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Abstract

In Mathematical Programming 2003, Gomory and Johnson conjecture that the facets
of the infinite group problem are always generated by piecewise linear functions. In this
paper we give an example showing that the Gomory-Johnson conjecture is false.

1 Introduction

Let f ∈]0, 1[ be given. Consider the following infinite group problem (Gomory and Johnson
[3]) with a single equality constraint and a nonnegative integer variable sr associated with
each real number r ∈ [0, 1[.

∑

r∈[0,1[ rsr = f

sr ∈ Z+ ∀r ∈ [0, 1[
s has finite support,

(1)
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where additions are performed modulo 1. Vector s has finite support if sr 6= 0 for a finite
number of distinct r ∈ [0, 1[.

Gomory and Johnson [3] say that a function π : [0, 1[ → R is a valid function for (1) if π
is nonnegative, π(0) = 0, and every solution of (1) satisfies

∑

r∈[0,1[

π(r)sr ≥ 1.

Note that, if π is a valid function, then π(f) ≥ 1.
For any valid function π, let P (π) be the set of solutions which satisfy

∑

r∈[0,1[ π(r)sr ≥ 1
at equality. An inequality π is a facet for (1) if and only if P (π∗) ⊃ P (π) implies π∗ = π for
every valid function π∗.

A function is piecewise linear if there are finitely many values 0 = r0 < r1 < . . . < rk = 1
such that the function is of the form π(r) = ajr+ bj in interval [rj−1, rj [, for j = 1, . . . k. The
slopes of a piecewise linear function are the different values of aj for j = 1, . . . k.

Gomory and Johnson [5] gave many examples of facets, and in all their examples the
facets are piecewise linear. This led them to formulate the following conjecture, which they
describe as “important and challenging”.

Conjecture 1.1 (Facet Conjecture). Every continuous facet for (1) is piecewise linear.

We show that the above conjecture is false by exhibiting a facet for (1) that is continuous
but not piecewise linear.

1.1 Literature overview

The definition of valid function we stated, which is the one given by Gomory and Johnson
in [3], differs from the one adopted later by the same two authors in [5], where they included
in the definition the further assumption that the function π be continuous. So a “valid
function” in [5] corresponds to a “continuous valid function” from [3] and the present paper.
Dey et al. [2] show that there are facets that are not continuous.

The definition of facet given in our paper is identical to the one given by Gomory and
Johnson in [5], with the caveat that in [5] valid functions are required to be continuous. Thus,
given a continuous valid function π, π would be a facet according to the definition in [5] if
and only if P (π∗) ⊃ P (π) implies π∗ = π for every continuous valid function π∗. For clarity,
we refer to a continuous valid function satisfying the latter property as a facet in the sense
of Gomory-Johnson. By definition, if a continuous valid function is a facet, it is also a facet
in the sense of Gomory-Johnson. Thus, the conjecture they state in [5] is actually that every
facet in the sense of Gomory-Johnson is piecewise linear. The above discussion shows that a
counterexample to Conjecture 1.1 also disproves the conjecture in [5].

In earlier work, Gomory and Johnson [3] emphasized extreme functions rather than facets.
A valid function π is extreme if it cannot be expressed as a convex combination of two
distinct valid functions. It follows from the definition that facets are extreme. Therefore
our counterexample also provides an extreme function that is continuous but not piecewise
linear. Gomory and Johnson [5] write in a footnote that the definition of facet “is different
from, although eventually equivalent to,” the definition of extreme function. The statement
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that extreme functions are facets appears to be quite nontrivial to prove, and to the best
of our knowledge there is no proof in the literature. We therefore cautiously treat extreme
functions and facets as distinct concepts, and leave their equivalence as an open question.

We obtain the counterexample to Conjecture 1.1 by exhibiting a sequence of piecewise
linear functions and then considering the pointwise limit of this sequence of functions. These
functions were discovered by Kianfar and Fathi [6] who show that they are facets for the
infinite group problem. They call them the n-step MIR (Mixed-Integer Rounding) functions
in their paper. Our treatment and analysis in this paper is different from theirs. The
emphasis in [6] was on deriving valid inequalities for MILPs which are generalizations of the
standard MIR inequalities. In this paper, we use this class of functions primarily to construct
a counterexample to Conjecture 1.1.

2 Preliminaries

A valid function π : [0, 1[ → R is minimal if there is no valid function π′ such that 1)
π′(a) ≤ π(a) for all a ∈ [0, 1[, and 2) the inequality is strict for at least one a. If π is a
minimal valid function, then π(r) ≤ 1 for every r ∈ [0, 1[, as follows immediately from the
fact that π is nonnegative.

When convenient, we will extend the domain of definition of the function π to the whole
real line R by making the function periodic: π(x) = π(x+ k) for any x ∈ [0, 1[ and k ∈ Z.

A function π : R → R is subadditive if for every a, b ∈ R

π(a+ b) ≤ π(a) + π(b).

Given f ∈]0, 1[, a function π : [0, 1[ → R is symmetric if for every a ∈ [0, 1[

π(a) + π(f − a) = 1.

Gomory and Johnson prove the following result in [3].

Theorem 2.1 (Minimality Theorem). Let π : [0, 1[ → R be such that π(0) = 0 and π(f) = 1.
A necessary and sufficient condition for π to be valid and minimal is that π is subadditive
and symmetric.

Any facet for (1) is minimal. Therefore if π is a facet for (1), then π is subadditive and
symmetric. The following two facts are well-known and will be useful in our arguments.

Fact 2.2. If π1 and π2 are subadditive, then π1 + π2 is subadditive.

Fact 2.3. Let π be a subadditive function and define π′(x) = απ(βx) for some constants
α > 0 and β. Then π′ is subadditive.

Proof. π′(a+ b) = απ(β(a + b)) ≤ α(π(βa) + π(βb)) = π′(a) + π′(b).

A function π′ defined as π′(x) = απ(βx) will be referred to as a scaling of π.

Let E(π) denote the set of all possible of inequalities π(u1)+π(u2) ≥ π(u1 +u2) that are
satisfied as equalities by π. Here u1 and u2 are any real numbers. The following theorem is
proved in Gomory and Johnson [5] and is used in this paper to prove that certain inequalities
are facets.
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Theorem 2.4 (Facet Theorem). Let π be a minimal valid function. If there is no minimal
valid function that satisfies the equalities in E(π) other than π itself, then π is a facet.

We remark that, even though Theorem 2.4 is proved in [5] under the assumptions that
valid functions are continuous, the continuity assumption is not needed in the proof, thus the
statement remains true even in the setting of the present paper.

In the paper we need the following lemma, which is a variant of the Interval Lemma
stated in Gomory and Johnson [5]. They prove the lemma under the assumption that the
function in the statement is continuous, whereas we only require the function to be bounded
one every interval. Other variants of the Interval Lemma that do not require the function to
be continuous have been given by Dey et al. [2]. The proof we give is in the same spirit of
the solution of Cauchy’s Equation (see for example Chapter 2 of Aczél [1]).

Lemma 2.5 (Interval Lemma). Let π : R → R be a function bounded on every bounded
interval. Given real numbers u1 < u2 and v1 < v2, let U = [u1, u2], V = [v1, v2], and
U + V = [u1 + v1, u2 + v2].
If π(u) + π(v) = π(u + v) for every u ∈ U and v ∈ V , then there exists c ∈ R such that
π(u) = π(u1) + c(u − u1) for every u ∈ U , π(v) = π(v1) + c(v − v1) for every v ∈ V ,
π(w) = π(u1 + v1) + c(w − u1 − v1) for every w ∈ U + V .

Proof. We first show the following.

Claim 1. Let u ∈ U , and let ε > 0 such that v1 + ε ∈ V . For every nonnegative integer p
such that u+ pε ∈ U , we have π(u+ pε)− π(u) = p(π(v1 + ε)− π(v1)).

For h = 1 . . . , p, by hypothesis π(u+hε)+π(v1) = π(u+hε+v1) = π(u+(h−1)ε)+π(v1+ε).
Thus π(u+hε)−π(u+(h−1)ε) = π(v1+ ε)−π(v1), for h = 1, . . . , p. By summing the above
p equations, we obtain π(u+ pε)− π(u) = p(π(v1 + ε)− π(v1)). This concludes the proof of
Claim 1.

Let ū, ū′ ∈ U such that ū− ū′ ∈ Q and ū > ū′. Define c := π(ū)−π(ū′)
ū−ū′ .

Claim 2. For every u, u′ ∈ U such that u− u′ ∈ Q, we have π(u)− π(u′) = c(u− u′).

We only need to show that, given u, u′ ∈ U such that u− u′ ∈ Q, we have π(u)− π(u′) =
c(u − u′). We may assume u > u′. Choose a positive rational ε such that ū − ū′ = p̄ε for
some integer p̄, u− u′ = pε for some integer p, and v1 + ε ∈ V . By Claim 1,

π(ū)− π(ū′) = p̄(π(v1 + ε)− π(v1)) and π(u)− π(u′) = p(π(v1 + ε)− π(v1)).

Dividing the last equality by u− u′ and the second to last by ū− ū′, we get

π(v1 + ε)− π(v1)

ε
=
π(ū)− π(ū′)

ū− ū′
=
π(u)− π(u′)

u− u′
= c.

Thus π(u)− π(u′) = c(u− u′). This concludes the proof of Claim 2.

Claim 3. For every u ∈ U , π(u) = π(u1) + c(u− u1).

Let δ(x) = π(x)− cx. We show that δ(u) = δ(u1) for all u ∈ U and this proves the claim.
Since π is bounded on every bounded interval, δ is bounded over U, V and U + V . Let M be
a number such that |δ(x)| ≤M for all x ∈ U ∪ V ∪ (U + V ).
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Suppose by contradiction that, for some u∗ ∈ U , δ(u∗) 6= δ(u1). Let N be a positive
integer such that |N(δ(u∗)− δ(u1))| > 2M .
By Claim 2, δ(u∗) = δ(u) for every u ∈ U such that u∗ − u is rational. Thus there exists ū
such that δ(ū) = δ(u∗), u1+N(ū−u1) ∈ U and v1+ ū−u1 ∈ V . Let ū−u1 = ε. By Claim 1,

δ(u1 +Nε)− δ(u1) = N(δ(v1 + ε)− δ(v1) = N(δ(u1 + ε)− δ(u1)) = N(δ(ū)− δ(u1))

Thus |δ(u1 + Nε) − δ(u1)| = |N(δ(ū) − δ(u1))| = |N(δ(u∗) − δ(u1))| > 2M , which implies
|δ(u1 +Nε)|+ |δ(u1)| > 2M , a contradiction. This concludes the proof of Claim 3.

By symmetry between U and V , Claim 3 implies that there exists some constant c′ such
that, for every v ∈ V , π(v) = π(v1) + c′(v − v1). We show c′ = c. Indeed, given ε > 0 such
that u1 + ε ∈ U and v1 + ε ∈ V , cε = π(u1 + ε)− π(u1) = π(v1 + ε)− π(v1) = c′ε, where the
second equality follows from Claim 1.
Therefore, for every v ∈ V , π(v) = π(v1) + cπ(v − v1). Finally, since π(u) + π(v) = π(u+ v)
for every u ∈ U and v ∈ V , for every w ∈ U + V , π(w) = π(u1 + v1) + c(w − u1 − v1).

The following theorem, due to Gomory and Johnson [5], gives a class of facets.

Theorem 2.6. Let π : [0, 1[ → R be a minimal valid function that is piecewise linear. If π
has only two distinct slopes, then π is a facet.

Again, we note that Theorem 2.6 is proved in [5] under the assumptions that valid func-
tions are continuous. However, in [5] the continuity assumption is used in the proof only when
applying the Interval Lemma. Since our version of the Interval Lemma (Lemma 2.5) applies
to any bounded function, and since minimal valid functions are bounded, Theorem 2.6 is
valid also in the setting of the present paper. Gomory and Johnson give in [4] a very similar
statement to the one of Theorem 2.6, namely that piecewise linear minimal valid functions
with only two distinct slopes are extreme.

3 The construction

We first define a sequence of valid functions ψi : [0, 1[ → R that are piecewise linear, and then
consider the limit ψ of this sequence. We will then show that ψ is a facet but not piecewise
linear.

Let 0 < α < 1. ψ0 is the triangular function given by

ψ0(x) =

{

1
α
x 0 ≤ x ≤ α

1−x
1−α

α ≤ x < 1.

Notice that the corresponding inequality
∑

r∈[0,1[ ψ0(r)sr ≥ 1 defines the Gomory mixed-
integer inequality if one views (1) as a relaxation of the simplex tableau of an integer program.

We first fix a nonincreasing sequence of positive real numbers ǫi, for i = 1, 2, 3, . . ., such
that ǫ1 ≤ 1− α and

+∞
∑

i=1

2i−1ǫi < α. (2)
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0 1

1

α
0 1

1

α
ǫ1 ǫ2ǫ1ǫ20 1

1

α

ψ0 ψ1 ψ2

Figure 1: First two steps in the construction of the limit function

For example, ǫi = α(14 )
i is such a sequence when 0 < α ≤ 4

5 . The upper bound of 4
5 for α

is implied by the fact that ǫ1 ≤ 1− α.

We construct ψi+1 from ψi by modifying each segment with positive slope in the graph
of ψi as follows.

For every maximal (with respect to set inclusion) interval [a, b] ⊆ [0, α] where ψi has
constant positive slope we replace the line segment from (a, ψi(a)) to (b, ψi(b)) with the
following three segments.

• The segment connecting (a, ψi(a)) and ( (a+b)−ǫi+1

2 , ψi(
a+b
2 ) + ǫi+1

2(1−α) ),

• The segment connecting ( (a+b)−ǫi+1

2 , ψi(
a+b
2 )+ ǫi+1

2(1−α) ) and ( (a+b)+ǫi+1

2 , ψi(
a+b
2 )− ǫi+1

2(1−α) ),

• The segment connecting (
(a+b)+ǫi+1

2 , ψi(
a+b
2 )−

ǫi+1

2(1−α)) and (b, ψi(b)).

Figure 1 shows the transformation of ψ0 to ψ1 and ψ1 to ψ2.
The function ψ which we show to be a facet but not piecewise linear is defined as the

limit of this sequence of functions, namely

ψ(x) = lim
i→∞

ψi(x) (3)

This limit is well defined when (2) holds, as shown in Section 5.
In the next section we show that each function ψi is well defined and is a facet. In

Section 5 we analyze the limit function ψ, showing that it is well defined, is a facet, but is
not piecewise linear.

As discussed in the Introduction, the sequence ψi defines a class of facets which was also
discovered independently by Kianfar and Fathi in [6] where they are referred to as n-step MIR
functions. Their constructions are a little more general than the class of facets defined by
the ψi’s. Our analysis in the next section is different from their treatment of these functions.
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4 Analysis of the function ψi

Fact 4.1. For i ≥ 0, ψi is a continuous function which is piecewise linear with 2i pieces with
positive slope and 2i pieces with negative slope. Furthermore:

1. There is one negative slope interval of length 1 − α and there are 2k−1 negative slope
intervals of length ǫk for k = 1, . . . , i;

2. The negative slope pieces have slope − 1
1−α

;

3. Each positive slope interval has length γi
2i
, where γi = α−

∑i
k=1 2

k−1ǫk;

4. The positive slope pieces have slope 1−γi
(1−α)γi

;

5. The function ψi is well-defined.

Proof. The fact that ψi is a continuous function which is piecewise linear with 2i pieces
with positive slope and 2i pieces with negative slope, and facts 1. and 2. are immediate by
construction.
Therefore the sum of the lengths of the negative slope intervals is 1−α+

∑i
k=1 2

k−1ǫk. Since
ψi contains 2

i positive slope intervals with the same length, this proves 3.
The total decrease of ψi in [0, 1] is −1

1−α
(1 − γi). Since ψi is continuous, piecewise linear, all

positive slope intervals have the same slope and ψi(0) = ψi(1) = 0, then a positive slope
interval has slope 1−γi

(1−α)γi
and this proves 4.

Finally, by (2), γi > 0 for every i ≥ 0, thus ψi is a well-defined function.

We now demonstrate that each function ψi is subadditive. Note that the function ψi

depends only upon the choice of parameters α, ǫ1, ǫ2, . . . , ǫi. It will sometimes be convenient
to denote the function ψi by ψ

α,ǫ1,ǫ2,...,ǫi
i in this section.

The key observation is the following lemma. Figure 2 illustrates this for the function
ψα,ǫ1,ǫ2
2 .

Lemma 4.2. For x ∈ [0, α+ǫ1] and i ≥ 1, ψα,ǫ1,ǫ2,...,ǫi
i (x) = λx+µψ

α−ǫ1
α+ǫ1

,
2ǫ2

α+ǫ1
,

2ǫ3
α+ǫ1

,...,
2ǫi

α+ǫ1

i−1 ( 2x
α+ǫ1

),
where

λ =
1− α− ǫ1

(α+ ǫ1)(1− α)
and µ =

ǫ1
(α+ ǫ1)(1− α)

.

Proof. Notice that λ is the slope of the line passing through the points (0, 0) and (α+ǫ1
2 , ψα,ǫ1

1 (α+ǫ1
2 )) =

(α+ǫ1
2 , 1−ǫ1

2 ).
For x ∈ [0, α + ǫ1], let φi(x) = ψα,ǫ1,ǫ2,...,ǫi

i (x) − λx. Notice that the graph of φ1 in the
interval [0, α + ǫ1] is comprised of two identical triangles, one with basis [0, α+ǫ1

2 ] and apex
(α−ǫ1

2 , µ) and the other with basis [α+ǫ1
2 , α+ǫ1] and apex (α, µ), where µ = ψ1(

α−ǫ1
2 )−λ(α−ǫ1

2 ).
Therefore, for x ∈ [0, 1[,

µ−1φ1

(

(α+ ǫ1)x

2

)

= ψ
α−ǫ1
α+ǫ1

0 (x)

thus φ1(x) = µψ
α−ǫ1
α+ǫ1

0 ( 2x
α+ǫ1

) because φ1(x) = φ1(x+ α+ǫ1
2 ) for every x ∈ [0, α+ǫ1

2 [.
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0 1

1

α

ǫ1

ψ2

ǫ1

A linear shift of a scaling of ψ1

Figure 2: Illustrating the proof of subadditivity of ψ2

Assume by induction that φi(x) = φi(x + α+ǫ1
2 ) for every x ∈ [0, α+ǫ1

2 [, and that, for

x ∈ [0, 1[, µ−1φi

(

(α+ǫ1)x
2

)

= ψ
α−ǫ1
α+ǫ1

,
2ǫ2

α+ǫ1
,...,

2ǫi
α+ǫ1

i−1 (x).

Notice that, by Fact 4.1, the slope of ψi in the intervals of positive slope is always greater
than λ, hence φi has positive slope exactly in the same intervals where ψi has positive slope.

Therefore, by construction of ψ
α,ǫ1,...,ǫi+1

i+1 , the function φi+1 is obtained from φi by replac-
ing each maximal positive slope segment [(a, φi(a)), (b, φi(b))] with:

- the segment connecting (a, φi(a)) and ( (a+b)−ǫi+1

2 , φi(
a+b
2 ) + ǫi+1

2(1−α) ),

- the segment connecting ( (a+b)−ǫi+1

2 , φi(
a+b
2 ) + ǫi+1

2(1−α)) and ( (a+b)+ǫi+1

2 , φi(
a+b
2 )− ǫi+1

2(1−α) ),

- the segment connecting ( (a+b)+ǫi+1

2 , φi(
a+b
2 )− ǫi+1

2(1−α)) and (b, φi(b)).

Thus, by induction, φi+1(x) = φi+1(x + α+ǫ1
2 ) for every x ∈ [0, α+ǫ1

2 [ and, for x ∈ [0, 1[,

we have that µ−1φi+1

(

(α+ǫ1)x
2

)

= ψ
α−ǫ1
α+ǫ1

,
2ǫ2

α+ǫ1
,...,

2ǫi
α+ǫ1

,
2ǫi+1

α+ǫ1

i (x). Therefore, for x ∈ [0, α + ǫ1[,

we have φi+1(x) = µψ
α−ǫ1
α+ǫ1

,
2ǫ2

α+ǫ1
,...,

2ǫi+1

α+ǫ1

i ( 2x
α+ǫ1

).

Remark 4.3. Given any 0 < α < 1 and any non-increasing sequence of positive real numbers
ǫi satisfying (2) and ǫ1 ≤ 1− α, let α′ = α−ǫ1

α+ǫ1
, ǫ′i =

2ǫi+1

α+ǫ1
, i ≥ 1. Then ǫ′1 ≤ 1− α′, {ǫ′i} is a

non-increasing sequence, and
∑+∞

i=1 2
i−1ǫ′i < α′.

We next prove that each ψi is a non-negative function.

Fact 4.4. ψα,ǫ1,...ǫi
i (x) ≥ 0 for all x, and for all parameters such that ǫ1 ≤ 1− α and ǫi is a

non-increasing sequence.

Proof. The proof is by induction on i. ψ0 is non-negative by definition.
Consider ψi+1. Clearly ψi+1(x) ≥ 0 for x ∈ [α + ǫ1, 1[, since ψi+1(x) = ψ0(x) in this

interval. Note that in Lemma 4.2, λ ≥ 0 because 1 − α ≥ ǫ1. So, when x ∈ [0, α + ǫ1]

8



Lemma 4.2 implies that ψi+1 is non-negative, because ψi is non-negative. Note that the
parameters for ψi also satisfy the hypothesis by Remark 4.3, so we can use the induction
hypothesis.

Lemma 4.5. Given any 0 < α < 1 and any nonincreasing sequence of positive real numbers
ǫi satisfying (2) and ǫ1 ≤ 1− α, the function ψα,ǫ1,ǫ2,...,ǫi

i is subadditive for all i.

Proof. The proof is by induction. ψα
0 is subadditive, since it is a valid and minimal Gomory

function. By the induction hypothesis, ψα,ǫ1,...,ǫk
k is subadditive and we wish to show this

implies that ψ
α,ǫ1,...,ǫk+1

k+1 is subadditive.

By Remark 4.3 and induction, the function ψ
α−ǫ1
α+ǫ1

,
2ǫ2

α+ǫ1
,

2ǫ3
α+ǫ1

,...,
2ǫk+1

α+ǫ1

k is subadditive.

We define the function ψ′
k(x) = µψ

α−ǫ1
α+ǫ1

,
2ǫ2

α+ǫ1
,

2ǫ3
α+ǫ1

,...,
2ǫk+1

α+ǫ1

k ( 2x
α+ǫ1

) where µ is defined in the

statement of Lemma 4.2. Note that ψ′
k has a period of α+ǫ1

2 and ψ′
k is subadditive by Fact 2.3.

In the remaining part of the proof, we will not need the extended notation ψα,ǫ1,ǫ2,...,ǫk
k

and we shall refer to this function as simply ψk. We now prove the subadditivity of ψk+1

assuming the subadditivity of ψk, i.e. ψk+1(a+ b) ≤ ψk+1(a)+ψk+1(b). Assume without loss
of generality that a ≤ b. We then have the following two cases.

Case 1 : b is in the range [0, α + ǫ1].
If a+ b ∈ [0, α+ ǫ1], ψk+1(a+ b) = ψ′

k(a+ b) + λ(a+ b) by Lemma 4.2. Now Fact 2.2 shows
that ψk+1 is subadditive.
If a+b is in the range [α+ǫ1, 1], then ψk+1(a+b) ≤ λ(a+b). On the other hand, ψk+1(a) ≥ λa
and ψk+1(b) ≥ λb, hence ψk+1(a+ b) ≤ ψk+1(a) + ψk+1(b).
If a+ b is greater than 1, then (a+ b)mod 1 < α+ ǫ1. Let x = α+ ǫ1 − b and y = 1−α− ǫ1.
So (a+ b)mod 1 = a− x− y. Then

ψk+1(a) + ψk+1(b) = ψ′
k(a) + ψ′

k(b) + λa+ λb
≥ ψ′

k(a+ b) + λa+ λb ((a+ b)mod 1 < α+ ǫ1)
= ψ′

k(a− x) + λa+ λb (a− x = (a+ b)− (α+ ǫ1))
(4)

because ψ′
k has period α+ ǫ1. Also,

ψk+1(a+ b) = ψk+1(a− x− y)
≤ ψk+1(a− x) + y

1−α
(All negative slopes in ψk+1 are − 1

1−α
)

= ψk+1(a− x) + λ(b+ x) (by definition of λ, x, y)
= ψ′

k(a− x) + λ(a− x) + λ(b+ x) (by Lemma 4.2 because 0 ≤ a− x ≤ α+ ǫ1)
= ψ′

k(a− x) + λa+ λb
(5)

From (4) and (5) we get that ψk+1(a) + ψk+1(b) ≥ ψk+1(a+ b).

Case 2 : b is in the range [α+ ǫ1, 1]
If a+b is also in the range [α+ǫ1, 1], then ψk+1(a+b) ≤ ψk+1(b). Therefore, ψk+1(a+b) ≤

ψk+1(a) + ψk+1(b).
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Now we consider the case where a+ b > 1. Since every line segment with negative slope
in the graph of ψk+1 has slope − 1

1−α
, then in the range [0, a] the line of slope − 1

1−α
passing

through (a, ψk+1(a)) lies above the graph of ψk+1. Formally, for every x ∈ [0, a],

−
1

1− α
x+ ψk+1(a) +

a

1− α
≥ ψk+1(x). (6)

Now

ψk+1(a) + ψk+1(b) = ψk+1(a) +
1− b

1− α
≥ −

a+ b− 1

1− α
+ ψk+1(a) +

a

1− α
≥ ψk+1(a+ b− 1)

where the first equality is because ψk+1(b) =
1

1−α
(1−b), and the last inequality follows by (6).

Therefore, we get ψk+1(a) + ψk+1(b) ≥ ψk+1(a+ b− 1) = ψk+1(a+ b).

Fact 4.6. ψi(x) is a symmetric function.

Proof. It is straightforward to show that ψ0 is symmetric. Notice that, by construction, the
function ψi+1 − ψi satisfies

(ψi+1 − ψi)(x) + (ψi+1 − ψi)(α− x) = 0.

Therefore, if ψi is symmetric, also ψi+1 is symmetric.

Theorem 4.7. For i ≥ 0, the function ψi is a facet.

Proof. Since ψi is a function that is piecewise linear, subadditive, symmetric and has only
two slopes, then, by Theorems 2.1 and 2.6, ψi is a facet.

5 Analysis of the limit function

Recall that ψ is the function defined by

ψ(x) = lim
i→∞

ψi(x)

for every x ∈ [0, 1[.

Fact 4.1 implies the following.

Fact 5.1. Let γ = α−
∑+∞

i=1 2
i−1ǫi. Then γ > 0 by (2) and γ < γi for all i, and the value si

of the positive slope in ψi is bounded above by 1−γ
(1−α)γ .

We can now show the following lemma.

Lemma 5.2. For any x, the sequence {ψi(x)}i=1,2,3,... is a Cauchy sequence, and therefore
it converges. Moreover, the sequence of functions {ψi}i=1,2,3,... converges uniformly to ψ.
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Proof. By Fact 4.1, there are 2i intervals where ψi has positive slope, each of length γi
2i
. Note

that |ψi(x)−ψi+1(x)| ≤ si+1
γi
2i

since the values of the two functions match at the ends of the
positive-slope intervals of ψi.

By Fact 5.1, si+1 ≤ 1−γ
(1−α)γ and we know that γi < α. So |ψi(x) − ψi+1(x)| ≤ C 1

2i
where

C = α 1−γ
(1−α)γ . Therefore, |ψn(x) − ψm(x)| ≤

∑m−1
i=n C 1

2i
if n < m. We can bound this

expression using

m−1
∑

i=n

C
1

2i
≤

∞
∑

i=n

C
1

2i
= C

1

2n−1

This implies that the sequence is Cauchy and hence convergent. Moreover, since the
bound on |ψn(x) − ψm(x)| does not depend on x, the above argument immediately implies
that the sequence of functions ψi converges uniformly to ψ.

This also implies the following corollary.

Corollary 5.3. The function ψ is continuous.

Proof. ψi is continuous for each i ∈ {1, 2, 3, . . .} by construction. Since this sequence of
functions converges uniformly to ψ, ψ is continuous [7].

For each integer i ≥ 0, define Si to be the subset of points of ]0, 1[ over which the function
ψi has negative slope. By Fact 4.1, Si is the union of 2i open intervals. Furthermore, by
construction Si ⊆ Si+1 for every i ∈ N. The set S ⊆ [0, 1] defined by

S = ∪∞
i=0Si,

is the set of points over which ψ has negative slope, and it is an open set since it is the union
of open intervals.

Fact 5.4. The set S is dense in [0, 1].

Proof. Let a ∈ [0, 1]. We need to show that, for any δ > 0, there exists b ∈ S such that
|a− b| < δ. Choose i such that 1

2i
< δ. If ψi has negative slope in a, then a ∈ S and we are

done. Thus a is in a positive slope interval of ψi. By Fact 4.1, such an interval has length
γi
2i
, hence there exists a point b in a negative slope interval of ψi, and thus in S, such that

|a− b| ≤ γi
2i
< δ, since γi < 1.

Fact 5.5. The function ψ is not piecewise linear.

Proof. Suppose by contradiction that ψ is piecewise linear. Then, for some ε > 0, the
restriction of ψ to ]0, ε[ is linear. By Fact 5.4, ]0, ε[ contains a point of S, therefore ψ
has constant negative slope in ]0, ε[. Since ψ(0) = 0, then ψ(x) < 0 for every x ∈]0, ε[, a
contradiction.

Lemma 5.6. The function ψ is a minimal valid function.

Proof. By Theorem 2.1, we only need to show that ψ is subadditive and symmetric. This
follows from pointwise convergence.
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We finally show that the function ψ is a facet.

Theorem 5.7. The function ψ is a facet for the problem (1).

Proof. We will use the Facet Theorem (Theorem 2.4). We show that if a minimal valid
function satisfies the set of equalities E(ψ), then it coincides with ψ everywhere.

Consider any minimal valid function φ that satisfies the set of equalities E(ψ). Therefore,
if ψ(u) + ψ(v) = ψ(u+ v), then φ(u) + φ(v) = φ(u+ v).

We first show the following.

Claim 1. φ(x) = ψ(x) for all x ∈ S

For any maximal interval ]a, b[ over which the graph of ψ has a negative slope, consider the
following intervals : U = [(a+b)/2, b], V = [1−((b−a)/2), 1] and therefore U+V = [a, b]. It is
easy to see that ψ(u)+ψ(v) = ψ(u+v) for u ∈ U , v ∈ V . This implies φ(u)+φ(v) = φ(u+v).
Now Lemma 2.5 (the Interval Lemma) implies that φ are straight lines over U, V and U +V .

We now use an inductive argument to prove that not only do the slopes of ψ and φ
coincide on intervals where the slope of ψ is negative, in fact ψ(x) = φ(x) for all x in these
intervals.

Every maximal segment s with negative slope in ψ also appears in ψi for some i (i.e.
s ⊆ Si for some i). Let index(s) be the least such i. We prove that ψ(x) = φ(x) for every s
with negative slope by induction on index(s). φ(α) = ψ(α) = 1 and φ(0) = ψ(0) = 0 since φ
is assumed to be a valid inequality. This implies that φ is the same as ψ in the range [α, 1].
This proves the base case of the induction.

By the induction hypothesis, we assume the claim is true for negative-slope segments s
with index(s) = k. Consider all negative-slope segments s with index(s) = k + 1. Amongst
these consider the segment sc which is closest to the origin. Let the midpoint of this segment
be m. We know that 2m is the start of a negative-slope segment s′ in ψ with index(s′) = k.
By construction, ψ(m) + ψ(m) = ψ(2m). So φ(m) + φ(m) = φ(2m). From the induction
hypothesis, we know that ψ(2m) = φ(2m) and so φ(m) = 1

2φ(2m) = 1
2ψ(2m) = ψ(m).

Now consider any other negative-slope segment s with index(s) = k + 1 and let its
midpoint bems. Note thatms+m is the start of a negative-slope segment s′ with index(s′) =
k. So

φ(ms +m) = ψ(ms +m) (7)

because of the inductive hypothesis. Note that ψ(ms +m) = ψ(ms)+ψ(m) by construction.
So, φ(ms + m) = φ(ms) + φ(m). Since we showed that φ(m) = ψ(m), (7) implies that
φ(ms) = ψ(ms). Since the values coincide at the midpoints of these segments and the slopes
of the segments are the same, φ(x) = ψ(x) for any x in the domain of these segments. This
concludes the proof of Claim 1.

We now use Claim 1 to show that

φ(x) ≤ ψ(x) for all x ∈ [0, 1[. (8)

By Lemma 5.6 ψ is a minimal valid function and φ is assumed to be minimal, thus symmetry
combined with (8) would imply that φ(x) = ψ(x) for all x ∈ [0, 1[.
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Claim 2. Let x̄ ∈]0, 1[. For every positive integer n, there exists yn, zn ∈ S such that
0 < zn <

1
n
and yn + zn = x̄.

Since S is open and, by Fact 5.4, it is dense in [0, 1], for any positive integer n there exists
an open interval I ⊆ S such that 0 < x̄− y < 1

n
for all y ∈ I. Let I =]u1, u2[ with u1 6= u2.

Also, since S is dense in [0, 1], there exists z ∈ S∩]x̄ − u2, x̄ − u1[. Let this z be zn and
yn = x̄− z ∈ I. Since I ⊆ S, we have that yn ∈ S. This concludes the proof of Claim 2.

Note that the sequence {yn} converges to x̄ and {zn} converges to 0. For every positive
integer n we have

φ(x̄) = φ(yn + zn)
≤ φ(yn) + φ(zn) (By subadditivity of φ)
= ψ(yn) + ψ(zn)

⇒ φ(x̄) ≤ limn→∞(ψ(yn) + ψ(zn))
= ψ(x̄) (By continuity of ψ)
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