Skip to main content
Log in

The integer approximation error in mixed-integer optimal control

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We extend recent work on nonlinear optimal control problems with integer restrictions on some of the control functions (mixed-integer optimal control problems, MIOCP). We improve a theorem (Sager et al. in Math Program 118(1): 109–149, 2009) that states that the solution of a relaxed and convexified problem can be approximated with arbitrary precision by a solution fulfilling the integer requirements. Unlike in previous publications the new proof avoids the usage of the Krein-Milman theorem, which is undesirable as it only states the existence of a solution that may switch infinitely often. We present a constructive way to obtain an integer solution with a guaranteed bound on the performance loss in polynomial time. We prove that this bound depends linearly on the control discretization grid. A numerical benchmark example illustrates the procedure. As a byproduct, we obtain an estimate of the Hausdorff distance between reachable sets. We improve the approximation order to linear grid size h instead of the previously known result with order \({\sqrt{h}}\) (Häckl in Reachable sets, control sets and their computation, augsburger mathematisch-naturwissenschaftliche schriften. Dr. Bernd Wißner, Augsburg, 1996). We are able to include a Special Ordered Set condition which will allow for a transfer of the results to a more general, multi-dimensional and nonlinear case compared to the Theorems in Pietrus and Veliov in (Syst Control Lett 58:395–399, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abhishek, K., Leyffer, S., Linderoth, J.: Filmint: An outer-approximation-based solver for nonlinear mixed integer programs. Preprint ANL/MCS-P1374-0906, Argonne National Laboratory, Mathematics and Computer Science Division (2006)

  2. Bock, H., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the 9th IFAC World Congress, pp. 243–247. Pergamon Press, Budapest (1984). Available at http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1984.pdf

  3. Bonami P., Biegler L., Conn A., Cornuéjols G., Grossmann I., Laird C., Lee J., Lodi A., Margot F., Sawaya N., Wächter A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5(2), 186–204 (2009)

    Article  Google Scholar 

  4. Burgschweiger J., Gnädig B., Steinbach M.: Optimization models for operative planning in drinking water networks. Optim. Eng. 10(1), 43–73 (2008)

    Article  Google Scholar 

  5. Burgschweiger J., Gnädig B., Steinbach M.: Nonlinear programming techniques for operative planning in large drinking water networks. Open Appl. Math. J. 3, 1–16 (2009)

    Article  MathSciNet  Google Scholar 

  6. Chachuat B., Singer A., Barton P.: Global methods for dynamic optimization and mixed-integer dynamic optimization. Ind. Eng. Chem. Res. 45(25), 8392–8573 (2006)

    Article  Google Scholar 

  7. Colonius F., Kliemann W.: The Dynamics of Control. Birkhäuser, Boston (2000)

    Book  Google Scholar 

  8. Donchev T.: Approximation of lower semicontinuous differential inclusions. Numer. Funct. Anal. Optim. 22(1), 55–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Egerstedt M., Wardi Y., Axelsson H.: Transition-time optimization for switched-mode dynamical systems. IEEE Trans. Autom. Control 51, 110–115 (2006)

    Article  MathSciNet  Google Scholar 

  10. Gerdts M.: Solving mixed-integer optimal control problems by Branch&Bound: A case study from automobile test-driving with gear shift. Optim. Control Appl. Methods 26, 1–18 (2005)

    Article  MathSciNet  Google Scholar 

  11. Gerdts M.: Optimal Control of Ordinary Differential Equations and Differential-Algebraic Equations. University of Bayreuth, Habilitation (2006)

    Google Scholar 

  12. Gerdts M.: A variable time transformation method for mixed-integer optimal control problems. Opti. Control Appl. Methods 27(3), 169–182 (2006)

    Article  MathSciNet  Google Scholar 

  13. Grammel G.: Towards fully discretized differential inclusions. Set-Valued Anal. 11(1), 1–8 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Häckl, G.: Reachable Sets, Control Sets and their Computation, Augsburger Mathematisch-Naturwissenschaftliche Schriften, vol 7. Dr. Bernd Wißner, Augsburg (1996). Dissertation, Universität Augsburg, Augsburg, 1995

  15. Kawajiri Y., Biegler L.: A nonlinear programming superstructure for optimal dynamic operations of simulated moving bed processes. I&EC Res. 45(25), 8503–8513 (2006)

    Google Scholar 

  16. Kaya C., Noakes J.: A computational method for time-optimal control. J. Optim. Theory Appl. 117, 69–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kirches C., Sager S., Bock H., Schlöder J.: Time-optimal control of automobile test drives with gear shifts. Optim. Control Appl. Methods 31(2), 137–153 (2010)

    Article  MATH  Google Scholar 

  18. Margaliot M.: A counterexample to a conjecture of Gurvits on switched systems. IEEE Trans. Autom. Control 52(6), 1123–1126 (2007)

    Article  MathSciNet  Google Scholar 

  19. Martin A., Möller M., Moritz S.: Mixed integer models for the stationary case of gas network optimization. Math. Program. 105, 563–582 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pietrus A., Veliov V.M.: On the discretization of switched linear systems. Syst. Control Lett. 58, 395–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sager, S.: MIOCP benchmark site. http://mintoc.de

  22. Sager, S.: Numerical Methods for Mixed–Integer Optimal Control Problems. Der andere Verlag, Tönning, Lübeck, Marburg (2005). ISBN 3-89959-416-9. Available at http://sager1.de/sebastian/downloads/Sager2005.pdf

  23. Sager S.: Reformulations and algorithms for the optimization of switching decisions in nonlinear optimal control. J. Process Control 19(8), 1238–1247 (2009)

    Article  Google Scholar 

  24. Sager, S., Kirches, C., Bock, H.: Fast solution of periodic optimal control problems in automobile test-driving with gear shifts. In: Proceedings of the 47th IEEE Conference on Decision and Control (CDC 2008), Cancun, Mexico, pp. 1563–1568 (2008). doi:10.1109/CDC.2008.4739014. ISBN: 978-1-4244-3124-3

  25. Sager S., Reinelt G., Bock H.: Direct methods with maximal lower bound for mixed-integer optimal control problems. Math. Program. 118(1), 109–149 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sharon Y., Margaliot M.: Third-order nilpotency, finite switchings and asymptotic stability. J. Differ. Equ. 233, 135–150 (2007)

    Article  MathSciNet  Google Scholar 

  27. Szymkat, M., Korytowski, A.: The method of monotone structural evolution for dynamic optimization of switched systems. In: IEEE CDC08 Proceedings (2008)

  28. Terwen, S., Back, M., Krebs, V.: Predictive powertrain control for heavy duty trucks. In: Proceedings of IFAC Symposium in Advances in Automotive Control, pp. 451–457. Salerno, Italy (2004)

  29. Till J., Engell S., Panek S., Stursberg O.: Applied hybrid system optimization: An empirical investigation of complexity. Control Eng. Pract. 12, 1291–1303 (2004). doi:10.1016/j.conengprac.2004.04.003

    Article  Google Scholar 

  30. Veliov V.: On the time discretization of control systems. SIAM J. Control Optim. 35(5), 1470–1486 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Veliov, V.: Relaxation of Euler-type discrete-time control system. ORCOS 273, TU-Wien (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Sager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sager, S., Bock, H.G. & Diehl, M. The integer approximation error in mixed-integer optimal control. Math. Program. 133, 1–23 (2012). https://doi.org/10.1007/s10107-010-0405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0405-3

Keywords

Mathematics Subject Classification (2000)

Navigation