solution forI, with respect tofk, is denoted byOPTk(I). Finally, we
consider a solution for̂I with consecutive bins, which is constructed from the overflowed solution for
I as follows (the construction is similar to the one in [1], except for the treatment of items in̂I, and the
fact that the corresponding items inI are simply removed). For every bin of the overflowed solution,
if the total size of items exceeds 1 (this is the case with all bins except for possibly the last bin, or bins
with removed items), remove the last item and open a new bin for it. The additional large items of
Î, which existed as smaller items inI and were removed fromI, are assigned to dedicated bins. The
cost of this solution, with respect tofk is denoted byCk(Î).

By Lemma 3, we haveNFIk(Î) ≤ Ck(Î). By Lemma 4, we haveOk(I) ≤ OPTk(I). We next
prove two lemmas after which we will be able to concludeAk(I) ≤ 3

2OPTk(I) + 3.5.

Lemma 7 Ak(I) ≤ NFIk(Î) + 1.

Proof. Since all small items ofI that are packed in the pre-processing step ofMH are large inÎ, the
small items packed byNFI in the two algorithms are the same ones, and bins created byNFI in the two
algorithms are identical, except for bins that contain a large item. If any of the two applications ofNFI

outputs a bin that contains a large item together with other items, we adapt the solution by moving this
item into a separate bin, this modification cannot decrease the cost of a solution, but it may increase
the cost by at most 1. The small items bins, resulting from running NFI in both solutions (the solution
of MH and the solution ofNFI, possibly with the modification) are now identical. The remaining items
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are packed in both solutions either in singles or in pairs. Thus the costs of such bins are equal in both
solutions (sincek ≥ 2). Therefore, the claim follows.

Lemma 8 Ck(Î) ≤ 3
2Ok(I) + 2.5.

Proof. We first modify both solutions so that none of them combines large items with some small
item in one bin (but the overflowed solution may still have bins with two large items, which are not
modified here). For the overflowed solution, this may requiremoving one or two large items from a
shared bin to a dedicated bin, so it may increase the cost by atmost 2. For the other solution, this may
involve moving one large item to a dedicated bin, and cannot decrease the cost of the solution. We
consider first the bins with small items, that contain at least k + 1 items in the overflowed solution.
For every such bin, its cost is at leastk. As a result of moving the last item to a dedicated bin (in the
process of creation of the feasible solution), an additional cost of at most 1 is incurred. Thus the cost
increases by at most a factor of3

2 . For any bin containing at mostk items, there is no additional cost
from this step. Note that all bins with large items are in thissituation. The cost of bins with large
items in the overflowed solution with the modification is simply t, no matter how they are exactly
packed, so packing each one in a dedicated bin does not changethe cost. Together with the additional
⌈ t
2⌉ large items, the cost of large items becomes⌈3t2 ⌉ ≤ 3t

2 + 1
2 . Removing small items that do not

exist in Î may only decrease the cost. This proves the claim.
Using Lemma 2, we have proved the following.

Theorem 9 The asymptotic approximation ratio ofMH is at most 1.5. for any non-decreasing concave
functionf with f(0) = 0.

We have shown above that fork = 2 (and similarly, for any constantk), the bound 1.5 is tight.
Note that the bound 1.5 is tight fork = 1 as well. Consider an input withN large items of size
1
2 + 1

2K , andN(K − 1) small items of size 1
2K (for large enoughN,K, such thatN is divisible by

4K). MH createsN2 bins with one large and one small item,
N(K−1)−N

2
2K =

N(K− 3
2
)

2K bins with2K

small items each, andN2 bins with one large item. This gives a total cost ofN +
N(K− 3

2
)

2K . An optimal
solution combinesK − 1 small items with every large item, for a cost ofN . For large enoughK, the
ratio is arbitrarily close to1.5. It can be seen that this ratio is achieved for any fraction0 ≤ α ≤ 1 of
large items that participate in the pre-processing step.

4 An AFPTAS for GCBP

In this section we present our main result, that is, an AFPTASfor GCBP. We give a sketch which
presents the main ideas and technical difficulties, and givethe full description of the AFPTAS and its
analysis later. We first present an auxiliary algorithm calledFractional Next-Fit Increasing.

4.1 The analysis of FNFI

We prove a property which is helpful in the design of our AFPTAS. It is related to the property on
NFI in Lemma 3, but it is stronger since it is proved for any non-decreasing concave functionf with
f(0) = 0, for fractional packing of items. A packing is fractional ifitems can be cut into pieces, where
pieces of one item can possibly be packed in different bins. We assume without loss of generality that
in every fractional packing, every bin contains at most one part of each item. If this property does not
hold, it is possible to unite parts of items within a bin without changing the cost.
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We consider an algorithm which creates a fractional packingof the items according to the variant
of the NFI heuristic, called FRACTIONAL NFI (FNFI). This algorithm sorts items by size in non-
decreasing order. At each time, a bin is filled completely, before moving on to the next bin. For this,
we allow the splitting of items into several parts, that is, the last item that is packed in a bin is possibly
just a part of an item. Consequently, the first item packed in the next bin may be the remaining part
of the same item. Note that each bin in the output ofFNFI contains at most two split items and that in
total only at mostm− 1 items are split (wherem is the number of bins used byFNFI).

Note that there is no advantage in packing fractions of size zero of items, except for zero sized
items, which we assume that are split between bins. If a part of sizeα of an item of sizeβ > 0 is
packed in a given bin, we say that the fraction of this item that is packed in this bin isαβ . If an item is
packed in a bin completely, we say that its fraction packed inthe bin is 1. The number of items in a
bin which is packed fractionally is the sum of fractions in it. This number is not necessarily an integer
and it is unrelated to sizes of these fractional items, but only to their fractions.

To be able to analyze fractional packings, we next definef for any (real and not necessarily
integral) valueq ∈ [0, n] as follows. We definef(q), for i < q < i + 1, to be(i + 1 − q) · f(i) +
(q − i) · f(i + 1). The values off for integer values ofq are unchanged. We letf(x) = f(n) for
anyx ≥ n. This function is piecewise linear and continuous, and since it is an extension of a non-
decreasing concave function on integers, it is monotonically non-decreasing and concave in[0, n]. The
cost of a fractional packing is calculated according to thegeneralizedfunctionf , using the numbers
of items packed into the bins as defined above.

A simple property ofFNFI is that it creates bins that are sorted in a non-increasing order of the
number of items in them. This holds since given two binsi1 < i2, bin i1 is completely occupied, and
every item that has a part packed in bini1 has a size no larger than any item that has a part packed in
bin i2.

For any non-decreasing concave functionf with f(0) = 0, the following lemma states thatFNFI

is the “best” heuristic among packings with fractionally packed bins. Consider a given inputI, a cost
functionf and a fractional packing,B.

Lemma 10 f(FNFI(I)) ≤ f(B(I)).

Proof. Assume by contradiction that for an inputI, a fractional packingB and a functionf , we have
f(FNFI(I)) > f(B(I)). Assume that the bins ofB are sorted according to a non-increasing numbers
of items. If the packingB that satisfies the condition is not unique, consider such a packingB which
maximizes the suffix of bins that are packed identically to the packing ofFNFI. Consider the first bini
of B that is packed differently from the packing ofFNFI. If bin i is the very last bin of the packingB,
then the bins1, . . . , i− 1 are packed as in the packing ofFNFI, and therefore, bini also has the same
contents forB as it has forFNFI. Therefore we assume thati is not the last bin ofB.

Let j, j + 1, . . . , j′ be the indices of items thatFNFI packs in bini (the first and last items, which
have the indicesj′ andj respectively, may be packed fractionally in this bin). Letj ≤ j1 ≤ j′ be an
index of an item such thatB packs a smaller part ofj1 (possibly of size zero) in bini thanFNFI does.
Such an item must exist by the following argument. IfFNFI fills bin i completely, then since bini of
B is packed differently, it cannot have at least the same fraction of every item. Otherwise,FNFI packs
all the remaining items in bini, so a different packing of bini means that some item has a smaller
fraction inB.

We next consider the case that there exists an itemj2 for whichB packs a larger part in bini than
the packing ofFNFI. Since the two algorithms pack bins1, . . . , i − 1 identically, only the items of
index up toj′ are available for packing in binsi, i + 1, . . ., where the item of indexj′ may already
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be fractional. Out of these items,FNFI packs a maximum prefix into bini, so this item must satisfy
j2 ≤ j. We get thatj2 ≤ j ≤ j1. Sincej1 6= j2 by their definitions, we getj2 < j1.

Denote the fractions ofj1 andj2 in bin i of B by γ1 andγ2, and the fractions ofj1 andj2 in bin i
of FNFI by δ1 andδ2. We haveδ1 > γ1 ≥ 0 andγ2 > δ2 ≥ 0. Sinceγ1 < δ1, and bins1, . . . , i − 1
are packed identically in both algorithms, there exists a further bini′ that contains a part of itemj1 in
the packing ofB. Let ε1 > 0 be the fraction ofj1 in bin i′ of B.

We would like to swap parts of items in the packing ofB, specifically, a part of itemj1 from bin
i′ with a part of itemj2 in bin i. We useµ to denote the size of the swapped part. There are three
restrictions onµ. The resulting fraction ofj1 in bin i of B cannot exceed the fraction of this item in
bin i of FNFI, thusµ ≤ (δ1 − γ1)sj1 . We can swap at most a fractionε1 of j1. Moreover, we can swap
at most a fraction ofγ2 − δ2 of j2, in order to keep a fraction ofj2 in bin i that is at least as large as
the one in bini of FNFI. Therefore, we letµ = min{(γ1 − δ1)sj1 , (γ2 − δ2)sj2 , ε1sj1}. We adaptB
by swapping a part of sizeµ of item j1 from bin i′ with a part of sizeµ from j2 in bin i. By definition
of all variables,µ > 0, and thus some change occurred.

Let ni andni′ be the original numbers of items in binsi andi′ of B. By our assumptionni ≥ ni′ .
Let α1 andα2 be the fractions of itemsj1 andj2 that are swapped. Sinceµ = α1 · sj1 = α2 · sj2,
andsj1 ≤ sj2, we haveα1 ≥ α2. Thus, the change in the cost isf(ni − α2 + α1) + f(ni′ − α1 +
α2)− f(ni) + f(ni′) ≤ 0, by concavity. As a result of this process, the total number of items in bini
remains no smaller than the numbers of items in each of the bins i+ 1, i + 2, . . ..

If an itemj2 does not exist, it means that bini has a total size of items that is smaller than the total
size of items in bini of FNFI. In particular, it means that bini is not fully packed. We defineγ1, δ1,
i′ andε1 as before. In this case we can defineµ = min{(γ1 − δ1)sj1 , ε1sj1}. We defineα1, ni and
ni′ as before. Thus, the change in the cost isf(ni + α1) + f(ni′ − α1) − f(ni) + f(ni′) ≤ 0, by
concavity.

It is possible to perform this process on bini multiple times, until there is no item that has an item
for which a smaller fraction of it is packed in bini of B than it is packed in the same bin forFNFI. At
this time these bins become identically packed.

We next show that this situation, where no itemj1 exists, is reached after a finite number of swaps.
For every itemj1, it can be performed for every itemj2 and for every successive bin. This gives a
total of at mostn3 swaps, and possiblyn2 movements of items to bini without swaps.

After we reach the situation where bini is identical forB and FNFI, the bins1, . . . , i of B are
sorted by a non-increasing number of items. Each remaining bin of B has a number of items that is
no larger than bini. Moreover, binsi + 1, i + 2, . . . can be sorted so that the list of bins becomes
sorted as required. The changes above can only decrease the cost of the solution, and therefore we get
a contradiction to our assumption.

4.2 The sketch of the scheme

We define an item to be a small item if its size is smaller thanε and otherwise it is a large item. Denote
by S the set of small items and byL the set of large items. Our first step is to apply linear grouping
[10] of the large items, that is we sort them by size and we partition them into 1

ε3 (almost) equal-sized
sets of consecutive items (in the sorted list). We pack each item of the set of the largest items in its
own bin, and we round-up the size of the items in each other setto the largest size of an item in its set.

We next partition the items inS into S′ ∪ S′′ whereS′′ contains the smallest items such that the
total size of the items inS′′ is close to a constant which we define depending onε. The items of
S′′ are packed nearly optimally using theFNFI heuristic and packing any split item using a dedicated
bin. These bins will enable us to use a constant number of binswith an arbitrary content (of items
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in L ∪ S′) while paying at mostε times the cost of the bins which are used to pack the items inS′′.
We note that packingS′′ using theNFI heuristic is also possible and leads to a similar performance
guarantee. However, the analysis of usingFNFI is simpler.

Our next step is to approximate the cost functionf using a staircase (step) function withO(log f(n))
steps. We use concavity off to show that this number of steps in the function is sufficientto get a
1 + ε approximation off .

We next move on to finding a packing of the items inL ∪ S′ (neglecting the largest items which
are packed in dedicated bins). In such an instance, the linear program, which we construct, allows
the small items ofS′ to be packed fractionally. To construct this linear programwe define a set of
configurations of large items (this is the standard definition), and a set of extended configurations
which also define the space and cardinality of small items in aconfiguration (this is a non-standard
idea). The linear program will decide how many bins with a given extended configuration to open
and what type of bins each small item need to be packed in. These types are called windows, and
we define them as the pair consisting of the total space for thesmall items and the total cardinality
of small items in a bin with this window. Hence in this linear program we have a constraint for each
size of large items (a constant number of constraints) a constraint of each small item (a linear number
of such constraints), and two constraints for each type of windows. We apply the column generation
technique of Karmarkar and Karp [16] to solve approximatelythe resulting linear program (we use a
separation oracle which applies an FPTAS for the Knapsack problem with cardinality constraint given
by [6]).

Unfortunately the number of fractional entries in a basic solution for this linear program (as we
can assume our solution is indeed a basic solution), is linear in the number of windows types (plus
a constant). The number of windows is indeed polynomial in the input size allowing us to solve the
linear program, but it is not a constant, and we will incur a too large error if we would like to round
up the fractional solution.

Hence, we define a restricted set of windows types with a much smaller set of windows, and
we show how to project cleverly our solution to a new solutionwhich is not worse than the original
solution, whose support uses only windows from this restricted set of windows. Therefore, when we
count the number of constraints, we can eliminate the constraints corresponding to windows which
do not belong to the restricted set of windows. Thus the new bound on the number of fractional
components in the projected solution is now much smaller. That is, our projected solution which is
an approximated solution to the original linear program is also an approximated solution to the linear
program with additional constraints setting the variablesto zero if the corresponding window does not
belong to the restricted set of windows.

The next step is to round up the resulting projected solution. If a small item is packed fractionally,
then we pack it in its own dedicated bins. If the fractional solution needs to pack fractional copies of
bins with a given extended configuration, then we round up thenumber of such bins. The large items
clearly can be packed in these bins according to the configurations of the large items. The small items
are now assigned to windows (by an integral assignment), andnot to specific bins. Therefore, our last
steps are devoted to packing the small items.

We first place the small items which are packed in a common window type into the bins with
this window as part of their extended configuration in a round-robin fashion where the small items
are sorted according to their size (this ensures us that the number of items in each such bin will be
approximately the same, and the total size of these items in such bins will be approximately the same).
Hence, the excess of volume of small items in a bin is relatively small (with respect to the total size of
small items in this bin). In fact it is at most one excess item per bin plus a small volume of additional
small items (this small volume is due to a rounding we have done when we define the set of windows).
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The excess items are packed in dedicated bins such that1
ε excess items are packed in each dedicated

bin. The small volume items are packed again in dedicated bins such that these items from1ε bins are
packed into one common dedicated bin. The items which are removed from a bin after the process
of the round-robin allocation are the largest small items ofthis given excess volume. The resulting
scheme is an AFPTAS for GCBP, as claimed by the following theorem.

Theorem 11 The above scheme is an AFPTAS forGCBP.

4.3 A detailed description and analysis of the AFPTAS for GCBP

Let 0 < ε ≤ 1
3 be such that1ε is an integer. Recall thatf(0) = 0 andf(1) = 1.

The input for this problem includes in addition to the list ofitems, also the functionf . Therefore,
the running time needs to be polynomial in the following fourparameters:n, 1

ε , and the binary
representations of the numbers in the input, including the item sizes, and the values off on the
integers1, . . . , n. The length of the representation off is at leastlog f(n).

If n ≤ 1
ε , we pack each item into a separate bin. In this case, the cost of the solution is at most

f(1)
ε ≤ (1 + ε)OPT+ 1

ε . We therefore assume thatn > 1
ε .

Linear grouping. An item j is large if sj ≥ ε. All other items aresmall. We denote byL the set
of large items, and byS the set of small items. We perform linear grouping of the large items. That
is, if |L| ≥ 1

ε3 , then form = 1
ε3 we partitionL intom classesL1, . . . , Lm such that⌈|L|ε3⌉ = |L1| ≥

|L2| ≥ · · · ≥ |Lm| = ⌊|L|ε3⌋, andLp receives the largest items fromL \ [L1 ∪ · · · ∪ Lp−1]). The
two conditions uniquely define the allocation of items into classes up to the allocation of equal size
items. For everyj = 2, 3, . . . ,m we round up the size of the elements ofLj to the largest size of an
element ofLj . For an itemi, we denote bys′i the rounded-up size of the item. If|L| < 1

ε3
, then each

large item has its own setLi such thatL1 is an empty set, and for a large itemj we lets′j = sj (i.e.,
we do not apply rounding in this case). In both cases we have|L1| ≤ 2ε3|L|.

For items inL1, we do not round the sizes, and we denotes′j = sj for all j ∈ L1. For j ∈ S
we also lets′j = sj. We denote byL′ = L \ L1. We consider the instanceI ′ consisting of the items
in L′ ∪ S with the (rounded-up) sizess′. Then, using the standard arguments of linear grouping we
concludeOPT(I ′) ≤ OPT(I). The items inL1 are packed each in a separate bin. We next describe the
packing of the items inI ′.

Dealing with the set of the smallest items. We define a partition of the setS into two partsS′

andS′′, such thatS′′ is a suffix of the list of input items (i.e., a set of smallest items). Specifically,
if i ∈ S′ andj ∈ S′′, thens′i ≥ s′j. Let S′′ be a maximum suffix{p, . . . , n}, such thatS′′ ⊆ S, for
which the total size is at most1 + h(ε), whereh(ε) is a function ofε that we will define later. This
function is defined such thath(ε) ≥ 1

ε is an integer for any valid choice ofε. Note that if the total size
of the small items is smaller than1 + h(ε) then we letS′′ = S andS′ = ∅. We will pack the items
from S′′ independently from other items. That is, there are no mixed bins containing as items from
S′′ as items not fromS′′.

The first packing step of the algorithm is to pack the items ofS′′ using the following heuristic. We
apply FNFI (processing the items in an order which is reverse to their order in the input). This results
in 1+h(ε) bins, unlessS′′ = S. Afterwards, a new dedicated bin is used for every item that was split
between two bins byFNFI. There are at mosth(ε) such items.

In order to focus on solutions that pack the items ofS′′ as we do, we next bound the cost of a
solution that packs the items inS′′ in this exact way (packed byFNFI in separate bins, where split
items are moved to an additional bin). On the other hand, we relax our requirements of a solution and
allow fractional packing of the items inS′. The solution clearly needs to pack the items inL′ as well
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(no fractional packing can be allowed for large items). We denote the optimal cost of such a solution
by OPT′(I ′). The motivation for allowing fractional packing of the items of S′ is that our goal is to
bound the cost of solutions to a linear program that we introduce later, and this linear program allows
fractional packing of small items that are considered by it,which are exactly the items ofS′ (while
the items ofS′′ remain packed as defined above).

Lemma 12 OPT′(I ′) ≤ (1 + ε)OPT(I ′) + (3h(ε) + 3) · f(1ε ) ≤ (1 + ε)OPT+ (3h(ε) + 3) · f(1ε ).

Proof. Consider an optimal solutionOPT to the following relaxation GCBP’ε of our packing prob-
lem. We need to pack the items ofI ′ (with rounded-up sizes) butall the items ofS can be packed
fractionally. The difference with the packingOPT′(I ′) is that items ofS′′ can be packed in an arbi-
trary way, and not necessarily into dedicated bins, as is described above. In particular, they can be
packed fractionally. The difference with the packingOPT(I ′) is the possibility to pack the small items
fractionally. The cost ofOPT is clearly at mostOPT(I ′) ≤ OPT.

We sort the bins ofOPT in a non-increasing order, according to the number of items (i.e., the sum
of fractions of items) packed in the bin (including large items). Letσi be the total free space in bini
that is left after packing its large items in it. This is the space which is used by small items, together

with all the free space, if exists. LetΣi =
i
∑

j=1
σi. Let p = min{i|Σi ≥

∑

j∈S′′

s′j}. The integerp must

exist since all items ofS′′ must be packed.
We show that without loss of generality, we can assume that all items ofS′′ are packed in bins

1, 2, . . . , p in OPT. To show this, consider an optimal solution to GCBP’ε that minimizes the following
function (among all optimal solutions): the number of existing quadruples(a1, i1, a2, i2), wherea1 ≤
p < a2, i1 ∈ S′, i2 ∈ S′′, and there is a non-zero fraction of itemij packed in binaj, for j = 1, 2.
Assume by contradiction that such a quadruple(a1, i1, a2, i2) exists. Letγ be the fraction ofi1 in bin
a1 andδ the fraction ofi2 in bin a2.

Let µ = min{γ · si1 , δ · si2}. Denote the fractions ofi1 andi2 of sizeµ by γ′ = µ
si1

andδ′ = µ
si2

.

We swap a part of sizeµ of item i2 in bin a2 with a part of sizeµ of item i1 in bin a1. Sincesi1 ≥ si2
(recall thatS′′ contains the smallest items), we get that the fractions satisfy γ′ ≤ δ′. The number of
items in bina1 was changed byδ′−γ′, and in bina2 it was changed byγ′−δ′. The sorted order of bins
may have changed as a result, but bina1 can be moved to an earlier spot whilea2 may be moved to a
later spot, so the set of the firstp bins does not change. Moreover, we destroyed at least one quadruple,
and did not create new ones, since no parts of items ofS′ were moved to bins1, . . . , p and no items of
S′′ were moved to binsp+1, p+2, . . .. Letn1 andn2 be the numbers of items in binsa1 anda2 before
the change. The change in the cost function isf(n1+δ′−γ′)+f(n2−(δ′−γ′))−f(n1)−f(n2) ≥ 0,
sincen1 ≥ n2, δ′ − γ′ ≥ 0, and by concavity. Therefore, the resulting solution has a cost of at most
OPT, and the minimality is contradicted.

If no such quadruple exists then there are two cases. If all bins p + 1, p + 2, . . . contain only
fractions of items ofS′ (possibly in addition to large items), then all items ofS′′ are in bins1, . . . , p
and our assumption holds. Otherwise, we have that all bins1, . . . , p contain no fractions of items in
S′. In this case, if there are items ofS′′ in any of the binsp+ 1, p + 2, . . ., then there must be empty
space in bins1, . . . , p. Parts of items ofS′′ can be repeatedly moved to these bins, until no parts of
items ofS′′ exist in binsp + 1, p + 2, . . .. In each such step, the number of items in some bin in
1, . . . , p increases, and the number of items in some bin inp+1, p+2, . . . decreases. Sorting the bins
again after every such step (according to a non-increasing numbers of items) will contain the same
set of bins in the prefix ofp bins, and our assumption holds as well. Due to concavity, andsince the
target bin cannot contain less items than the source bin, every such step cannot increase the cost.
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We next adaptOPT by creating at mosth(ε) + 2 additional bins, and move the small items of the
first p bins into these bins usingFNFI (that is, the list of items is processed in a reverse order from
their order in the input and packed fractionally into bins).Note that this set of small items may contain
items ofS′ of total size at most 1 (out of these items ofS′, at most one is split between two bins), and
the total size of items ofS′′ is at mosth(ε) + 1. We denote this set of items that is moved byŜ. We
compute the change in the cost and afterwards adapt the solution further so that it complies with the
requirement that the items ofS′′ are packed integrally in separate bins, as is done above.

We define an auxiliary monotonically non-decreasing concave function f̃ as follows. f̃(x) =
f(x + 1

ε ) − f(1ε). Note thatf̃(0) = 0. Consider thep bins of OPT from which the small items are
removed. Letri andai denote the numbers of large and small items in these originalbins. Clearly,
ri ≤ 1

ε . By removing the small items, the cost of such a bin decreasesby f(ai + ri) − f(ri) ≥
f(ai +

1
ε ) − f(1ε ) = f̃(ai), where the inequality is due to concavity. For every bin which is created

for small items, if it containsbi small items, its cost isf(bi) ≤ f(bi +
1
ε ) = f̃(bi) + f(1ε ), where the

inequality is due to monotonicity.
Consider now the packing of the itemŝS that is implied by the solutionOPT, with respect to the

function f̃ , and neglecting the large items. The cost of this packing forbin i is f̃(ai). Let Ã denote
the total cost of all the bins that contain items ofŜ, that is, of the firstp bins. LetB̃ denote the total
cost with respect tõf of all the bins that are created byFNFI for Ŝ. In this case the cost of a bini is

f̃(bi). That is,Ã =
p
∑

i=1
f̃(ai) andB̃ =

h(ε)+2
∑

i=1
f̃(bi). By Lemma 10 (that holds even though the value

f̃(1) can be arbitrary), we havẽA ≥ B̃.

Let∆ denote the difference in the cost for the items ofŜ. We have∆ =
h(ε)+2
∑

i=1
f(bi)−

p
∑

i=1
(f(ri+

ai) − f(ri)) ≤
h(ε)+2
∑

i=1
(f̃(bi) + f(1ε )) −

p
∑

i=1
f̃(ai) ≤ (h(ε) + 2)f(1ε ) (by the previous claims and

Ã ≥ B̃).
We next convert the packing of small items as follows. If there exists a mixed bin, that is, a bin

containing items from bothS′′ andS′, we split it into two bins, so that the two subsets ofS′ and of
S′′ are separated. If a mixed bin indeed exists,S′ 6= ∅, and the total size of theS′′ items is more than
h(ε), but not more thanh(ε) + 1. Therefore, the split bin appears as theh(ε) + 1-th bin created by
FNFI. Moreover, the number of items in theh(ε) + 1-th bin is no larger than the number of items in
every earlier bin. Therefore, if the number of items in theh(ε)+1-th bin isN , then the current cost is
at leastf(N)(h(ε) + 1) and as a result of the split, the cost increases by an additivefactor of at most
f(N). So the multiplicative factor of the increase in the cost is at most1 + 1

h(ε)+1 ≤ 1 + ε where the

inequality holds byh(ε) ≥ 1
ε .

For a pair of consecutive bins created byFNFI (excluding the bins with items of̂S ∩S′), if an item
was split between the two bins, it is removed from these bins and packed completely in a new bin
dedicated to it. There are at mosth(ε) such items so this increases the cost by at mosth(ε) · f(1). At
this time, the items ofS′′ are packed exactly as inOPT′(I ′).

The total cost is at most(1+ ε)(OPT+(h(ε)+ 2)f(1ε ))+h(ε) ≤ (1+ ε)(OPT)+ ((2+ ε)h(ε)+
2 + 2ε)f(1ε ) ≤ (1 + ε)(OPT) + (3h(ε) + 3)f(1ε ) (usingε ≤ 1

3 ).
We next need to pack the items inI ′′ = I ′ \ S′′. Let δ = min

i∈S′
s′i. Clearly, for anyi ∈ S′′ we have

s′i ≤ δ. Let∆ = 1

δ
.

We next consider the instanceI ′′. In the temporary solutions, we allow fractional packing ofthe
items ofS′ and we useOPT(I ′′) to denote an optimal packing ofI ′′ where small items may be packed
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fractionally. This does not change the fact that any bin, packed with items of a total size of at most 1,
can contain a total number of items of at most∆ even if it contains fractions of items.

We denote the cost of the bins packed with the items ofS′′ by F (S′′). By definition we have
OPT′(I ′) = OPT(I ′′)+F (S′′). The items ofS′′, if packed byFNFI (which by Lemma 10 is a minimum
cost packing for them) require at leasth(ε) full bins, with at least∆ items in each. Therefore, we
haveF (S′′) ≥ h(ε) · f(∆). On the other hand, at this time, any other valid bin can contain a total
number of items of at most∆.

These properties are true unlessS′ = ∅. In that case, only large items remain to be packed, so the
number of items in any additional bin is at most1

ε . In this case we let∆ = 1
ε .

Approximating the cost function f . Given the functionf we compute a staircase function, which
is an (1 + ε)-approximation off , with O(log1+ε f(n)) breakpoints. That is, we find a sequence
of integers0 = k0 < k1 = 1 < · · · < k 1

ε
= 1

ε < k 1
ε
+1 < · · · < kℓ = n such that for all

i = 1
ε ,

1
ε +1, . . . , ℓ−1, we havef(ki+1) ≤ (1+ ε)f(ki). The sequence is constructed as follows. We

definekj = j for j = 0, 1, . . . , 1ε . Every subsequent valuekj+1 for j ≥ 1
ε is defined as the maximum

integert > kj such thatf(t) ≤ (1+ε)f(kj). Note that this definition is valid since forj ≥ 1
ε we have

f(j+1) ≤ f((1+ ε)j) ≤ (1+ ε)f(j), where the first inequality holds by the monotonicity off , and
the second inequality holds by the concavity off . Then, by the definition of the sequence, for every
i = 1

ε ,
1
ε +1, . . . , ℓ−2, we havef(ki+2) > (1+ ε)f(ki). Note that by the definition of this sequence,

we haveℓ = O(1ε + log1+ε f(n)) andℓ ≤ n. Let p∆ be such thatkp∆ ≥ ∆ andkp∆−1 ≤ ∆. If
S′ = ∅, we have∆ = 1

ε , sokp∆ = 1
ε . The staircase function, which is an(1 + ε)-approximation of

f , is defined as the value off for valueski, and it remains constant between these points.
Constructing the linear program. Given the instanceI ′′, we let a configuration of a binC be a

(possibly empty) set of items ofL′ whose total (rounded-up) size is at most 1. We denote the set of
all configurations bẙC. For each configurationC we definep∆ + 1 ≤ ℓ+ 1 extended configurations
(C, k0), (C, k1), . . . (C, kp∆). A bin packed according to an extended configuration(C, kp) has large
items according to configurationC, and at mostkp items in total (that are either large or small items,
i.e., including the large items of this configuration). We later slightly relax this condition and allow to
increase the number of items in a bin (in favor of possibly packing a slightly larger number of small
items) in a way that the cost of this bin only increases by a factor of 1+ε. We denote byC the set of all
extended feasible configurations, where an extended configuration (C, kp) is infeasible if the number
of large items inC is strictly abovekp, and otherwise it is feasible. LetH be the set of different
rounded-up sizes of large items. For eachv ∈ H we denote byn(v,C) the number of items with size
v in configurationC, and we denote byn(v) the number of items inL′ with sizev.

We denote the minimum size of an item bysmin = mini∈S′ s′i (note thatsmin 6= 0), and we let
s′min = max{ 1

(1+ε)t |t ∈ Z, 1
(1+ε)t ≤ smin} to be an approximated value ofsmin which is an integer

power of1 + ε. The valuelog1+ε
1

s′min
is polynomial in the size of the input and in1ε . We define

the following setW = {( 1
(1+ε)t , ka)|0 ≤ t ≤ log1+ε

1
s′min

+ 1, 0 ≤ a ≤ ℓ}. A window is defined
as a member ofW. The intuitive meaning of a window here is a pair consisting of a bound on the
remaining capacity for small items in a bin (this bound is rounded to an integer power of1+ ε), and a
bound on the number of small items packed into a bin.W is also called the set of all possible windows.
Then,|W| ≤ (ℓ + 1) · (log1+ε

1
s′min

+ 2). For two windows,w1 andw2 wherewi = (wi
s, w

i
n) for

i = 1, 2, we say thatw1 ≤ w2 if w1
n ≤ w2

n andw1
s ≤ w2

s .
Note that each bin that contains large items, packed according to an extended configuration

(C, kp), may leave space for small items. For an extended configuration (C, kp) we denote themain
window of(C, kp) to bew(C, kp) = (w(C), n(C, kp)), wherew(C) is an approximation of the avail-
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able size for small items in a bin with configurationC, andn(C, kp) is an upper bound on the total
number of small items that can fit into this bin. More precisely, assume that the total (rounded-up)
size of the items inC is s′(C). We letw(C) = 1

(1+ε)t wheret is the maximum integer such that

0 ≤ t ≤ log1+ε
1

s′min
+ 1 and thats′(C) + 1

(1+ε)t ≥ 1.

Corollary 13 Given an extended configuration(C, kp), the real cost (after adding small items such
that their number is not larger than the number in the main window of(C, kp)) of a bin that is packed
according to this extended configuration, is at most(1 + ε)f(kp).

Proof. Assume that in configurationC we packnC =
∑

v∈H
n(v, c) large items, then lett be the

smallest integer such thatkp−nC ≤ kt. It can be seen thatt ≤ p always holds. We letn(C, kp) = kt.
Note that ifkp−nC 6= kt thenkt > 1

ε , andt > 1
ε , so we havekp−nC > kt−1. Hence in this case we

conclude thatf(n(C, kp) + nC) = f(kt + nC) ≤ f(kt + kp − kt−1) ≤ f(kp) + f(kt)− f(kt−1) ≤
f(kp) + εf(kt−1) ≤ (1 + ε)f(kp), where the first inequality holds by the definition oft and the
monotonicity off , the second inequality holds by the concavity off (sincekt > kt−1), the third
inequality holds becausef(kt) ≤ (1+ ε)f(kt−1) and the last inequality holds by the monotonicity of
f (sincekt−1 < kp − nC ≤ kp). Moreover, ifkp − nC = kt, thenf(n(C, kp) + nC) ≤ (1 + ε)f(kp)
clearly holds as well.

The main window of an extended configuration is a window (i.e., it belongs toW), butW may
include windows that are not the main window of any extended configuration. We note that|W|
is polynomial in the input size and in1ε , whereas|C| may be exponential in1ε (specifically, |C| ≤
ℓ · ( 1

ε3 + 1)1/ε). We denote the set of windows that are actual main windows ofat least one extended
configuration byW ′. We first define a linear program that allows the usage of any window inW.
After we obtain a solution to this linear program, we modify it so that it only uses windows ofW ′.

We define a generalized configuratioñC as a pair of pairs̃C = ((C, kp),W = (w, kj)), for some
feasible extended configuration(C, kp) and someW ∈ W. The generalized configuratioñC is valid
if W ≤ w(C, kp). The set of all valid generalized configurations is denoted by C̃.

ForW ∈ W denote byC(W ) the set of valid generalized configurationsC̃ = ((C, kp),W
′) such

thatW is their window, i.e.,C(W ) = {((C, kp),W ′) ∈ C̃ : W ′ = W}.
We next consider the following linear program. In this linear program we have a variablexC̃

denoting the number of bins with generalized configurationC̃, and variablesYi,W indicating if the
small itemi is packed in a window of typeW (the exact instance of this window is not specified in a
solution of the linear program).

min
∑

C̃=((C,kp),W )∈C̃

f(kp)xC̃

s.t.
∑

C̃=((C,kp),W )∈C̃

n(v,C)xC̃ ≥ n(v) ∀v ∈ H (1)

∑

W∈W
Yi,W ≥ 1 ∀i ∈ S′ (2)

w · ∑

C̃∈C(W )

xC̃ ≥ ∑

i∈S′

s′i · Yi,W ∀W = (w, κ) ∈ W (3)

κ · ∑

C̃∈C(W )

xC̃ ≥ ∑

i∈S′

Yi,W ∀W = (w, κ) ∈ W (4)

xC̃ ≥ 0 ∀C̃ ∈ C̃
Yi,W ≥ 0 ∀W ∈ W,∀i ∈ S′.
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Constraints (1) and (2) ensure that each item (large or small) of I ′′ will be considered. The large
items will be packed by the solution, and the small items would be assigned to some type of window.
Constraints (3) ensure that the total size of the small itemsthat we decide to pack in window of type
W is not larger than the total available size in all the bins that are packed according to a generalized
configuration, whose window is of typeW (according to the window size). Similarly, the family of
constraints (4) ensures that the total number of the small items that we decide to pack in a window of
typeW is not larger than the total number of small items that can be packed (in accord with the second
component ofW ) in all the bins whose generalized configuration of large items induces a window of
typeW . In the sequel we show how to deal with small items and specifically, how to pack most of
them into the windows allocated for them, and how to further deal with some unpacked small items.

Lemma 14 There is a feasible solution to the above linear program thathas a cost of at most(1 +
ε)OPT(I ′′).

Proof. The (1 + ε) factor results from the fact that we define extended configurations, where the
number of items per bin iskp (for some value ofp). The fact that we use a window(w, κ) only for
values ofκ that belong to the same sequence of valueski will result in an additional factor of1 + ε
on the cost of the linear program.

To convert the solution, we do not need to modify packing of items, but we change the cost
calculation of each bin to comply with costs of generalized configurations. For this, the number of
items in every bin must be converted (in favor of cost calculations) as follows.

Given a bin withn1 > 0 items, we definep to be minimal value such thatkp ≥ n1. The increase
in the cost can occur ifkp > n1. In this case,p > 0 and we havekp−1 < n1 < kp and thus
using monotonicity off and the properties of the sequenceki we havef(kp) ≤ (1 + ε)f(kp−1) ≤
(1+ε)f(n1). Since windows are never smaller than the real space in bins,both with respect to size and
with respect to the difference between the number of large items and the valuekp of the configuration,
the solution clearly satisfies the constraints (3) and (4) onthe packing of small items, and the packing
of large items satisfies the constraints (1). Therefore the adapted solution is a feasible solution of the
linear program. Moreover, the adapted solution implies a solution to the linear program in which all
variablesxC̃ , that correspond to generalized configurationsC̃ = (C,w) for whichw is not the main
window ofC, are equal to zero, and all variablesYi,w wherew /∈ W ′ are equal to zero as well. The
linear program calculates the cost of a packing using the valueskp of the extended configurations, and
as shown above, this increases the cost ofOPT(I ′′) by a multiplicative factor of at most1 + ε (see
Corollary 13).

The column generation technique. We invoke the column generation technique of Karmarkar
and Karp [16] as follows. The above linear program may have anexponential number of variables
and polynomial number of constraints (neglecting the non-negativity constraints). Instead of solving
the linear program we solve its dual program (that has a polynomial number of variables and an
exponential number of constraints) that we describe next.

The dual variablesαv correspond to the item sizes inH, and the dual variablesβi correspond to
the small items ofS′. The intuitive meaning of these two types of variables can beseen as weights of
these items. For eachW ∈ W we have a pair of dual variablesγW , δW . Using these dual variables,
the dual linear program is as follows.

max
∑

v∈H

n(v)αv +
∑

i∈S′

βi
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s.t.
∑

v∈H
n(v,C)αv + wγW + κδW ≤ f(kp) ∀C̃ = ((C, kp),W = (w, κ)) ∈ C̃ (5)

βi − s′iγW − δW ≤ 0 ∀i ∈ S′,∀W ∈ W (6)

αv ≥ 0 ∀v ∈ H

βi ≥ 0 ∀i ∈ S′

γW , δW ≥ 0 ∀W ∈ W.

First note that there is a polynomial number of constraints of type (6), and therefore we clearly
have a polynomial time separation oracle for these constraints. If we would like to solve the above
dual linear program (exactly) then using the ellipsoid method we need to establish the existence of
a polynomial time separation oracle for the constraints (5). However, we are willing to settle on an
approximated solution to this dual program. To be able to apply the ellipsoid algorithm, in order to
solve the above dual problem within a factor of1 + ε, it suffices to show that there exists a polyno-
mial time algorithm (polynomial inn, 1

ε and log 1
s′min

and log f(n)) such that for a given solution

a∗ = (α∗, β∗, γ∗, δ∗) decides whethera∗ is a feasible dual solution (approximately). That is, it either
provides a generalized configuratioñC = ((C, kp),W = (w, kt)) ∈ C̃ for which

∑

v∈H
n(v,C)α∗

v +

wγ∗W + ktδ
∗
W > 1, or outputs that an approximate infeasibility evidence does not exist, that is, for all

generalized configurations̃C = ((C, kp),W = (w, kt)) ∈ C̃,
∑

v∈H

n(v,C)α∗
v +wγ∗W + ktδ

∗
W ≤ 1+ ε

holds. In such a case,a
∗

1+ε is a feasible dual solution which also satisfies constraints(6), that can be
used.

Our algorithm for finding an approximate infeasibility evidence uses the following problem as
an auxiliary problem. TheKNAPSACK PROBLEM WITH A MAXIMUM CARDINALITY CONSTRAINT

(KCC) problem is defined as follows. Given a set of item typesH and an integer valuek, where
each item typev ∈ H has a given multiplicityn(v), a volumez∗v and a sizev, the goal is to pack a
multiset of at mostk items (taking the multiplicity, in which items are taken, into account, and letting
the solution contain at mostn(v) items of typev) and a total size of at most 1, so that the total volume
is maximized. To provide an FPTAS for KCC, note that one can replace an item with sizev by n(v)
copies of this item and then one can apply the FPTAS of Capraraet al. [6] for the knapsack problem
with cardinality constraints. The FPTAS of [6] clearly has polynomial time in the size of its input,
and 1

ε . Since the number of items that we give to this algorithm as input is at mostn, we can use this
FPTAS and still let our scheme have polynomial running time.

A configurationC̃, that is an approximate infeasibility evidence, can be found by the follow-
ing procedure: For eachW = (w, kt) ∈ W, and for every0 ≤ p ≤ ℓ, we look for an extended
configuration(C, kp) ∈ C such that((C, kp),W ) is a valid generalized configuration, and such that
∑

v∈H
n(v,C)α∗

v is maximized. If a configurationC is indeed found, the generalized configuration,

whose constraint is checked, is((C, kp),W ). To findC, we invoke the FPTAS for the KCC problem
with the following input: The set of items isH where for eachv ∈ H there is a volumeα∗

v and a size
v, the goal is to pack a multiset of the items, so that the total volume is maximized, under the following
conditions. The multiset should consist of at mostkp − kt−1 − 1 large items, (taking the multiplicity
into account, but an item can appear at most a given number of times). If t = 0, we instead search for
a multiset with at mostkp large items. The total (rounded-up) size of the multiset should be smaller
than1 − w

1+ε , unlessw < s′min, where the total size should be at most 1 (in this case, the window
does not leave space for small items). Since the number of applications of the FPTAS for the KCC
problem is polynomial (i.e.,(ℓ+ 1)|W|), this algorithm runs in polynomial time.

If it finds a solution, that is, a configurationC, with at mostkp − kt−1 − 1 large items (orkp, if
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t = 0), and a total volume greater thanf(kp)−wγ∗W −κδ∗W , we argue that((C, kp), (w, kt)) is indeed
a valid generalized configuration, and this implies that there exists a generalized configuration, whose
dual constraint (5) is violated. First, we need to show that(C, kp) is a valid extended configuration.
This holds sinceC has at mostkp − kt−1 − 1 ≤ kp large items (ift = 0 the bound on the number of
items holds immediately).

By the definition of windows, the propertyw < s′min is equivalent tow =
s′min

1+ε , which is the
smallest size of window (and the smallest sized window formsa valid generalized configuration with
any configuration, provided that the value ofkt is small enough). Ift > 0, sinceC has at most
kp − kt−1 − 1 items, the second component of the main window ofC in this case is larger thankt−1

and thus no smaller thankt, and the window is no smaller than(w, kt). Therefore, the generalized
configuration((C, kp), (w, kt)) is valid. If t = 0 then the window(w, 0) is clearly valid with any
extended configuration (for the current value ofw).

If w ≥ s′min, recall that the main window of(C, kp), w(C, kp) = (w(C), n(C, kp)) is chosen so
that s′(C) + w(C) ≥ 1, and thatC is chosen by the algorithm for KCC so thats′(C) < 1 − w

1+ε .
We get1 − w(C) ≤ s′(C) < 1 − w

1+ε and thereforew < (1 + ε)w(C), i.e.,w ≤ w(C) (since the
sizes of windows are integer powers of1 + ε). SinceC contains at mostkp − kt−1 − 1 items, we
haven(C, kp) ≥ kt and so we conclude thatW ≤ w(C, kp), and((C, kp),W ) is a valid generalized
configuration (the same property holds fort = 0). Thus in this case we found that this solution is a
configuration whose constraint in the dual linear program isnot satisfied, and we can continue with
the application of the ellipsoid algorithm.

Otherwise, for any pair of a windowW = (w, kt), and a value0 ≤ p ≤ ℓ, and any configuration
C of total rounded-up size less than1− w

1+ε (or at most 1, ifw < s′min), with at mostkp − kt−1 − 1
items, has a volume of at most(1 + ε)(1−wγ∗W − ktδ

∗
W ) ≤ (1 + ε)−wγ∗W − ktδ

∗
W . We prove that

in this case, all the constraints of the dual linear program are satisfied by the solutiona
∗

1+ε . Consider

an arbitrary valid generalized configuratioñC = ((C, kp), (w̃, kj)), where(C, kp) is a valid extended
configuration. We have(w̃, kj) ≤ (w(C), n(C, kp)), where(w(C), n(C, kp)) is the main window of
C. If w(C) < s′min, thenw̃ = w(C). Sinces′(C) ≤ 1 for any configuration, andkj ≤ n(C, kp),
we prove that the number of items inC is at mostkp − kj−1 − 1 (if j = 0 then the number of
items inC is immediately at mostkp and there is nothing to prove). Assume by contradiction thatthe
number of items inC is at leastkp − kj−1. Then by definition, we haven(C, kp) ≤ kj−1, which is
impossible. Thus,(C, kp) is a possible extended configuration to be used with the window (w̃, kj) in
the application of the FPTAS for KCC, orC is a possible configuration to be used with the parameterp
and the window(w̃, kj) in the application of the FPTAS for KCC. Assume next thatw̃ < 1, then when
the FPTAS for KCC is applied onW = (w̃, kj), C is a configuration that is taken into account forW

sinces′(C) < 1− w(C)
1+ε ≤ 1− w̃

1+ε , where the first inequality holds by definition ofws(C), andC has
at mostkp − kj−1 − 1 items. If w̃ = 1 then1 ≥ w(C) ≥ w̃ = 1, sows(C) = 1. A configurationC1

that contains at least one large item satisfiess′(C1) ≥ ε, sos′(C1) +
1

1+ε ≥ 1+ε+ε2

1+ε > 1. Therefore
if the main window of a configuration is of size 1, this configuration is empty. We therefore have
thatC is an empty configuration, thuss′(C) = 0. The extended configuration(C, kp) is valid for
any 0 ≤ p ≤ ℓ. We haven(C, kp) = kp for the empty configuration, and for any1 ≤ j ≤ p,
kp − kj−1 − 1 ≥ 0, and forj = 0, kp ≥ 0. This empty configuration is considered with any window
W = (w, kj) ∈ W wherej > 0 in the application of KCC. Note that ifj = 0, the configuration has
no items at all (large or small).

We denote by(X∗, Y ∗) the solution to the primal linear program that we obtained.

Lemma 15 The cost of(X∗, Y ∗) is at most(1 + ε)2OPT(I ′′).
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Proof. The solution(X∗, Y ∗) is a(1+ε) approximation for the optimal solution to the linear program.
Since we showed that there exists a feasible solution to the primal linear program with a cost of at
most(1 + ε)OPT(I ′′), we conclude that

∑

C̃=((C,kp),(w,kt))∈C̃

f(kp)X
∗
C̃
≤ (1 + ε)2OPT(I ′′).

Modifying the solution to the linear program so that all windows in W\W ′ can be neglected.
We modify the solution to the primal linear program, into a different feasible solution of the linear
program, without increasing the goal function. We create a list of generalized configurations whose
X∗ component is positive. From this list of generalized configurations, we find a list of windows that
are the main window of at least one extended configuration induced by a generalized configuration in
the list. This list of windows is a subset ofW ′ defined above. We would like the solution to use only
windows fromW ′.

The new solution will have the property that any non-zero components ofX∗, X∗
C̃

corresponds

to a generalized configuratioñC = ((C, kp),W ), such thatW ∈ W ′. We still allow generalized
configurationsC̃ = ((C, kp),W ) whereW is not the main window of(C, kp), as long asW ∈ W ′.
This is done in the following way. Given a windowW ′ /∈ W ′, we defineBW ′ =

∑

C̃′′∈C(W ′)

x∗
C̃′′

. The

following is done in parallel for every generalized configurationC̃ ′ = ((C, kp),W
′), whereW ′ /∈ W ′

and such thatX∗
C̃′

> 0, where the main window of(C, kp) is W ≥ W ′ (but W ′ 6= W ). We let

C̃ = ((C, kp),W ). The windows allocated for small items need to be modified first, thus an amount

of
X∗

C̃′

BW ′
Y ∗
i,W ′ is transferred fromY ∗

i,W ′ to Y ∗
i,W . We modify the valuesX∗

C̃′
andX∗

C̃
as follows. We

increase the value ofX∗
C̃

by an additive factor ofX∗
C̃′

and letX∗
C̃′

= 0.
To show that the new vector(X∗, Y ∗) still gives a feasible solution of the same value of objec-

tive function, we consider the modifications. For every extended configuration(C, kp), the sum of
componentsX∗, that correspond to generalized configurations whose extended configuration of large
items is(C, kp), does not change. Therefore, the value of the objective function is the same, and the
constraints (1) still hold. We next consider the constraint(2) for i, for a given small itemi ∈ S′. Since
the sum of variablesY ∗

i,W does not change, this constraint still holds.
As for constraints (3) and (4), for a windowW ′ /∈ W ′, the right hand side of each such constraint

became zero. On the other hand, for windows inW ′, every increase in some variableX∗
C̃

for C̃ =

((C, kp),W = (w, κ)), that is originated in a decrease ofX∗
C̃′

for C̃ = ((C, kp),W
′ = (w′, κ′)) is

accompanied with an increase of
X∗

C̃′
P

C̃′′∈C(W ′)

X∗

C̃′′
Y ∗
i,W ′ =

X∗

C̃′

BW ′
Y ∗
i,W ′ in Y ∗

i,W , for everyi ∈ S′, thus is,

an increase of
∑

i∈S′

X∗

C̃′

BW ′
s′i · Y ∗

i,W ′ in the right hand size of the constraint (3) forW , and an increase

of w · X∗
C̃′

in the left hand side. Since we havew · BW ′ ≥ w′ · BW ′ ≥ ∑

i∈S′

s′i · Y ∗
i,W ′ before the

modification occurs (since constraint (3) holds for the solution before modification for the window
W ′), we get that the increase of the left hand side is no smaller than the increase in the right hand

side. There is an increase of
∑

i∈S′

X∗

C̃′

BW ′
· Y ∗

i,W ′ in the right hand size of the constraint (4) forW , and an

increase ofκ ·X∗
C̃′

in the left hand side. Since we haveκ ·BW ′ ≥ κ′ · BW ′ ≥ ∑

i∈S′

Y ∗
i,W ′, we get that

the increase of the left hand side is no smaller than the increase in the right hand side.
Now, we can temporarily delete the constraints of (3) and (4)that correspond to windows in

W \W ′. We call the resulting linear programLPtmp. We consider a basic solution ofLPtmp that is
not worse than the solution we obtained above (which was created as a solution ofLPtmp too). Such
a basic solution can be found in polynomial time. We denote this basic solution by(X ∗,Y∗). This is
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clearly a basic solution to the original linear program as well.
In order to obtain a feasible packing, we need to use the solution (X ∗,Y∗). However, this solution

may contain fractional components. We can show the following bound on these components.

Lemma 16 Consider the solution(X ∗,Y∗). LetFY be the number of small items that are assigned to
windows fractionally according to the solution, i.e.,FY = |{i ∈ S′, such that the vector(Y∗

i,W )W∈W

is fractional}|. LetFX be the number of fractional components ofX ∗, i.e., the number of configura-
tions assigned a non-integer number of copies in the solution. ThenFY + FX ≤ |H|+ 2|W ′|.

Proof. The linear programLPtmp consists of|H|+2|W ′|+ |S′| inequality constraints, and hence in a
basic solution (a property that we assume that(X ∗,Y∗) satisfies) there are at most|H|+2|W ′|+ |S′|
basic variables. For everyi ∈ S′, there is at least one windowW such thatYi,W is a basic variable,
and therefore there are at most|H|+ 2|W ′| additional fractional components in(X ∗,Y∗).

Rounding the solution. We apply several steps of rounding to obtain a feasible packing of the
items into bins. LetCLP be the cost obtained in the linear program by the vector(X ∗,Y∗). By
Lemma 15, this cost is at most(1 + ε)2OPT(I ′′).

For eachi ∈ S′ such that the vector(Y∗
i,W )W∈W is fractional,i is packed in a dedicated bin. We

can therefore assume that for every small itemi ∈ S′ to be packed,(Y∗
i,W )W∈W is integral. Without

loss of generality, we assume that it has one component equalto 1, and all other components are zero.
(If this is not the case, we can modify the vector without changing the feasibility of the solution, or
the value of the objective function.)

Let X̂ be the vector such that̂XC̃ = ⌈X ∗
C̃
⌉ for all C̃ ∈ C̃. The number of bins allocated to

generalized configuratioñC is X̂C̃ .
We pack the items ofL′ first. We initialize bins according to generalized configurations, and

assign large items into these bins according to the associated configurations (some slots may remain
empty).

Lemma 17 The cost of the additional bins, dedicated to small items forwhich (Y∗
i,W )W∈W is frac-

tional, and the cost of additional bins that are created as a result of replacingX ∗ by X̂ is at most
f(kp∆) · (|H|+ 2|W ′|).

Proof. We calculate the cost of bins opened in addition to the cost implied by the solution(X ∗,Y∗).
At most one bin containing at mostkp∆ items was opened for every fractional component ofX ∗

C̃
. At

most one bin containing a single item was opened for every small item that was assigned fractionally
to windows. The cost of a bin of the first type is at mostf(kp∆). The cost of every bin of the second
type isf(1) = 1 ≤ f(1ε ) ≤ f(kp∆). The total number of the two types of bins together is at most
|H|+ 2|W ′| by Lemma 16.

Before moving on to the specific assignment of small items, wecomplete the packing of the
original large items. Each large item of the rounded-up instance is replaced by the corresponding item
of I. The method of rounding implies that the space allocated to the rounded items is sufficient for the
original items. Moreover, every item is replaced by at most one item, so the cost does not increase.

Each item ofL1 is packed into one dedicated bin.

Lemma 18 The cost of the bins dedicated to the items ofL1 is at most2ε2OPT(I ′′).

Proof. It suffices to show thatf(1)|L1| ≤ 2ε2OPT(I ′′). To see this last claim note that|L1| ≤ 2|L|ε3
and each item inL has size at leastε and therefore the number of bins used byOPT(I ′′) is at least
|L|ε, where each of them costs at leastf(1). Therefore,f(1)|L1| = |L1| ≤ 2ε2OPT(I ′′).
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By the constraints (1), the allocation of the items ofL′ to slots reserved for such items is success-
ful. At this time, we have removed some small items into new bins, and possibly increases the space
allocated to other small items.

We next consider the packing of the small items that are supposed to be packed (according toY∗)
in bins with windowW . Assume that there areX(W ) such bins (i.e.,X(W ) =

∑

C̃=((C,kt),W )

X̂C̃).

Denote byS(W ) the set of small items ofS′ that we decided to pack in bins with windowW (for some
of these items we will change this decision in the sequel). Then, by the feasibility of the linear program
we conclude that

∑

i∈S(W )

s′i ≤ w ·X(W ) and|S(W )| ≤ kp ·X(W ) for anyW = (w, kp) ∈ W ′.

We next show how to allocate almost all the items ofS(W ) to theX(W ) bins with window
W = (w, kp) such that the total size of items ofS(W ) in each such bin will be at most1 + εw

1+ε and
the total number of items ofS(W ) in each such bin will be at mostkp.

To do so, we sort the items inS(W ) according to non-increasing size (assume the sorted list of
item indices isb1 < b2 < . . . b|S(W )|). Then, allocate the items to the bins in a round-robin manner,
so that binj (1 ≤ j ≤ S(W )) receives items of indicesbj+q·X(W ) for all integersq ≥ 0 such that
j+ q ·X(W ) ≤ |S(W )|. We call the allocation of items for a given value ofp a round of allocations.

If w =
s′min

1+ε then there are no small items assigned to this window. We therefore assumew ≥ s′min.
We claim that the last bin of indexX(W ) received at most an 1

X(W ) fraction of the total size of

the items, whose sum is equal to
|S(W )|
∑

i=1
sbi . To prove this, we artificially add at mostX(W )− 1 items

of size zero to the end of the list (these items are added just for the sake of the proof), and allocate
them to the bins that previously did not receive an item in thelast round of allocations, that is, bins
r, . . . ,X(W ) such that binr − 1 < X(W ) originally received the last item. If binX(W ) received
the last item then no items are added. Now the total size of small items remained the same, but every
bin got exactly one item in each round. Since the last bin received the smallest item in each round,
the claim follows. On the other hand, we can apply the following process, at every timei < X(W ),
remove the first (largest) small item from bini. As a result, the round-robin assignment now starts
from bin i + 1 and bini becomes the bin that receives items last in every round, and thus by the

previous proof, the total size of items assigned to it is at most

|S(W )|
P

i=1
sbi

X(W ) (since the total size of items
does not increase in each step of removal).

We create an intermediate solutionSOLinter by removing the largest small item from each such
bin (call themthe removed small items). Each removed item is small and therefore its size is at most
ε. We pack the removed small items in new bins, so that each bin contains1

ε items. There may be at
most one resulting bin with less than1ε items.

The solutionSOLinter is not necessarily valid, but if we temporarily relax the condition on the
total size of items in a bin, we can compute its cost. Since theassignment of small items into bins
is done using a round-robin method, the number of small itemsin a bin with a window(w, kp) is at
mostkp.

Lemma 19 The total cost ofSOLinter is at most the sum off(1ε ) plus(1 + ε)2 times the cost of the
solution prior to the allocation of the small items into bins.

Proof. The first factor of1+ε follows from Corollary 13. We calculate the cost of the additional bins.
We allocate a cost ofεf(1ε ) to each removed small item. Then, the total allocated cost covers that cost
of all new bins except for at most one bin that has a cost of at most f(1ε ). Consider a removed item
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i and leta be the real number of items (including large items) that the bin from which i is removed,
contains before the removal. Thus, the bin is charged with a cost of at leastf(a) (the linear program
may have charged it withf(kp) for somekp ≤ a, but the current charge for this bin in our estimation
of the total cost is(1 + ε)f(kp) ≥ f(a), by Corollary 13). As a result of removal ofi, the real cost of
the bin is no larger thanf(a − 1). We therefore showεf(1ε ) + f(a − 1) ≤ (1 + ε)f(a). If a ≥ 1

ε ,
then using monotonicity,f(1ε ) ≤ f(a) andf(a − 1) ≤ f(a) so the claim holds. Otherwise, we

havef(1ε) = f(a) +

1
ε
∑

j=a+1
(f(j) − f(j − 1)). By concavity, we have for everya + 1 ≤ j ≤ 1

ε ,

f(a)− f(a− 1) ≥ f(j) − f(j − 1). Thereforef(1ε ) ≤ f(a) + 1
ε (f(a)− f(a− 1)). Rewriting this

gives the required claim.
We note that the total size of small items assigned to such (original) bin is at mostw (as before

removing the items we allocate the first bin a total size that is at mostw and after the removal of items
each bin has total size which is at most the total size of the first bin before the removal).

The intermediate solutionSOLinter is infeasible because our definition ofw is larger than the
available space for small items in such bin. We create the final solutionSOLfinal as follows.

Consider a bin such that the intermediate solution in which large items are packed according to
configurationC, and small items with total size at mostw. We do not change the packing of large
items. As for the small items, we remove them from the bin and start packing the small items into this
bin greedily in non-decreasing order of the item sizes, as long as the total size of items packed to the
bin does not exceed 1. The first item that does not fit into the bin is called thespecial item. Additional
items that do not fit are called theexcess items.

We collect the special items from all bins, and we pack these items in separate bins, so that each
such separate bin will contain1ε special items for different bins ofSOLinter, except for the last such
bin. Similarly to the above argument in the proof of Lemma 19,these are feasible bins and they add
an additive factor ofε times the cost ofSOLinter to the total cost of the packing (plusf(1ε )).

By the definition of windows, the actual space in a bin with window (w, κ), that is free for the use
of small items, is at least of sizew1+ε . After the removal of the packed items and the special item, we
are left with the excess items, and their size is at mostw − w

1+ε = ε w
1+ε < ε. Similar considerations

can be applied to the cardinality of these items. Since we insert the items into the window sorted by
a non-decreasing order of size, the largest items are the ones that become excess items, and thus for a
window (w, κ), the number of excess items is at mostεκ.

The last rounding step is defined as follows. We can pack the unpacked (excess) items of every
1
ε bins ofSOLinter using one additional bin. Specifically, we sort the subsets of excess items ac-
cording to a non-increasing order of the second component ofthe windows to which these items were
originally assigned, we call it theindex of the subset. Then, according to this order, we assign every
consecutive1ε subsets to a bin. The last bin may contain a smaller number of subsets. This completes
the scheme. We get our final solutionSOLfinal.

Lemma 20 The cost ofSOLfinal is at most(1 + 2ε) times the cost ofSOLinter plusf(kp∆).

Proof. We useκi to denote the index of thei-th subset. Letv denote the number of bins created, and
u the number of subsets (we havev−1

ε < u ≤ v
ε ). The number of items in thei-th bin, for i ≥ 2,

is at most

1
ε
∑

j=1
εκ i−1

ε
+j ≤ κ i−1

ε
. The number of items in the first bin is at most∆ ≤ kp∆ . The cost

of the bins is therefore at mostf(∆) +
v−1
∑

i=1
f
(

κ i
ε

)

. On the other hand, the cost ofSOLinter that is
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charged to the bins which was supposed to get thei-th subset of excess items is at leastf(κi) (since
for a generalized configuration((C, kt), (w, kp)) we havekp ≤ kt), thus the cost ofSOLinter is at

least
u
∑

j=1
f(κj) ≥ 1

ε

v−1
∑

j=1
f
(

κ j
ε

)

. Thus the additional cost is at mostε times the cost ofSOLinter plus

f(∆).
By concavity off we havef(z) ≤ z ·f(1) = z for anyz ≥ 1. We have|W ′| ≤ |C| ≤ ℓ·( 1

ε3+1)1/ε

and we also have|H| ≤ |C|. If S′ = ∅, we getkp∆ = 1
ε sof(kp∆) ≤ 1

ε .
The cost ofSOLfinal is at most

(1+2ε)·
(

(1 + ε2) ·
(

(1 + ε)2OPT(I ′′) + f(kp∆) · (|H|+ 2|W ′|) + 2ε2OPT(I ′′)
)

+ f(
1

ε
)

)

+f(kp∆)

≤ (1 + 2ε)(1 + ε)5OPT(I ′′) + 3f(kp∆) · (|H|+ 2|W ′|+ 1) + 3f(
1

ε
).

Therefore, the total cost of the returned solution (including the cost of the packing ofS′′) is at most

(1 + 2ε)(1 + ε)5OPT(I ′′) +

(

3(|H|+ 2|W ′|+ 1)

h(ε)
+ 1

)

F (S′′) + 3f(
1

ε
)

≤ (1 + 2ε)(1 + ε)5OPT(I ′′) + (1 + 3ε)F (S′′) + 3f(
1

ε
)

≤ (1 + 2ε)(1 + ε)5(OPT(I ′′) + F (S′′)) + 3f(
1

ε
)

= (1 + 2ε)(1 + ε)5OPT′(I ′) + 3f(
1

ε
)

≤ (1 + 2ε)(1 + ε)6OPT+ (3h(ε) + 6)(1 + 2ε)(1 + ε)5f(
1

ε
)

≤ (1 + 2ε)(1 + ε)6OPT+ (18ℓ(
1

ε3
+ 1)1/ε + 6)(1 + 2ε)(1 + ε)5

1

ε2

≤ (1 + 2ε)(1 + ε)6OPT+ (18(
1

ε
+ log1+ε OPT) · ( 1

ε3
+ 1)1/ε + 6)(1 + 2ε)(1 + ε)5

1

ε2
.

We note that the last bound can be written as(1 +O(ε)) · OPT+ t(ε) · log2 OPT+ T (ε) wheret and
T are some (exponential) functions of1

ε . To show that the resulting scheme is an AFPTAS it suffices

to argue thatt(ε) · log2 OPT ≤ εOPT+
(

t(ε)
ε

)2
. To see this last inequality note that iflog2 OPT ≤ t(ε)

ε2

the claim clearly holds. Otherwise,log2 OPT ≥ t(ε)
ε2

and thereforeOPT ≥ 16 (where the last inequality
holds sincet(ε) > 16). Note that forx > 16 we have

√
x ≥ log2 x and byOPT ≥ 16, we get

√
OPT ≥

log2 OPT ≥ t(ε)
ε2 . Therefore,εOPT = ε

√
OPT

√
OPT ≥ t(ε)

ε

√
OPT ≥ t(ε)

ε log2 OPT ≥ t(ε) log2 OPT and
the claim follows. Therefore, we have established the correctness of Theorem 11.
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