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Abstract

We propose necessary and sufficient conditions for a sensing matrix to be “s-semigood” – to
allow for exact ℓ1-recovery of sparse signals with at most s nonzero entries under sign restrictions
on part of the entries. We express error bounds for imperfect ℓ1-recovery in terms of the
characteristics underlying these conditions. These characteristics, although difficult to evaluate,
lead to verifiable sufficient conditions for exact sparse ℓ1-recovery and thus efficiently computable
upper bounds on those s for which a given sensing matrix is s-semigood. We examine the
properties of proposed verifiable sufficient conditions, describe their limits of performance and
provide numerical examples comparing them with other verifiable conditions from the literature.

1 Introduction

Assessing a sparse signal from an observation has been one of the main research areas in Compressed
Sensing and sparse signal recovery. In practice, a priori information about the signal to be recovered
often exists and will be beneficial if taken into account in the recovery procedure. In this paper, we
suppose that the a priori information about a sparse signal w ∈ Rn amounts to the sign restrictions,
and is given as the subsets P+ and P− of {1, ..., n}, P+ ∩ P− = ∅, such that wi ≥ 0 for i ∈ P+

and wi ≤ 0 for i ∈ P−. Therefore we address the following recovery problem: given an observation
y ∈ Rm,

y = Aw + e, (1)

∗Research of the second and the third authors was supported by the Office of Naval Research grant #
N000140811104.
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where A ∈ Rm×n (in this context m < n) is a given matrix, e ∈ Rm is the observation error, assess
a sparse signal w ∈ Rn satisfying sign restrictions.

A celebrated solution to the problem is given by the ℓ1-recovery, which amounts to taking, as
an estimate of w, an optimal solution ŵ to the optimization problem

ŵ ∈ Argminx {‖x‖1 : ‖Ax− y‖ ≤ ε, xi ≥ 0 ∀i ∈ P+, xi ≤ 0 ∀i ∈ P−} (2)

(here ε is an a priori bound on the norm ‖e‖ of the observation error, ‖ · ‖ being some norm on
Rm). When there are no sign restrictions (i.e. P+ = P− = ∅), we arrive at the estimator playing
the central role in the Compressive Sensing theory. The central result here is that when signal w
is s-sparse (i.e., with at most s nonzero entries) and the matrix A possesses a certain well-defined
(although difficult to verify) property, then the ℓ1-recovery ŵ is close to w, provided the error bound
ε is small (for a comprehensive survey see [4] and references therein). Our goal here is to propose
efficiently verifiable sufficient conditions on A which allow for similar ‘consistency” results, with
emphasis on the case where sign restrictions are present.

To outline our results and to position them with respect to what is already known, let us start
with noiseless recovery (i.e., ε = 0 and y = Aw). Here we are interested to answer the question:

Whether A is such that whenever the true signal w in (1) is s-sparse and satisfies
the sign constraints wi ≥ 0, i ∈ P+, wi ≤ 0, i ∈ P−, the ℓ1-recovery

ŵ ∈ Argminx {‖x‖1 : Ax = y, xi ≥ 0 ∀i ∈ P+, xi ≤ 0 ∀i ∈ P−} (3)

recovers w exactly.

If the answer is positive, we say that A is s-semigood1.
The theory of Compressive Sensing provides several sufficient/necessary and sufficient conditions

for the ℓ1-recovery to be exact. For example, when no sign constraints are imposed on w, Donoho
and Huo [9] prove that A is s-good if for any set I ⊂ {1, ..., n} of cardinality ≤ s it holds

∑

i∈I

|zi| <
∑

i 6∈I

|zi| for any z ∈ KerA. (4)

This condition has been extensively investigated. Its necessity has been established in [8]; it has
been discussed in [16, 18] (under the name of strict s-balancedness), where its link to the geometric
necessary and sufficient condition of s-goodness from [11] has been discussed. In [6], this condition
has was also related to the sufficient condition (“Null Space Property”) for successful combinatorial
recovery.

The first characterization of s-semigoodness for the case when w is nonnegative (i.e. P+ =
{1, ..., n}) was proposed in the founding paper of Donoho and Tanner [10] in terms of neighboring
properties of the polytope AS, S being the standard simplex S = {x ∈ Rn : x ≥ 0,

∑
i xi ≤ 1}.

This paper contains also several important examples of m × n matrices which are ⌊m2 ⌋-semigood
(here ⌊a⌋ stands for the integer part of a) and demonstrates that various types of randomly gen-
erated matrices possess this property with overwhelming probability. Extending the results from
Donoho and Huo [9], an equivalent characterization of s-semigoodness has been provided in the

1We use the term “s-semigoodness” to comply with the terminology of the companion paper [14], where we used
the name s-goodness to indicate that ℓ1-recovery as in (3) without the sign restrictions is exact.
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nonnegative case by Zhang in [17, 18], where it is shown that A is s-semigood if and only if the
kernel of A, KerA, is strictly half s-balanced, meaning that for any set I ⊂ {1, ..., n} of cardinality
≤ s it holds

∑

i∈I

zi <
∑

i 6∈I

|zi| for any z ∈ KerA such that zi ≤ 0, for all i 6∈ I. (5)

It should be mentioned that the necessary and sufficient conditions for s-semigoodness from
(4), (5) and [10, 11] share a common drawback – they seemingly cannot be verified in a com-
putationally efficient way. To the best of our knowledge, the only efficiently verifiable conditions
for s-semigoodness offered by the existing Compressive Sensing theory are the sufficient conditions
based on the mutual incoherence

µ(A) = max
i 6=j

|AT
i Aj |

AT
i Ai

(6)

where Ai are columns of A (assumed to be nonzero). Clearly, the mutual incoherence can be easily
computed even for large matrices. Unfortunately, it turns out that that the estimates of “level of
(semi)goodness” of a sensing matrix based on mutual incoherence usually are too conservative, in
particular, they are provably dominated by the verifiable Linear Programming (LP) based sufficient
conditions for s-goodness proposed in the companion paper [14] and based on characterization of
s-goodness given in (4). Another verifiable sufficient condition for s-goodness, which uses the
Semidefinite Programming (SDP) relaxation, has been recently proposed in [7].

The contributions of this paper, which follow the approach developed in [14], are as follows.

1. Taking existing characterizations of (semi)goodness (4), (5) as a starting point, we develop in
Section 2, several equivalent necessary and sufficient conditions for s-semigoodness of a matrix
A in the case of general-type sign restrictions. Then in Section 3, we establish error bounds
for inexact ℓ1-recovery (noisy observation (1), imprecise optimization in (2), nearly-sparse
true signals); these bounds are expressed in the same terms as the necessary and sufficient
conditions for s-semigoodness from Section 2. These bounds can be seen as an extension to
the sign restricted case of bounds of Section 3 in [14] and as a special case of the bounds
provided in Theorem 4.1 of [18]. To the best of our knowledge, these bounds that incorporate
sign information of the signal are new.

2. The major goal of this paper is to use the LP relaxation techniques from [14] to derive novel
efficiently verifiable sufficient conditions for s-semigoodness. These conditions allow one to
build, in a computationally efficient fashion, lower bounds on the “level of s-semigoodness” of
a given matrix A, that is, on the largest s = s∗(A) for which A is s-semigood with respect to
given P±. Some properties of these verifiable conditions, same as limits of their performance,
are studied in Sections 4, 5, where we provide also a computationally efficient scheme for
upper bounding of s∗(A). In Section 6, we develop another efficiently computable lower
bound for s∗(A) by applying the SDP relaxation, similar to the approach developed in [7]
for the “unsigned” case P± = ∅. In Section 7 we report on numerical experiments aimed
at comparing the “power” of our LP-based sufficient conditions for s-semigoodness, their
“unsigned” prototypes from [14], and conditions based on mutual incoherence. We show that
incorporating the sign information can improve the bounds on the level of s-semigoodness,
and that the bounds based on LP relaxations clearly outperform the bounds based on mutual
incoherence.
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3. It turns out that our verifiable sufficient conditions for s-semigoodness can be expressed in
terms of specific properties of the linear recovery ŵlin = Y T y associated with an appropriate
m×n matrix Y . In Section 8, we propose and justify a new non-Euclidean Matching Pursuit
algorithm associated with this linear recovery.

2 Necessary and sufficient conditions for s-semigoodness

Let A be an m× n matrix, let s, 1 ≤ s ≤ m, be an integer, and let P+, P− and Pn be a partition
of {1, . . . , n} into three non-overlapping subsets. We say that A is s-semigood, if for every vector w
with at most s nonzero entries satisfying wi ≥ 0 for i ∈ P+, and wi ≤ 0 for i ∈ P−, w is the unique
optimal solution to the problem

Opt = min
z

{‖z‖1 : Az = Aw, zi ≥ 0 ∀i ∈ P+, zi ≤ 0 ∀i ∈ P−} . (7)

Our primary goals are to find necessary and sufficient and verifiable sufficient conditions for A
to be s-semigood.

Note that without loss of generality we may assume P− = ∅. Indeed, by replacing the partition
P+, P−, Pn with the partition P+ = P+ ∪ P−, P− = ∅, Pn = Pn and matrix A – with the matrix
A obtained from A by multiplying the columns with indices i ∈ P− by −1, s-semigoodness of A
with respect to the original sign restrictions given by P±, Pn is equivalent to the s-semigoodness
of the new matrix A with respect to the new sign restrictions. By this reason, we assume from

now on that P− = ∅. Besides this, we assume without loss of generality that P+ = {1, ..., p} and
Pn = {p + 1, ..., n} for some p. From now on, we denote by Pn the set of all signals satisfying the
sign restrictions:

Pn = {w ∈ Rn : wi ≥ 0 ∀i ∈ P+}.
Note that since P− = ∅, (7) simplifies to

Opt = min
z

{‖z‖1 : Az = Aw, zi ≥ 0 ∀i ∈ P+} . (8)

Let us fix a norm ‖ · ‖ on Rn, and let ‖ · ‖∗ be the conjugate norm.

Proposition 2.1 Let m,n, s and P+ be given. The following six conditions on an m × n matrix
A are equivalent to each other:

(i) A is s-semigood;
(ii) For every subset J of {1, ..., n} with Card(J) ≤ s, and any x ∈ KerA\{0} such that xi ≤ 0

for all i ∈ P+ \ J one has ∑

i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| <
∑

i 6∈J

|xi|.

(iii) There exists ξ ∈ (0, 1) such that for every subset J of {1, ..., n} with Card(J) ≤ s and any
x ∈ KerA such that xi ≤ 0 for all i ∈ P+ \ J one has

∑

i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ ξ
∑

i 6∈J

|xi|.
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(iv) There exist ξ ∈ (0, 1) and θ ∈ [1,∞) such that A satisfies the condition SGs(ξ, θ) as follows:
for every x ∈ KerA and every subset J of {1, ..., n} with Card(J) ≤ s, one has

∑

i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ ξ


 ∑

i∈Pn\J

|xi|+
∑

i∈P+\J

ψ(xi)


 , ψ(t) = max[−t, θt],

or, equivalently: for all x ∈ KerA, Θ(x) ≤ ξΨ(x) where

Θ(x) := max
J⊂{1,...,n},

Card(J)≤s

[∑
i∈J∩P+

max[(1− ξ)xi, (1 + θξ)xi] +
∑

i∈J∩Pn
(1 + ξ)|xi|

]

Ψ(x) :=
∑

i∈P+
max[−xi, θxi] +

∑
i∈Pn

|xi|
(9)

(v) There exist ξ ∈ (0, 1), θ ∈ [1,∞) and β ∈ [0,∞) such that A satisfies the condition
SGs,β(ξ, θ) as follows:
for every x ∈ Rn and every subset J of {1, ..., n} with Card(J) ≤ s, one has

∑

i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ β‖Ax‖ + ξ


 ∑

i∈Pn\J

|xi|+
∑

i∈P+\J

ψ(xi)


 , ψ(t) = max[−t, θt].

(vi) There exist ξ ∈ (0, 1) and β ∈ [0,∞) such that A satisfies the condition SGs,β(ξ) as follows:
for every J ⊂ {1, ..., n} with Card(J) ≤ s and any x ∈ Rn such that xi ≤ 0 for all i ∈ P+ \ J , one
has ∑

i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ β‖Ax‖ + ξ
∑

i 6∈J

|xi|.

We provide the proof of Proposition 2.1 in Appendix A.
As we have already mentioned in Introduction, when Pn = ∅ or P+ = ∅, the characterizations

(i)–(iv) of s-semigoodness are not completely new. For instance, when Pn = ∅, a necessary and
sufficient condition for s-semigoodness of A in the form (ii) has been established in [17] (compare
(ii) to the definition (5) of half s-balancedness of KerA). On the other hand, the equivalent
formulation of this characterization in terms of conditions SGs,β(ξ, θ) and SGs,β(ξ) seems to be
new. We are about to demonstrate that the latter two conditions allow to control the error of
ℓ1-recovery in the case when the vector w ∈ Rn is not s-sparse and the problem (8) is not solved
to exact optimality.

3 Error bounds for imperfect ℓ1-recovery

We have seen that the conditions provided in Proposition 2.1 are responsible for s-semigoodness of
a sensing matrix A, that is, for the exactness of ℓ1-recovery in the “ideal case” when the true signal
w is s-sparse, there is no observation error, and the optimization problem (8) is solved to exact
optimality. Below we demonstrate that these conditions control also the error of ℓ1-recovery in the
case when the signal w ∈ Pn is not exactly s-sparse, there is observation noise and problem (8) is
not solved to exact optimality. The corresponding error bound (cf [14, Proposition 3.1, Theorem
3.1]) is as follows:
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Proposition 3.1 Let w ∈ Pn be such that ‖w−ws‖1 ≤ µ, where ws is the vector obtained from w by
replacing all but the s largest in magnitude entries in w with zeros, let y be such that ‖Aw−y‖ ≤ ε,
and let, finally, x be an approximate solution to the optimization problem

Opt = min
z

{‖z‖1 : ‖Az − y‖ ≤ ε, zi ≥ 0 ∀i ∈ P+} . (10)

such that ‖x‖1 ≤ Opt + ν and ‖Ax− y‖ ≤ δ.

1. If A satisfies the condition SGs,β(ξ, θ) with some ξ ∈ (0, 1), β ∈ [0,∞) and θ ∈ [1,∞), then

‖x− w‖1 ≤ 1 + ξ

1− ξ
ν +

2(1 + ξθ)

1− ξ
µ+

2β

1− ξ
(ε+ δ). (11)

2. If A satisfies the condition SGs,β(ξ) with some ξ ∈ (0, 1), β ∈ [0,∞), then

‖x−w‖1 ≤ 1 + ξ

1− ξ
ν +

2(1 + βα)

1− ξ
µ+

2β

1− ξ
(ε+ δ). (12)

where α stands for the maximum of ‖ · ‖-norms of the columns in A.

For proof, see Appendix B.

4 Verifiable conditions for s-semigoodness

We are about to demonstrate that condition SGs,β(ξ, θ) from Proposition 2.1 leads to efficiently
computable lower and upper bounds on the level of s-semigoodness.

4.1 Verifiable sufficient conditions for s-semigoodness by Linear Programming

Let
Us = {u ∈ Rn : ‖u‖1 ≤ s, ‖u‖∞ ≤ 1} ,

so that Us is the convex hull of all {−1, 0, 1} vectors with at most s nonzero entries, and for x ∈ Rn,
let ‖x‖s,1 be the sum of the s largest magnitudes of entries in x, or, equivalently,

‖x‖s,1 = max
u∈Us

uTx.

Let

(Dθ[x])i =

{
[1 + θξ]max[xi, 0], i ∈ P+

(1 + ξ)|xi|, i 6∈ P+
, Φ(x) = ‖Dθ[x]‖s,1.

Suppose ξ ∈ [0, 1), θ ∈ [1,∞) and ρ, σ ∈ [0,∞) are given. Consider the following condition on an
m× n matrix A:

VSGs(ξ, θ, ρ, σ): There exist m × n matrix Y = [y1, ..., yn] and a vector v ∈ Rm such

that
Φs(−Ci[Y,A]) + (AT v)i ≤ ξ, 1 ≤ i ≤ n (a)
Φs(Ci[Y,A]) − (AT v)i ≤ ξ, i 6∈ P+ (b)
Φs(Ci[Y,A]) − (AT v)i ≤ θξ, i ∈ P+ (c)

‖yi‖∗ ≤ σ, 1 ≤ i ≤ n (d)
‖v‖∗ ≤ ρ (e)

(13)

where Ci[Y,A] is the i-th column of the matrix I − Y TA.
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Observe that this condition is verifiable, since (13) is a system of explicit convex constraints on
Y and v.

Proposition 4.1 Let A satisfy VSGs(ξ, θ, ρ, σ) with some ξ ∈ [0, 1), θ ∈ [1,∞), and ρ, σ ∈ [0,∞).
Then A satisfies SGs,β(ξ, θ) with

β = ρ+ σ max
k+,kn



k+(1 + θξ) + kn(1 + ξ) :

0 ≤ k+ ≤ Card(P+)
0 ≤ kn ≤ Card(Pn)
k+ + kn ≤ s



 ≤ ρ+ σs(1 + θξ). (14)

In particular, A is s-semigood.

For proof, see Appendix C.
Some comments are in order.

Origin of the condition SGs,β(ξ, θ). The condition VSGs(ξ, θ, ρ, σ) is yielded by a simple and
general construction, and we believe it makes sense to present this construction in its general form.
The essence of the matter is in building a verifiable sufficient condition for the validity of (9), see
Proposition 2.1.iv. By positive homogeneity of degree 1 of the convex functions Θ,Ψ participating
in (9), the latter condition is equivalent to

Opt := max
x

{Θ(x) : Ax = 0, x ∈ X} ≤ ξ, X = {x : Ψ(x) ≤ 1}. (15)

A verifiable sufficient condition for (15) is basically the same as an efficiently computable upper
bound for Opt; the sufficient condition for the validity of (15) associated with such a bound merely
states that the bound is ≤ ξ. Now observe that from the origin of Ψ (see (9)) it is clear that X has
a moderate number, N , of readily available extreme points x1, ..., xN (in the case of (9), N = 2n),
so that the only difficulty in computing Opt exactly comes from linear constraints Ax = 0. The
standard way to circumvent this difficulty and to efficiently bound Opt from above is to use the
Lagrange relaxation: for any v ∈ Rm,

Opt = max
x∈X

{
Θ(x) + vTAx : Ax = 0, x ∈ X

}

≤ max
x

{
Θ(x) + vTAx : x ∈ X

}
= max

1≤i≤N
[Θ(xi) + vTAxi],

and hence the efficiently computable Lagrange relaxation bound infv max1≤i≤N [Θ(xi) + vTAxi] is
an upper bound on Opt. Unfortunately, in our situation this bound can be very poor; e.g., when
X is symmetric with respect to the origin and Θ is even (as it happens in (9) when P+ = ∅), it is
immediately seen that the bound becomes the trivial bound Opt ≤ maxx∈X Θ(x) = maxi Θ(xi). In
order to strengthen the relaxation, we pass to the Fenchel-type representation of Θ

Θ(x) = sup
u

[
[Pu+ q]Tx−Θ∗(u)

]

with a proper convex function Θ∗; such a representation, even with Pu+ p ≡ u, exists whenever Θ
is a proper convex function (and can be easily found for Θ we are interested in). We now have for
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any Y ∈ Rm×n, v ∈ Rm,

Opt = max
x

{Θ(x) : Ax = 0, x ∈ X} = sup
x,u

{
[Pu+ p]Tx−Θ∗(u) : Ax = 0, x ∈ X

}

= sup
x,u

{
[Pu+ p]T [x− Y TAx] + vTAx−Θ∗(u) : Ax = 0, x ∈ X

}

≤ sup
x,u

{
[Pu+ p]T [x− Y TAx] + vTAx−Θ∗(u) : x ∈ X

}

= max
1≤i≤N

sup
u

{
[Pu+ p]T [xi − Y TAxi] + vTAxi −Θ∗(u)

}

︸ ︷︷ ︸
:=Θi(Y,v)

,

so that the condition

∃(Y ∈ Rm×n, v ∈ Rm) : Θi(Y, v) ≤ ξ, 1 ≤ i ≤ N, (16)

is sufficient for the validity of (15). Note that the functions Θi, by their origin, are convex, so that
the condition (16) is efficiently verifiable, provided that Θi(·) are efficiently computable.

In the case we are interested in, the extreme points of X are the 2n vectors −ei for 1 ≤ i ≤ n,
ei for i ∈ Pn, and θ−1ei for i ∈ P+, where ei is the i-th basic orth. Implementing the outlined
bounding scheme and adding additional restrictions (13.d,e) to get a control over β, we arrive at
(13). It should be stressed that the outlined scheme can be applied to bounding from above the
optimal value of a whatever problem of the form (15) with a convex polytope X and a proper convex
objective Θ; all what matters is that X is given as Conv{x1, ..., xN} and Θ is efficiently computable.
Note also that whenX is a polytope given by list ofM linear inequalities, we can efficiently represent
it as the intersection of M -dimensional standard simplex and an affine plane, so that the outlined
scheme is applicable to a whatever problem of maximizing an efficiently computable proper convex
function under a (finite) system of linear inequality and equality constraints.

Effect of increasing β, θ, ξ. The condition SGs,β(ξ, θ) appearing in Proposition 2.1.v clearly is
“monotone” in the parameters β, θ, ξ: whenever A satisfies this condition and β′ ≥ β, θ′ ≥ θ and
ξ′ ≥ ξ, A satisfies the condition SGs,β′(ξ′, θ′) as well. Proposition 4.1 offers a verifiable sufficient
condition for the validity of SGs,β(ξ, θ), specifically,

VSG∗
s,β(ξ, θ): ∃Y, v ρ, σ satisfying (13) and the relation ρ+ σs(1 + θξ) ≤ β.

A natural question is, whether this verifiable condition possesses the same monotonicity properties
as the “target” condition SGs,β(ξ, θ). In the case of the affirmative answer, in order to conclude
that A is s-semigood, we could check the validity of VSG∗

s,β(ξ, θ) for appropriately large values of
β, θ and a close to one value of ξ < 1; if the condition is satisfied, A is s-semigood, and error bounds
from Proposition 3.1 take place. Were the condition VSG∗

s,β(ξ, θ) “not monotone,” to justify the
s-semigoodness of A via this condition would require a problematic and time-consuming search in
the space of parameters β, θ, ξ. Fortunately, the condition VSG∗

s,β(ξ, θ) indeed is monotone:

Proposition 4.2 Let A satisfy VSG∗
s,β(ξ, θ), and let Y, v, σ, ρ be the corresponding certificate, that

is, ρ+ σs(1 + θξ) ≤ β and Y, v, σ, ρ satisfy (13). Then A satisfies VSG∗
s,β′(ξ′, θ′) whenever β′ ≥ β,

θ′ ≥ θ and ξ′ ∈ (ξ, 1), the certificate being (Y ′, v, σ, ρ), where the columns Y ′
i of Y ′ are multiplies

of the columns Yi of Y , namely,

Y ′
i = aiYi; [0, 1] ∋ ai =

{
(1 + ξθ)/(1 + ξ′θ′), i ∈ P+

(1 + ξ)/(1 + ξ′), i ∈ Pn

8



For proof, see Online Supplement F.1.

Relation to the sufficient condition for s-goodness from [14] and the Restricted Isome-
try Property. The verifiable sufficient condition for s-goodness from [14] requires from an m×n
matrix A the existence of γ < 1/2 and Y = [y1, ..., yn] ∈ Rm×n such that

‖Ci[Y,A]‖s,1 ≤ γ, for all 1 ≤ i ≤ n,

Setting θ = 1 and ξ = γ
1−γ (so that ξ < 1 and γ = ξ

1+ξ ) and taking into account that in the case of
θ = 1 we have Φs(z) ≤ (1 + ξ)‖z‖s,1, the latter condition implies that

Φs(±Ci[Y,A]) ≤ (1 + ξ)γ = ξ, ∀i,

that is, it implies the validity of VSGs(ξ, 1, 0, σ), provided that σ is large enough, specifically,
σ ≥ ‖yi‖∗ for all i.

As it was shown in the companion paper [14], when A satisfies the Restricted Isometry Property
RIP(δ, k) with parameters δ ∈ (0, 1), k > 1, the above sufficient condition for s-goodness is satisfied
with γ = 1/3 for s as large as O(1)(1−δ)

√
k; as a result, a RIP(δ, k)-matrix satisfiesVSGs(

1
2 , 1, 0, σ)

provided that σ is large enough and s ≤ O(1)(1 − δ)
√
k. Since for large m,n, m < n, typical

random matrices possess, with overwhelming probability, property RIP(12 , k) with k as large as
O(1)m/ ln(n/m), we see that our verifiable sufficient condition for s-semigoodness can certify the
latter property for s as large as O(1)

√
m/ ln(n/m), provided that the matrix in question is “good

enough”.

4.2 Upper bounding the level of s-semigoodness

Here we address the issue of bounding from above the maximal s = s∗(A) for which A is s-semigood.
The construction to follow is motivated by item (iv) of Proposition 2.1. A necessary and sufficient
condition for the s-semigoodness of A is the existence of ξ < 1 and θ ≥ 1 such that for all x ∈ KerA
and any set I of indices with Card(I) ≤ s

∑

i∈I∩P+

max[(1− ξ)xi, (1 + θξ)xi] +
∑

i∈I∩Pn

(1 + ξ)|xi| ≤ ξΨ(x)

where

Ψ(x) =
∑

i∈P+

max[−xi, θxi] +
∑

i∈Pn

|xi|, (17)

or, equivalently,

(!) for every x ∈ KerA and every vector v with at most s nonzero entries and nonzero
entries vi belonging to [1− ξ, 1+ ξθ] if i ∈ P+ and belonging to [−1− ξ, 1+ ξ] if i ∈ Pn,
one has

vTx ≤ ξΨ(x).
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Observe that the convex hull of the vectors v in question is exactly the set

Uξ,θ =

{
v ∈ Rn :

0 ≤ vi ≤ 1 + θξ, i ∈ P+, |vi| ≤ 1 + ξ, i ∈ Pn,∑
i∈P+

vi
1+θξ +

∑
i∈Pn

|vi|
1+ξ ≤ s

}
.

Recalling that P+ = {1, ..., p}, setting q = n− p = Card(Pn) and

U = {u ∈ Rn : ‖u‖1 ≤ s, ‖u‖∞ ≤ 1, ui ≥ 0 for i ∈ P+} (18)

we see that

Uξ,θ = V ξ,θU , where V ξ,θ =

[
(1 + ξθ)Ip 0

0 (1 + ξ)Iq

]
. (19)

The condition (!) now reads

max
v∈Uξ,θ

vTx ≤ ξΨ(x) for all x ∈ KerA.

Setting X = {x ∈ KerA : Ψ(x) ≤ 1} the latter condition, by homogeneity reason, is the same as

Opt = Opt(ξ, θ) := max
v,x

{
vTx : v ∈ Uξ,θ, x ∈ X

}
≤ ξ; (20)

recall that A is s-semigood if and only if there exist θ ≥ 1 and ξ < 1 such that (20) takes place.
We can use (20) in order to bound s∗(A) from above, as follows. In order to certify that

s∗(A) < s for a given s (s is the input to our algorithm), we fix a large θ and a close to one ξ < 1
(these are the parameters of the algorithm) and run the iterations

u0 ∈ Uξ,θ 7→ x1 ∈ Argmaxx∈Xu
T
0 x 7→ u1 ∈ Argmaxu∈Uξ,θuTx1 7→ ...

initiating them by a picked at random vertex u0 of Uξ,θ. Note that the quantities uTi xi, i = 1, 2, ...
clearly form a nondecreasing sequence of lower bounds on Opt. We terminate the outlined iterations
when the progress in the bounds – the difference uTi xi − uTi−1xi−1 – falls below a given small
threshold, and we run this process a predetermined number of times from different randomly
chosen starting points. As a result, we get a set of lower bounds on Opt of the form uTx, where u
is a vertex of Uξ,θ and x ∈ X . If our goal were merely to certify that (23) is not valid for given
s, θ, ξ, we could terminate this process at the first step, if any, when the current lower bound uTx
becomes > ξ (cf. [14, Section 4.1]). We, however, want to certify that s > s∗(A), or, which is
the same by Proposition 2.1.iv, that (23) fails to be true for all θ and all ξ < 1, and not only
for those θ, ξ we have selected for our test. To overcome this difficulty, we accompany every step
u 7→ x ∈ Argmaxx∈Xu

Tx by an additional computation as follows. In our process, u is an extreme
point of Uξ,θ, that is, a point with su ≤ s nonzero entries, let the set of indices of these entries be
I. Setting ǫi = sign(ui), we solve the following LP problem

max
x





∑

i∈I∩P+

xi +
∑

i∈I∩Pn

ǫixi :





xi ≤ 0, i ∈ P+\I
Ax = 0∑

i 6∈I |xi| ≤ 1



 .

If the optimal value in this problem is ≥ 1, we terminate our test and claim that A is not s-good;
by Proposition 2.1.ii, this indeed is the case.

As applied to a given input s, the outlined test either terminates with a valid claim “s > s∗(A)”,
or terminates with no conclusion at all, in which case we could pass to testing a larger value of s.

10



5 Limits of performance of LP-based sufficient conditions for s-

semigoodness

Unfortunately, the condition in question, same as its predecessor from [14], cannot certify s-semi-
goodness of an m×n matrix in the case of s > O(1)

√
m, unless the matrix is “nearly square”. The

precise statement is as follows (cf. [14, Proposition 4.2]):

Proposition 5.1 Let
n > 2(2

√
2m+ 1)2 (21)

and let ξ < 1, θ ≥ 1, σ ≥ 0, ρ ≥ 0, an integer s and an m × n matrix A be such that A satisfies
VSGs(ξ, θ, ρ, σ). Then

s ≤ 2
√
2m+ 1. (22)

For proof, see Appendix D.
The results from Proposition 5.1 show that our verifiable sufficient conditions can only certify

s-semigoodness of an m × n matrix at a suboptimal rate of s ≤ O(1)
√
m, unless the matrix is

“nearly square”. In fact this verifiable bound can still give a very poor impression on the true
largest s = s∗(A) for which A is s-semigood. An instructive example in this direction is as follows.
Consider the case of P+ = {1, ..., n}, let m = 2d+ 1 be odd, and let the rows of A be comprised of
the values of basic trigonometric polynomials

p0(φ) ≡ 1, p2i−1(φ) = cos(iφ), p2i(φ) = sin(iφ), 1 ≤ i ≤ d,

taken along the regular grid φj = 2πj/n, 0 ≤ j < n, so that Aij = pi(φj), 0 ≤ i < m, 0 ≤ j < n (we
enumerate rows and columns starting with 0 rather than with 1). It is well known [5, 10] that in
this case A is s-semigood for s = d. In contrast to this, when A is not “nearly square”, specifically,
when n > 4πd, A can satisfy the condition VSGs(ξ, θ, ρ, σ) only for s ≤ 2, no matter how large
θ, σ, ρ are and how close to 1 ξ < 1 is, see Online Supplement F.2.

6 Verifiable sufficient conditions for s-semigoodness by Semidefi-

nite Relaxation

Following d’Aspremont and El Ghaoui [7], we are about to derive another verifiable sufficient
condition for s-semigoodness, now - via semidefinite relaxation. The construction to follow is
motivated by the development in the beginning of Section 4.2, according to which s-semigoodness
of A is implied by the validity of (20) for θ > 1 and ξ < 1.

Let, as before,

X = {x ∈ KerA : Ψ(x) ≤ 1} and Uξ,θ = {V ξ,θu : u ∈ U},

where Ψ, U and V ξ,θ are defined in, respectively, (17), (18) and (19). The condition (20) is
equivalent to

max
u,x

{
(V ξ,θu)Tx : u ∈ U , x ∈ X

}
≤ ξ. (23)

11



Observe that for u ∈ U , x ∈ X the matrices U = uuT , P = uxT and X = xxT satisfy the relations

∃t ∈ Rn, V ∈ S2n,Λ ∈ S2n :

(a)

[
U P

P T X

]
� 0;

(b)





U =
[
In −In

]
︸ ︷︷ ︸

:=L

[
V 11 V 12

V 12 V 11

]

︸ ︷︷ ︸
:=V

LT ,

0 ≤ Vij ≤ 1
2 , V � 0, V 12 = [V 12]T , Tr(V ) ≤ s,∑

i,j Vij ≤ s2, V 12
ij = 0 ∀i, j ∈ P+;

(c) X =

[ −Ip 0 1
θ Ip 0

0 −Iq 0 Iq

]

︸ ︷︷ ︸
:=F

ΛF T , 0 ≤ Λij , Λ � 0,
∑

i,j Λij ≤ 1;

(d1)
∑

j∈P+
max[−Pij , θPij] +

∑
j∈Pn

|Pij | ≤ ti, ∀i ∈ P+,

(d2)
∑

j |Pij | ≤ ti, ∀i ∈ Pn,

(d3) ti ≤ 1 ∀i, ∑
i ti ≤ s;

(e) AXAT = 0.

(24)

Besides this,
uT (V ξ,θ)Tx = Tr(V ξ,θP T ).

Indeed, the latter relation, same as (24.a) and (24.e), is evident. To verify (24.b), let
u+ = max[u, 0], u− = max[−u, 0], where max is acting coordinate-wise. Then

U = L

[
u+u

T
+ u+u

T
−

u−u
T
+ u−u

T
−

]
LT = L

[
u−u

T
− u−u

T
+

u+u
T
− u+u

T
+

]
LT

= L

[
1
2 [u+u

T
+ + u−u

T
−]

1
2 [u+u

T
− + u−u

T
+]

1
2 [u−u

T
+ + u+u

T
−]

1
2 [u−u

T
− + u+u

T
+]

]

︸ ︷︷ ︸
V

LT ,

and the matrix V we have just defined clearly satisfies all requirements from (24.b). To
verify (24.c), observe that the extreme points of the set X+ = {x : Ψ(x) ≤ 1} ⊃ X are
the vectors ±ei, i > p, and −ei, θ−1ei, i ≤ p, so that x = Fλ with λ ∈ R2n

+ ,
∑

i λi ≤ 1;
setting Λ = λλT , we satisfy (24.c). To satisfy (24.d), it suffices to set ti = |ui| for all i
and to take into account that max[−Pij , θPij] ≥ |Pij | for all i, j due to θ ≥ 1, and that
ui ≥ 0 for i ∈ P+.

It follows that a sufficient condition for (23) is

Opt := max
X,U ∈ Sn, V,Λ ∈ S2n,
P ∈ Rn×n, t ∈ Rn

{
Tr(V ξ,θP T ) : (24) is satisfied

}
≤ ξ. (25)

The optimization problem in (25) clearly reduces to a semidefinite maximization program S; by
weak duality, the optimal value in the semidefinite dual D to S is ≥ Opt. It follows that the
efficiently verifiable condition

Opt(D) ≤ ξ

is a sufficient condition for s-semigoodness of A. Note that the above construction depends on
θ ≥ 1 and ξ < 1 as parameters.
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Remark. Consider the case of P+ = ∅, where X = {x ∈ Rn : ‖x‖1 ≤ 1, Ax = 0} ⊃ Z = {x ∈ Rn :
‖x‖1 ≤ 1}. In this case, the standard semidefinite relaxation of the set C∗ = Conv{xxT : x ∈ Z} is

C =



X : X � 0,

∑

i,j

|Xij | ≤ 1





(cf. [7]). Note that (24.c) uses another semidefinite relaxation of C∗, namely,

C′ =

{
X : ∃Λ ∈ S2n :

Λ � 0,Λi,j ≥ 0 ∀i, j, ∑i,j Λij ≤ 1

X = [In,−In]Λ[In,−In]T
}
.

It is immediately seen that C∗ ⊂ C′ ⊂ C; a surprising fact is that the second of these inclusions is
strict. Thus, the relaxation of C∗ given by C′ is less conservative than the standard relaxation given
by C. As observed by A. d’Aspremont (private communication), the relaxation C′ can be further
improved, namely, by replacing C′ with

C+ =



X : ∃Λ =

[
Λ11 Λ12

Λ21 Λ22

]
∈ S2n :

Λµν ∈ Rn×n, Λ � 0, Λi,j ≥ 0 ∀i, j∑
i,j Λij ≤ 1, Λ12

ii = 0, 1 ≤ i ≤ n

X = [In,−In]Λ[In,−In]T



 .

Note that this idea can be used to improve the semidefinite relaxation given by C as well. Specifi-
cally, the matrix V as built in the justification of (24) clearly satisfies (V 12)ii = 0, 1 ≤ i ≤ n, and
we can add these linear constraints on V to (24.b). Similarly, when representing a vector x ∈ X+

as Fλ with λ ∈ R2n
+ ,

∑
i λi ≤ 1, see the justification of (24), we clearly can ensure that λiλn+i = 0,

1 ≤ i ≤ n, that is, the matrix Λ we have built in fact satisfies Λi,n+i = Λn+i,i = 0, 1 ≤ i ≤ n, and
we can add these linear constraints on Λ to (24.c).

7 Numerical results

In order to compare the performance of the proposed bounds on the maximal s = s∗(A) for which
a given matrix, A, is s-semigood, with the bounds known from the literature, we present some
preliminary numerical results for relatively small sensing matrices. Our goal is to see if the sign
information on a signal allows to improve the bounds for s∗(A) as compared to the bounds on the
largest s = s0(A) for which A is s-good.

We generate four sets of random matrices, which are normalizations (all columns scaled to be
of ‖ · ‖2-norm 1) of (a) Rademacher matrices (i.i.d. entries taking values ±1 with probabilities
0.5), (b) Gaussian matrices (iid N (0, 1) entries), (c) Fourier matrices — m× n submatrices of the
matrix of n× n Discrete Fourier Transform, and (d) Hadamard matrices — m× n submatrices of
the n×n Hadamard matrix2; in the cases (c,d), the m rows comprising the submatrix were drawn
at random from the n rows of the “parent” matrix. For each type, we set the number of columns
to n = 256 and vary the number of rows, m = 0.5n, . . . , 0.95n.

We bound from below the value s0(A) using the bound s[µ] by mutual incoherence and the
bounds s[α1] and s[αs], computed through the LP-based verifiable sufficient conditions for s-
goodness (see [14, Section 6]).

2The Hadamard matrix Hd, d = 0, 1, 2, ..., has order 2d × 2d and is given by the recurrence H0 = 1, Hd+1 =
[Hd,Hd;Hd,−Hd].
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The lower bound on s∗(A) is computed by invoking conditionVSGs(ξ, θ, ρ, σ), where ρ = σ = ∞
and θ is set to once for ever fixed “large enough” value, and ξ is set to 0.9999, see section 4.1 and
Propositions 4.1, 4.2. Note that given a matrix Y , and setting v = 0, one can compute the largest s
satisfying (13) and thus ensuring the validity of VSGs(ξ, θ, ρ, σ). We first compute the best lower
bound s on s∗(A) given by the Y -matrices generated when bounding s0(A). Then we compute
the “improved” lower bound for s∗(A) as follows: we check whether the condition VSGs(ξ, θ, ρ, σ)
holds true for s = s+ 1, if it is the case, check whether this condition holds true for s = s+ 2, and
so on.

While the outlined lower bounds on s∗(A) and s0(A) are efficiently computable via LP (when
σ = ρ = ∞, the sufficient condition is easily checked by solving a Linear Programming program), the
sizes of the resulting LPs are rather large. For instance, when A ism×n, the LP associated with (13)
has a (2n2+2n+1)×((m+2n)(n+1)+2) constraint matrix (compared to (2n2+n)×(n(m+n+1)+1)
constraint matrices arising when computing lower bounds for s0(A)). For instance, for m = 230 and
n = 256, bounding s∗(A) results in an LP program of the size 131, 585× 190, 696, while computing
a lower bound on s0(A) requires solving an LP problem of size 131, 328 × 124, 673. In all the
computations, we used the state-of-the-art commercial LP solver mosekopt [1].

The upper bounds on s∗(A) and on s0(A) are computed by the techniques from Section 4.2 and
[14, Section 4.1].

The results of our experiments and related CPU times are presented in Table 1. The com-
putations were carried out on a single core of an 8-core Intel Xeon E5520@2.27GHz CPU Linux
workstation.

The results in Table 1 merit some comments. We observe that our LP-based efficiently com-
putable lower bounds on s0(A) and s∗(A) clearly outperform the bounds based on mutual incoher-
ence. We notice that for Fourier and Hadamard matrices, the lower bounds on s∗(A) and s0(A)
are nearly always the same, except for two Hadamard instances with m = 230 and m = 242. On
the other hand, for Gaussian and Rademacher matrices, as the number of rows m approaches the
number of columns n, the difference between the best certified lower bounds on s∗(A) and on s0(A)
increases (for the sizes we have considered, this difference attains 5 for the Gaussian matrix with
m = 242). While for Gaussian, Rademacher and Fourier matrices, the upper bounds on s∗(A)
become loose (they are twice or three times higher than the upper bounds on s0(A)), these bounds
become tighter in the case of Hadamard matrices. Further, for some matrices the lower and the up-
per bound on s0(A) match (e.g., the Hadamard matrix with m = 152), what allows to identify the
exact value of s0(A) . Moreover, we have observed samples of smaller random Hadamard matrices
(with n = 128) for which the lower bounds and upper bounds on both s∗(A) and s0(A) coincide,
which implies s∗(A) = s0(A) in these cases.

8 Matching pursuit algorithm

TheMatching Pursuit algorithm for signal recovery has been first introduced in [15] and is motivated
by the desire to provide a reduced complexity alternative to the ℓ1-recovery problem. Several
implementations of Matching Pursuit has been proposed in the Compressive Sensing literature
(see, e.g., the review [2]). All of them are based on successive Euclidean projections of the signal
and the corresponding performance results rely upon the bounds on mutual incoherence µ(A) of
the sensing matrix. We are about to show that the LP-based verifiable sufficient conditions from
the previous section can be used to construct a specific version of the Matching Pursuit algorithm
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Table 1: Comparison of efficiently computable bounds on s∗(A), n = 256

Fourier matrices
Unsigned Nonnegative CPU time (s)

LBs on s0(A) UB LB UB Unsigned Nonnegative
m s[µ] s[α1] s[αs] s̄ s[αs] s̄ s[α1] s[αs] s̄ s[αs] s̄

128 3 5 5 12 5 47 0.8 1054.0 146.0 3114.4 172.9
128 3 5 5 11 5 32 0.9 986.0 169.4 2891.5 311.5
152 2 6 6 11 6 49 1.1 898.5 252.5 3680.2 179.6
152 3 6 6 11 6 53 1.3 899.3 161.7 3836.7 183.5
178 2 6 6 12 6 47 1.1 866.5 228.6 3976.0 294.0
178 3 7 7 16 7 42 0.7 484.8 365.2 3216.8 416.9
204 4 8 8 17 8 67 1.0 828.5 235.4 3829.7 209.2
204 3 7 7 15 7 65 1.1 906.8 220.2 3914.4 197.4
230 4 10 10 21 10 70 1.1 1879.9 300.5 4287.6 384.6
230 4 9 9 20 9 65 1.0 856.6 286.5 4040.2 362.0
242 5 11 11 26 11 89 1.7 1425.1 290.5 6444.1 513.0
242 4 10 10 19 10 75 1.2 1920.6 265.3 4069.1 232.8

Hadamard matrices
Unsigned Nonnegative CPU time (s)

LBs on s0(A) UB LB UB Unsigned Nonnegative
m s[µ] s[α1] s[αs] s̄ s[αs] s̄ s[α1] s[αs] s̄ s[αs] s̄

128 3 5 5 7 5 8 0.2 1148.1 77.8 3007.0 68.5
128 2 5 5 7 5 7 0.3 1297.1 73.4 2894.4 116.8
152 3 7 7 7 7 58 0.3 1224.4 47.9 3997.0 186.8
152 4 7 7 13 7 58 0.2 1205.8 245.0 3962.6 310.4
178 4 9 9 15 9 70 0.2 1269.8 238.9 4828.2 212.0
178 4 9 9 15 9 19 0.3 1340.7 271.1 4923.3 342.8
204 4 12 12 15 12 16 0.5 2908.1 131.2 6409.9 385.4
204 5 12 12 15 12 16 0.4 2996.7 148.9 5507.9 253.9
230 8 18 18 31 19 31 0.3 1860.1 250.8 9046.7 331.1
230 8 18 18 31 18 39 0.4 2100.2 282.8 4081.3 396.8
242 12 26 26 31 27 31 0.3 2015.1 92.7 7478.2 176.2
242 12 26 26 31 26 31 0.3 1976.7 116.8 3597.9 412.0

Rademacher matrices
Unsigned Nonnegative CPU time (s)

LBs on s0(A) UB LB UB Unsigned Nonnegative
m s[µ] s[α1] s[αs] s̄ s[αs] s̄ s[α1] s[αs] s̄ s[αs] s̄

128 1 5 5 14 5 53 27.8 1253.1 171.6 3388.7 124.8
128 1 5 5 15 5 48 27.8 1361.5 191.1 3291.6 123.4
152 2 6 6 18 7 65 38.4 1426.3 322.7 9592.1 136.3
152 1 6 6 19 7 66 38.3 1183.0 218.9 9146.3 139.0
178 2 7 8 25 9 78 44.2 2819.1 258.9 8032.1 225.8
178 2 7 8 24 9 78 41.8 2481.7 256.0 8306.3 168.2
204 2 10 11 32 12 92 51.1 1434.2 291.8 9738.5 209.3
204 2 10 11 30 12 90 50.8 1316.6 448.3 9146.8 345.4
230 2 14 16 41 19 107 61.8 2422.9 302.7 15235.2 162.2
230 2 14 16 39 19 107 61.7 2466.2 624.0 15578.4 161.9
242 2 20 23 47 27 116 64.8 3929.4 269.2 19828.7 178.1
242 2 19 23 47 27 111 68.0 4242.4 277.8 20506.7 270.5

Gaussian matrices
Unsigned Nonnegative CPU time (s)

LBs on s0(A) UB LB UB Unsigned Nonnegative
m s[µ] s[α1] s[αs] s̄ s[αs] s̄ s[α1] s[αs] s̄ s[αs] s̄

128 1 5 5 14 5 44 28.2 852.1 172.4 3283.2 114.7
128 1 4 5 15 5 52 27.7 1913.9 177.7 3712.0 124.6
152 2 6 6 19 7 58 35.4 981.0 214.1 8433.5 392.8
152 1 6 6 19 7 58 38.9 1004.0 242.6 8231.7 373.3
178 2 7 8 24 9 79 43.0 2164.4 393.9 10294.7 368.2
178 2 7 8 25 9 77 47.6 2390.3 263.1 9548.8 374.0
204 2 10 11 32 12 88 58.0 1363.6 293.3 11496.7 274.1
204 2 10 11 32 12 91 51.7 1218.4 293.4 12497.2 529.5
230 2 14 17 41 19 102 70.4 3200.9 339.7 18771.3 431.6
230 2 14 16 39 19 106 61.5 2118.4 485.4 18959.5 435.0
242 2 19 22 46 27 113 73.6 2212.8 277.4 26874.6 269.2
242 2 20 23 47 27 112 65.3 2995.2 426.7 21308.7 191.7
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which we refer to as Non-Euclidean Matching Pursuit (NEMP) algorithm.
Suppose that we have in our disposal τ, τ± ≥ 0 and a matrix Y = [y1, ..., yn], such that

(a) −τ− ≤ [I − Y TA]ij ≤ τ+, ∀i ∈ P+, ∀j,
(b) −τ ≤ [I − Y TA]ij ≤ τ, ∀i ∈ Pn, ∀j,
(c) ‖yj‖∗ ≤ σ, ∀j.

(26)

Consider a signal w ∈ Pn such that ‖w − ws‖1 ≤ µ, where ws is the vector obtained from w
by replacing all but s largest magnitudes of entries in w with zeros, and let y and δ be such that
‖Aw − y‖ ≤ δ.

Suppose that
ρ = smax{τ+, τ−, τ} < 1. (27)

To simplify notation, we denote max[a, b] by a ∨ b. Consider the following iterative procedure:

Algorithm 1

1. Initialization: Set v(0) = 0, α0 =
‖Y T y‖s,1+sσδ+µ

1−ρ .

2. Step k, k = 1, 2, ...: Given v(k−1) ∈ Rn and αk−1 ≥ 0, compute

(a) u = Y T (y −Av(k−1)) and n segments

Si =

{
[ui − τ−αk−1 − σδ, ui + τ+αk−1 + σδ], i ∈ P+,
[ui − ταk−1 − σδ, ui + ταk−1 + σδ], i ∈ Pn.

Define ∆ ∈ Rn by setting

∆i =





[ui − τ−αk−1 − σδ]+, i ∈ P+,
[ui − ταk−1 − σδ]+, i ∈ Pn, ui ≥ 0,

−[|ui| − ταk−1 − σδ]+, i ∈ Pn, ui < 0

(here [a]+ = max[0, a]).

(b) Set v(k) = v(k−1) +∆ and

αk = s[2τ ∨ (τ− + τ+)]αk−1 + 2sσδ + µ. (28)

and loop to step k + 1.

3. The approximate solution found after k iterations is v(k).

Proposition 8.1 Assume that wi ≥ 0 for i ∈ P+, (27) takes place, and that ‖w − ws‖1 ≤ µ with
a known in advance value of µ. Then the approximate solution v(k) and the value αk after the k-th
step of Algorithm 1 satisfy

(ak) for all i v
(k)
i ∈ Conv{0;wi}, (bk) ‖w − v(k)‖1 ≤ αk.
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For proof, see Appendix E.
Let

λ = s[2τ ∨ (τ− + τ+)];

if λ < 1, then also ρ < 1, so that Proposition 8.1 holds true. Furthermore, by (28) the sequence αk

converges exponentially fast to the limit α∞ := 2sσδ+µ
1−λ :

αk = λk[α0 − α∞] + α∞.

Note that when P+ = ∅, we can set τ− = τ+ = 0 to obtain λ = 2sτ ; in the case of Pn = ∅, by
setting τ = 0, we have λ = s(τ− + τ+).

The bottom line is: if the optimal value in the convex program

Opt = min
τ,τ±,Y



s[2τ ∨ (τ− + τ+)] :

−τ− ≤ [I − Y TA]ij ≤ τ+, ∀i ∈ P+, ∀j
−τ ≤ [I − Y TA]ij ≤ τ, ∀i ∈ Pn, ∀j

τ, τ± ≥ 0





is < 1, the above procedure, as yielded by an optimal solution to the latter problem, possesses the
following properties:

1. All approximations v(k), k = 0, 1, ... of w are supported on the support of w;

2. For i ∈ P+, v
(k)
i ≥ 0 are nondecreasing in k and are ≤ wi for all k;

3. For i ∈ Pn,

• if wi > 0, then 0 ≤ v
(k)
i ≤ wi and v

(k)
i are nondecreasing in k;

• if wi < 0, then wi ≤ v
(k)
i ≤ 0 and v

(k)
i are nonincreasing in k;

4. As k grows, the upper bound αk on the ℓ1-error of approximating w by v(k) goes exponentially
fast to

α∞ =
2sσδ + µ

1−Opt
.

Let now ξ ∈ [0, 1), σ ≥ 0 and θ ≥ 1 and suppose that an m× n matrix A satisfies the following
condition:

VSGs(ξ, σ, θ): There exists m× n matrix Y = [y1, ..., yn] such that ‖yi‖∗ ≤ σ for all i
and

− ξ
(1+ξ)s ≤ [I − Y TA]ij ≤ ξ

(1+ξ)s ∀i 6∈ P+, ∀j,
− ξ

(1+ξθ)s ≤ [I − Y TA]ij ≤ ξ
(1+ξθ)s ∀i ∈ P+, ∀j 6∈ P+,

− ξ
(1+ξθ)s ≤ [I − Y TA]ij ≤ ξθ

(1+ξθ)s ∀i, j ∈ P+.

(29)

Observe that (29) is a system of convex inequalities in Y . Further, VSGs(ξ, σ, θ) certainly implies
VSGs(ξ, θ, 0, σ), and is therefore sufficient condition for s-semigoodness of the matrix A.

When VSGs(ξ, σ, θ) is satisfied with ξ ∈ (0, 1) and θ > 1, by taking

τ− =
ξ

(1 + ξθ)s
, τ+ =

ξθ

(1 + ξθ)s
and τ =

ξ

(1 + ξ)s
,
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we obtain

λ = max

(
ξ + ξθ

1 + ξθ
,

2ξ

1 + ξ

)
< 1. (30)

Combining this condition with Proposition 8.1 gives:

Corollary 8.1 Suppose that A satisfies the condition VSGs(ξ, σ, θ) with certain ξ ∈ (0, 1), σ ≥ 0
and θ ≥ 1. Let w ∈ Pn be a vector with ‖w − ws‖1 ≤ µ where ws is the vector obtained from w by
replacing all but s largest in magnitude entries in w with zeros, and let y be such that ‖Aw−y‖ ≤ δ.

Then the approximate solution v(t) found by Algorithm 1 after t iterations satisfies v
(t)
i ≥ 0 for all

i ∈ P+ and

‖w − v(t)‖1 ≤
2sσδ + µ

1− λ
+ λt

[‖Y T y‖s,1 + sσδ + µ

1− ρ
− 2sσδ + µ

1− λ

]
,

where λ is given by (30) and ρ = ξθ
1+ξθ .

It should be noted the NEMP algorithm has several drawbacks as compared with the ℓ1-recovery.
First, the pursuit algorithm requires a priori knowledge of several parameters (σ, Y , τ , τ−, τ+, s
and µ). Second, the value (1−λ)−1(2sσδ+µ) is a conservative upper bound on the error of the ℓ1-
recovery, but the error bound in Corollary 8.1 is exact. On the other hand, the NEMP algorithm can
be an interesting option if the ℓ1-recovery is to be used repeatedly on the observations obtained with
the same sensing matrix A; the numerical complexity of the pursuit algorithm for a given matrix A
may only be a fraction of that of the ℓ1-recovery, especially when used on high-dimensional data.

Our concluding remark is on the condition

µ(A)

1 + µ(A)
<

1

2s
, (31)

where µ(A) is the mutual incoherence of A (see (6)). This condition is usually used in order to
establish convergence results for the Matching Pursuit algorithms (see, e.g. [12, 13, 3]). As it
is immediately seen, when µ(A) is well defined (i.e., all columns in A are nonzero), the matrix
Y = [y1, ..., yn] with the columns

yi =
Ai

(1 + µ(A))AT
i Ai

satisfies for all i = 1, ...,m and j = 1, ..., n the relations

|[I − Y TA]ij | ≤
µ(A)

1 + µ(A)
.

In the case of (31), setting θ = 1 and specifying ξ from the relation ξ
1+ξ = sµ(A)

1+µ(A) , we get 0 <

ξ < 1 and meet all inequalities in (29). It follows that Y certifies the validity of the condition

VSGs(ξ, σ, 1) with the outlined ξ and with all σ ≥ max
i

‖Ai‖∗
(1+µ(A))‖Ai‖22

, and thus the above Y can

be readily used in Matching Pursuit. Note that in the situation in question Corollary 8.1 recovers
some results from [12, 13, 3].
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A Proof of Proposition 2.1

(i)⇒(ii): Let A be s-semigood, and let, in contrast to what is stated by (ii), J be a subset of
{1, ..., n} with Card(J) ≤ s and x ∈ KerA\{0} be such that xi ≤ 0 for all i ∈ P+ \ J and

∑

i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≥
∑

i 6∈J

|xi|.

Let I = (J ∩Pn)∪ {i ∈ J ∩P+ : xi ≥ 0} so that I ⊆ J . From the construction of I, we have xi ≤ 0
for i ∈ J \ I implying that xi ≤ 0 for i ∈ P+ \ I. Further,

∑

i∈I∩P+

xi +
∑

i∈I∩Pn

|xi| =
∑

i∈J∩P+

xi −
∑

i∈J\I

xi +
∑

i∈J∩Pn

|xi|

≥
∑

i 6∈J

|xi| −
∑

i∈J\I

xi =
∑

i 6∈J

|xi|+
∑

i∈J\I

|xi| =
∑

i 6∈I

|xi|.

Hence I also violates the condition in (ii). Setting ui = xi when i ∈ I and ui = 0 otherwise and
setting v = u − x, we have ui ≥ 0 for any i ∈ I ∩ P+, ui = 0 for any i ∈ P+ \ I, and vi ≥ 0 for
i ∈ P+ \ I, vi = 0 for i ∈ I ∩P+ and

∑
i |ui| ≥

∑
i |vi|. In addition, Au = Av due to Ax = 0, and u

is s-sparse; finally, u 6= v due to x 6= 0. We see that the s-sparse vector u ∈ Pn is not the unique
solution to

min
z

{
∑

i

|zi| : Az = Au, zi ≥ 0 ∀i ∈ P+

}
,

which is a desired contradiction.
(ii)⇒(iii): Let A satisfy (ii). Let J be the family of all subsets J of {1, ..., n} of cardinality

≤ s. For J ∈ J , let

XJ = {x ∈ KerA : ‖x‖1 = 1, xi ≤ 0 ∀i ∈ P+ \ J}.

Assuming that XJ 6= ∅, let x ∈ XJ . By (ii), we have

∑

i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| <
∑

i 6∈J

|xi|.

We claim that
∑

i 6∈J |xi| > 0.
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Indeed, otherwise xi 6= 0 implies that i ∈ J . Let I+ and I− be the subsets of J such
that xi > 0 for i ∈ I− and xi < 0 for i ∈ I+. At least one of these sets is nonempty
due to x 6= 0. W.l.o.g. we can assume that

∑
i∈I+

xi ≥
∑

i∈I−
|xi| (otherwise we could

replace x with −x and swap I+ and I−). Applying (ii) to x and to I+ in the role of J ,
we should have

∑

i∈I+∩P+

xi +
∑

i∈I+∩Pn

|xi| =
∑

i∈I+

xi <
∑

i 6∈I+

|xi| =
∑

i∈I−

|xi|,

which is not the case. This contradiction shows that
∑

i 6∈J |xi| > 0 whenever x ∈ XJ .

From our claim it follows that the function
∑

i∈J∩P+
xi +

∑
i∈J∩Pn

|xi|∑
i 6∈J |xi|

is continuous on XJ and is < 1 at every point of this set. Since XJ is compact, we conclude that
when J ∈ J is such that XJ 6= ∅, there exists ξJ < 1 such that

∑

i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ ξJ
∑

i 6∈J

|xi| for any x ∈ XJ .

Setting ξ = max
J∈J :XJ 6=∅

ξJ , we clearly ensure the validity of (iii). The implication (ii)⇒(iii) is proved.

(iii)⇒(i): Let (iii) take place; let us prove that A is s-semigood. Thus, let u with ui ≥ 0 for
all i ∈ P+ be s-sparse; we should prove that u is the unique optimal solution to the problem

min
z

{
∑

i

|zi| : Az = Au, zi ≥ 0 ∀i ∈ P+

}
.

Assume, on the contrary to what should be proved, that the latter problem has an optimal solution
v different from u, and let x = u − v, so that x ∈ KerA and x 6= 0. Setting I = {i : ui 6= 0}, we
have Card(I) ≤ s and xi ≤ 0 when i ∈ P+ \ I, whence by (iii)

∑

i∈I∩P+

xi +
∑

i∈I∩Pn

|xi| ≤ ξ
∑

i 6∈I

|xi| = ξ
∑

i 6∈I

|vi|,

whence also ∑

i∈I∩P+

ui +
∑

i∈I∩Pn

|ui|
︸ ︷︷ ︸

=
∑

i∈I |ui|

≤
∑

i∈I∩P+

vi +
∑

i∈I∩Pn

|vi|
︸ ︷︷ ︸

=
∑

i∈I |vi|

+ξ
∑

i 6∈I

|vi|. (32)

Since
∑

i |vi| ≤
∑

i |ui| =
∑

i∈I |ui| due to the origin of v, (32) implies that
∑

i 6∈I |vi| = 0, that is,
both u and v are supported on I, so that x is supported on I as well. Now let I+ = {i ∈ I ∩ P+ :
xi ≥ 0}, I− = {i ∈ I ∩ P+ : xi < 0} and In = I ∩ Pn. Replacing, if necessary, x with −x and
swapping I+ and I−, we can assume that

∑
i∈I+

xi =
∑

i∈I+
|xi| ≥

∑
i∈I−

|xi|. Applying (iii) to x
and to I+ ∪ In in the role of J , we get

∑

i∈I+

xi +
∑

i∈In

|xi| ≤ ξ
∑

i∈I−

|xi|,
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thereby
∑

i∈I+
xi =

∑
i∈In

|xi| =
∑

i∈I−
|xi| = 0 due to

∑
i∈I+

xi ≥
∑

i∈I−
|xi|. Thus, x = 0, which

is a desired contradiction.
We have proved that the properties (i) – (iii) of A are equivalent to each other.
(iii)⇔(iv): The implication (iv)⇒(iii) is evident. Let us prove the inverse implication. Thus,

let A satisfy (iii) (and thus – (i) – (ii) as well), and let ξ′ ∈ (ξ, 1). Let, as above, J be the family
of all subsets J of {1, ..., n} of cardinality ≤ s. Let X = {x ∈ KerA : ‖x‖1 = 1}, and let J ∈ J .
Let x ∈ X. We claim that there exists a neighborhood Ux of x in X and θJ,x ∈ [1,∞) such that
for any u ∈ Ux and θ ≥ θJ,x it holds

∑

i∈J∩P+

ui +
∑

i∈J∩Pn

|ui| ≤ ξ′




∑

i∈Pn\J

|ui|+
∑

i∈P+\J

max[−ui, θui]


 . (33)

The claim is clearly true when there exists i ∈ P+ \ J such that xi > 0. Now assume
that xi ≤ 0 for i ∈ P+ \ J . Then

∑
i 6∈J |xi| > 0. Indeed, otherwise xi = 0 for all

i 6∈ J , which combines with s-semigoodness of A and the relation Ax = 0 to imply
that x = 0 (since assuming x 6= 0, we have x = u − v with s-sparse u ≥ 0, v ≥ 0 with
non-overlapping supports, and Au = Av due to Ax = 0, which of course contradicts
the s-semigoodness of A), while x definitely is nonzero (since ‖x‖1 = 1 due to x ∈ X).
Now, since x ∈ KerA and xi ≤ 0, i ∈ P+ \ J , we have

∑

i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ ξ
∑

i 6∈J

|xi| < ξ′
∑

i 6∈J

|xi|

where the first inequality is due to (iii), and the second – due to
∑

i 6∈J |xi| > 0. The
concluding strict inequality clearly implies the validity of (33) with θ = 1, provided that
Ux is a small enough neighborhood of x. Thus, our claim is true.

From the validity of our claim, extracting from the covering {Ux}x∈X of the compact set X a finite
subcovering, we conclude that there exists θJ ∈ [1,∞) such that

∀(x ∈ X, θ ≥ θJ) :
∑

i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤ ξ′


 ∑

i∈Pn\J

|xi|+
∑

i∈P+\J

max[−xi, θxi]


 .

Setting θ = maxJ∈J θJ , we see that A satisfies SGs(ξ
′, θ).

(iv)⇒(v): Let A satisfy SGs(ξ, θ) for certain ξ ∈ (0, 1), θ ∈ [1,∞) and let ‖ · ‖ be a norm on
Rm. Let, further, P be the orthogonal projector of Rn on KerA. Then clearly with a properly
chosen C one has

‖Px− x‖1 ≤ C‖Ax‖
for any x ∈ Rn. Now let J be a subset of {1, ..., n} of cardinality ≤ s, x ∈ Rn and u = Px. We
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have
∑

i∈J∩P+

xi +
∑

i∈J∩Pn

|xi| ≤
∑

i∈J∩P+

ui +
∑

i∈J∩Pn

|ui|+
∑

i∈J

|ui − xi|

≤ ξ


 ∑

i∈Pn\J

|ui|+
∑

i∈P+\J

max[−ui, θui]


+

∑

i∈J

|ui − xi|

≤ ξ


 ∑

i∈Pn\J

[|xi|+ |ui − xi|] +
∑

i∈P+\J

[max[−xi, θxi] + θ|xi − ui|]


 +

∑

i∈J

|ui − xi|

≤ ξ


 ∑

i∈Pn\J

|xi|+
∑

i∈P+\J

max[−xi, θxi]


+max[1, θξ]‖x− u‖1

≤ ξ


 ∑

i∈Pn\J

|xi|+
∑

i∈P+\J

max[−xi, θxi]


+max[1, θξ]C‖Ax‖,

so that A satisfies SGs,β(ξ, θ) with β = max(1, θξ)C. The implication (iv)⇒(v) is proved.
(v)⇒(vi)⇒(iii): These implications are evident. �

B Proof of Proposition 3.1

Let I be the support of ws, Ī be the complement of I in {1, ..., n}, and let z = w − x. We denote
I+ = {i ∈ I : zi ≥ 0}, Ī+ = {i ∈ Ī : zi ≥ 0}, and I− = I \ I+, Ī− = Ī \ Ī+. Observe that w is a
feasible solution to (10), so that

‖x‖1 ≤ ‖w‖1 + ν. (34)

Obviously, |xi| − |wi| ≥ −|zi| and |xi| − |wi| ≥ |zi| − 2|wi|. Now using xi, wi ≥ 0 ∀i ∈ P+, and
zi ≥ 0 ∀i ∈ I+, we get

ν ≥
∑

i

[|xi| − |wi|] [by (34)]

≥
∑

i∈I+∩P+

(xi − wi)︸ ︷︷ ︸
=−zi

+
∑

i∈I−∩P+

(xi − wi)︸ ︷︷ ︸
=−zi=|zi|

+
∑

i∈Ī−∩P+

(xi −wi)︸ ︷︷ ︸
=−zi=|zi|

+
∑

i∈Ī+∩P+

(xi − wi)︸ ︷︷ ︸
=−zi≥−wi

+
∑

i∈Pn

(|xi| − |wi|)

≥ −
∑

i∈I+∩P+

zi +
∑

i∈I−∩P+

|zi|+
∑

i∈Ī−∩P+

|zi| −
∑

i∈Ī+∩P+

wi

−
∑

i∈I∩Pn

|zi|+
∑

i∈Ī∩Pn

(|zi| − 2|wi|),

or, equivalently,
∑

i∈I−∩P+
|zi|+

∑
i∈Ī−∩P+

|zi|+
∑

i∈Ī∩Pn
|zi|

≤ ν +
∑

i∈I+∩P+
zi +

∑
i∈I∩Pn

|zi|+
∑

i∈Ī+∩P+
wi + 2

∑
i∈Ī∩Pn

|wi|. (35)

23



On the other hand, we have

‖Az‖ = ‖Aw −Ax‖ ≤ ‖Aw − y‖+ ‖Ax− y‖ ≤ ε+ δ. (36)

Then by condition SGs,β(ξ, θ) with (I+ ∩ P+) ∪ (I ∩ Pn) in the role of J , we get

∑

i∈I+∩P+

zi +
∑

i∈I∩Pn

|zi|
︸ ︷︷ ︸

:=κ

≤ β‖Az‖ + ξ
[∑

i∈Ī∩Pn
|zi|+

∑
i∈(Ī∩P+)∪(I−∩P+) ψ(zi)

]

κ ≤ β‖Az‖ + ξ

[∑
i∈Ī∩Pn

|zi|+
∑

i∈I−∩P+

|zi|+
∑

i∈Ī−∩P+

|zi|+ θ
∑

i∈Ī+∩P+

zi
︸ ︷︷ ︸

:=τ(θ)

] (37)

Let us derive a bound on τ(θ). Now (35) implies, independently of whether SGs,β(ξ, θ) is or is not
true, the first inequality in the following chain:

τ(θ) ≤ ν +
∑

i∈I+∩P+

zi +
∑

i∈I∩Pn

|zi|+
∑

i∈Ī+∩P+

wi + 2
∑

i∈Ī∩Pn

|wi|+ θ
∑

i∈Ī+∩P+

zi

≤ ν + κ+ (1 + θ)
∑

i∈Ī+∩P+

wi + 2
∑

i∈Ī∩Pn

|wi| [since wi ≥ zi for i ∈ P+]

≤ ν + κ+ (1 + θ)µ, [since θ ≥ 1 and
∑

i∈Ī |wi| ≤ µ], (38)

and, in particular,

τ(1) =
∑

i∈I−∩P+

|zi|+
∑

i∈Ī

|zi| ≤ ν + κ+ 2µ. (39)

Combining (36), (37) and (38), we obtain

κ ≤ β(ε+ δ) + ξ [ν + κ+ (1 + θ)µ] ,

and thereby,

κ =
∑

i∈I+∩P+

zi +
∑

i∈I∩Pn

|zi| ≤
β(ε+ δ) + ξ(ν + (θ + 1)µ)

1− ξ
.

Summing up the latter inequality and (39), we obtain

‖z‖1 =
∑

i∈I∩Pn

|zi|+
∑

i∈I+∩P+

zi +


 ∑

i∈I−∩P+

|zi|+
∑

i∈Ī

|zi|


 ≤ ν + 2µ+ 2κ

≤ ν + 2µ +
2β(ε+ δ) + 2ξ(ν + (θ + 1)µ)

1− ξ
=

1 + ξ

1− ξ
ν +

2(1 + ξθ)

1− ξ
µ+

2β

1− ξ
(ε+ δ),

which is (11).
To show (12) observe that increasing ε to ε′ = ε + αµ, we can think that the true signal

underlying the observation y is ws rather than w; note that (34) implies that

‖x‖1 ≤ ‖ws‖1 + ν ′, ν ′ = ν + µ. (40)
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We can now repeat the reasoning which follows (34), with (40) in the role of (34), ws in the role
of w, ε′ in the role of ε and 0 in the role of µ, thus arriving at the following analogy of the bound
(11):

‖x− ws‖1 ≤
1 + ξ

1− ξ
ν ′ +

2β

1− ξ
(ε′ + δ),

whence

‖x− w‖1 ≤ 1 + ξ

1− ξ
ν ′ +

2β

1− ξ
(ε′ + δ) + µ,

which is nothing but (12). �

C Proof of Proposition 4.1

Let A satisfy VSGs(ξ, θ, ρ, σ), and let Y = [y1, ..., yn] and v satisfy (13). Let, further, I ⊂ {1, ..., n}
be such that Card(I) ≤ s, and let x ∈ Rn. Let u ∈ Rn be given by

ui =





1 + θξ, i ∈ P+ ∩ I, xi ≥ 0
1− ξ, i ∈ P+ ∩ I, xi < 0
(1 + ξ) sign(xi), i ∈ Pn ∩ I
0, i 6∈ I

.

Note that u has at most s nonzero entries, the entries of u with indices from P+ belong to [0, 1+θξ],
and the modulae of entries in u with indices from Pn are ≤ 1 + ξ, so that uT z ≤ Φs(z) for all z.
We have

uT [I − Y TA]x =
∑

i

uTCi[Y,A]xi =
∑

i:xi≥0

uTCi[Y,A]xi +
∑

i:xi<0

uT [−Ci[Y,A]]|xi|

≤
∑

i:xi≥0

Φs(Ci[Y,A])xi +
∑

i:xi<0

Φs(−Ci[Y,A])|xi| [since uT z ≤ Φs(z)]

≤
∑

i:xi≥0,i 6∈P+

[ξ + (AT v)i]xi +
∑

i:xi≥0,i∈P+

[θξ + (AT v)i]xi +
∑

i:xi<0

[ξ − (AT v)i]|xi| [by (13)]

= ξ




∑

i:xi≥0,i 6∈P+

xi + θ
∑

i:xi≥0,i∈P+

xi +
∑

i:xi<0

|xi|


+ xTAT v

= ξ


∑

i∈P+

max[−xi, θxi] +
∑

i∈Pn

|xi|


+ xTAT v,

whence

uT [I − Y TA]x ≤ ξ



∑

i∈P+

max[−xi, θxi] +
∑

i∈Pn

|xi|


+ ρ‖Ax‖ (41)
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(recall that ‖v‖∗ ≤ ρ). On the other hand, recalling the definition of u and that ‖yi‖∗ ≤ σ, we have

uT [I − Y TA]x = uTx− ∑
i∈I

uiy
T
i Ax

=
∑

i∈I∩P+

max[(1 − ξ)xi, (1 + θξ)xi] + (1 + ξ)
∑

i∈I∩Pn

|xi| −
∑
i∈I

uiy
T
i Ax

≥ ∑
i∈I∩P+

max[(1 − ξ)xi, (1 + θξ)xi] + (1 + ξ)
∑

i∈I∩Pn

|xi|

−σ


 ∑

i∈I∩P+

(1 + θξ) +
∑

i∈I∩Pn

(1 + ξ)




︸ ︷︷ ︸
≤β−ρ

‖Ax‖.

Combining the resulting inequality with (41), we get

∑

i∈I∩P+

[xi + ξmax[−xi, θxi]] + (1 + ξ)
∑

i∈I∩Pn

|xi| ≤ β‖Ax‖+ ξ



∑

i∈P+

max[−xi, θxi] +
∑

i∈Pn

|xi|




with β given by (14), or, equivalently,

∑

i∈I∩P+

xi +
∑

i∈I∩Pn

|xi| ≤ β‖Ax‖+ ξ


 ∑

i∈P+\I

max[−xi, θxi] +
∑

i∈Pn\I

|xi|


 .

The latter relation holds true for every x ∈ Rn and for every set I ⊂ {1, ..., n} of cardinality ≤ s,
so that A satisfies SGs,β(ξ, θ). �

D Proof of Proposition 5.1

Proof is based on the following

Lemma D.1 Let Z be a ν × ν matrix of rank m, s > 1 be a positive integer, and δi ∈ (0, 1],
1 ≤ i ≤ ν, be such that for the columns Ci of the matrix Iν − Z it holds ‖Ci‖s,1 ≤ 1− δi. Assume
that

ν > (2
√
2m+ 1)2. (42)

Then
s ≤ 2

√
2m+ 1. (43)

Proof of the lemma. Let σi = Zii, and let γi be the sum of s − 1 largest magnitudes of the
entries in Ci with indices different from i. We have

1− σi + γi ≤ ‖Ci‖s,1 ≤ 1− δi,

consequently σi ≥ δi + γi > 0. Let us set λi = 1
σi
, and let Z̄ be the matrix with the columns

Z̄i = λiZi, where Zi is the i-th column in Z. Note that Z̄ is of the same rank m as Z, and that
Z̄ii = 1 for all i. Recalling that γi < σi, we have also

‖Z̄i‖s−1,1 = λi‖Zi‖s−1,1 ≤ λi[γi + σi] ≤ 2λiσi = 2.
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Now let s̄ = min[s − 1, ⌊ν1/2⌋], so that s̄ ≥ 1 due to s > 1. We have ‖Z̄i‖s̄,1 ≤ ‖Z̄i‖s−1,1 ≤ 2
and s̄2 ≤ ν. From the latter inequality and due to ‖Z̄i‖22 ≤ max{1, νs̄−2}‖Z̄i‖2s̄,1 (cf. the proof

of [14, Proposition 4.2]), it follows that ‖Z̄i‖22 ≤ 4νs̄−2. We conclude that ‖Z̄‖22 ≤ 4ν2s̄−2, where
for a matrix B, ‖B‖2 is the Frobenius norm of B. Setting H = 1

2 [Z̄ + Z̄T ], we have therefore
‖H‖22 ≤ 4ν2s̄−2. On the other hand, Tr(H) =

∑ν
i=1 Z̄ii = ν, while rank(H) ≤ 2m, whence,

denoting by µi, 1 ≤ i ≤ p ≤ 2m, the nonzero eigenvalues of H, we have

‖H‖22 =

p∑

i=1

µ2i ≥ (

p∑

i=1

µi)
2/p = (Tr(H))2/p ≥ ν2/(2m).

We arrive at the inequality 4ν2s̄−2 ≥ ‖H‖22 ≥ ν2/(2m), thereby

s̄2 ≤ 8m. (44)

Assuming that s̄ = ⌊ν1/2⌋, (44) says that ν ≤ (2
√
2m + 1)2, which is impossible. The only other

option is that s̄ = s− 1, and we arrive at (43). �

Lemma D.1 ⇒ Proposition 5.1: Let Y, v satisfy (13). Consider first the case when ν :=
Card(Pn) ≥ n/2. Denoting by Ĉi the ν-dimensional vector comprised of the last ν entries in
Ci = Ci[Y,A] (i.e., entries with indices from Pn). By (13), for every i ∈ Pn and for every set I ⊂ Pn

with Card(I) ≤ s we have

∑
j∈I(1 + ξ)|[Ci]j | ≤ Φs(−Ci) ≤ ξ − (AT v)i,

∑
j∈I(1 + ξ)|[Ci]j | ≤ Φs(Ci) ≤ ξ + (AT v)i,

thus for any i ∈ Pn,
2(1 + ξ)‖Ĉi‖s,1 ≤ Φs(−Ci) + Φs(Ci) ≤ 2ξ,

so that ‖Ĉi‖s,1 < 1/2. We see that the South-Eastern ν × ν submatrix Z of Y TA satisfies the
premise of Lemma D.1, while the size ν of Z satisfies (42) due to (21) and ν ≥ n/2. Applying the
lemma, we arrive at (22).

Now consider the case when Card(Pn) < n/2, that is, ν := Card(P+) ≥ n/2. By (13), setting
Ci = Ci[Y,A], for every set I ⊂ P+ with Card(I) ≤ s and every i ∈ P+ we have

∑
j∈I(1 + θξ)max[−[Ci]j , 0] ≤ Φs(−Ci) ≤ ξ − (AT v)i,∑
j∈I(1 + θξ)max[[Ci]j , 0] ≤ Φs(Ci) ≤ θξ + (AT v)i,

whence ∑

j∈I

|[Ci]j | ≤
ξ(1 + θ)

1 + θξ
< 1.

Since the latter inequality holds true for every subset I of P+ with Card(I) ≤ s, when denoting
by C̄i the part of Ci comprised of the first ν entries (those with indexes from P+), we have for all
i ∈ P+:

‖C̄i‖s,1 < 1.

Now the proof can be completed exactly as in the previous case, with the North-Western ν × ν
submatrix of Y TA in the role of Z. �
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E Proof of Proposition 8.1

Let us proceed by induction. First, let us show that (ak−1, bk−1) implies (ak, bk). Thus, assume
that (ak−1, bk−1) holds true. Let z

(k−1) = w−v(k−1). By (ak−1), z
(k−1) is supported on the support

of w and is such that z
(k−1)
i ≥ 0 for i ∈ P+. Note that

z(k−1) − u = w − v(k−1) − Y T (y −Av(k−1)) = (I − Y TA)(w − v(k−1))− Y T e

= (I − Y TA)z(k−1) − Y T e,

where e = y −Aw with ‖Y T e‖∞ ≤ σδ due to (26.c). Then by (26.a,b) for any i ∈ P+,

−τ−



∑

j∈P+

z
(k−1)
j +

∑

j∈Pn

|z(k−1)
j |


− σδ ≤ z

(k−1)
i − ui ≤ τ+



∑

j∈P+

z
(k−1)
j +

∑

j∈Pn

|z(k−1)
j |


+ σδ,

consequently,

− γ− := −τ−αk−1 − σδ ≤ z
(k−1)
i − ui ≤ γ+ := τ+αk−1 + σδ. (45)

We conclude that for any i ∈ P+ the interval Si = [ui − γ−, ui + γ+] of the width

ℓ+ = [τ− + τ+]αk−1 + 2σδ,

covers z
(k−1)
i . In the same way for any i ∈ Pn

−γ := −ταk−1 − σδ ≤ z
(k−1)
i − ui ≤ ταk−1 + σδ = γ,

so that the interval Si = [ui − γ, ui + γ] of the width

ℓ = 2ταk−1 + 2σδ,

covers z
(k−1)
i when i ∈ Pn.

Recalling that z
(k−1)
i ≥ 0 for i ∈ P+, the closest to 0 point of Si is

∆̃i = [ui − γ−]+ for i ∈ P+, ∆̃i = [ui − γ]+ for i ∈ Pn, ui ≥ 0,

∆̃i = −[|ui| − γ]+ for i ∈ Pn, ui < 0,

that is, ∆̃i = ∆i for all i. Since the segment Si covers z
(k−1)
i and ∆i is the closest to 0 point in Si,

while the width of Si is at most ℓ ∨ ℓ+, we clearly have

(a) ∆i ∈ Conv
{
0, z

(k−1)
i

}
, (b) |z(k−1)

i −∆i| ≤ ℓ ∨ ℓ+. (46)

Since (ak−1) is valid, (46.a) implies that

v
(k)
i = v

(k−1)
i +∆i ∈

[
v
(k−1)
i +Conv

{
0, w − v

(k−1)
i

}]
⊆ Conv{0, wi},
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and (ak) holds. Further, let I be the support of ws. Relation (ak) clearly implies that |z(k)i | ≤ |wi|,
and we can write due to (46.b):

‖w − v(k)‖1 =
∑

i∈I

|w − [v
(k−1)
i +∆i]|+

∑

i 6∈I

|z(k)i |

≤
∑

i∈I

|z(k−1)
i −∆i|+

∑

i 6∈I

|wi| ≤ s[ℓ ∨ ℓ+] + µ = αk,

which is (bk). The induction step is justified.
It remains to show that (a0, b0) holds true. Since (a0) is evident, all we need is to justify (b0).

Let
α∗ = ‖w‖1,

and let u = Y T y. Same as above (cf. (45)), we have for all i:

|wi − ui| ≤ max{τ−, τ+, τ}α∗ + σδ =
ρ

s
α∗ + σδ.

Then

α∗ =
∑

i∈I

|wi|+
∑

i 6∈I

|wi| ≤
∑

i∈I

[|ui|+
ρ

s
α∗ + σδ] + µ ≤ ‖u‖s,1 + ρα∗ + sσδ + µ.

Hence

α∗ ≤ α0 =
‖u‖s,1 + sσδ + µ

1− ρ
,

which implies (b0). �
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F ONLINE SUPPLEMENT

F.1 Proof of Proposition 4.2

Let Y = [Y1, ..., Yn], v, σ, ρ certify the validity of VSG∗
s,β(ξ, θ), and let β′ ≥ β, θ′ ≥ θ and ξ′ ∈ [ξ, 1).

Let us set

λ =
1 + θξ

1 + θ′ξ′
, µ =

1 + ξ

1 + ξ′
.

so that λ, µ ∈ [0, 1], and let Y ′ be as in the assertion to be proved, that is, the columns of Y ′ are
multiples of those of Y : Y ′

i = λYi when i ∈ P+ and Y ′
i = µYi otherwise. All we need to prove is

that (Y ′, v, σ, ρ) certify the validity of VSG∗
s,β′(ξ′, θ′), and this immediately reduces to verification

of the following fact:

Lemma F.1 Let i, 1 ≤ i ≤ n, be fixed, and let z ∈ Rn for any I ⊂ {1, ..., n} of cardinality s satisfy
the relations

(a) (1 + θξ)
∑

j∈P+∩I
max[zj − δij , 0] + (1 + ξ)

∑
j∈Pn∩I

|zj − δij |+ (Av)i ≤ ξ,

(b) (1 + θξ)
∑

j∈P+∩I
max[δij − zj , 0] + (1 + ξ)

∑
j∈Pn∩I

|zj − δij | − (Av)i

≤ η =

{
θξ, i ∈ P+,
ξ, i ∈ Pn,

(47)

where δij =

{
0, j 6= i,
1, i = j.

Then for every set I ⊂ {1, ..., n} of cardinality s we have

(a) (1 + θ′ξ′)
∑

j∈P+∩I
max[λzj − δij , 0] + (1 + ξ′)

∑
j∈Pn∩I

|µzj − δij |+ (Av)i ≤ ξ′,

(b) (1 + θ′ξ′)
∑

j∈P+∩I
max[δij − λzj , 0] + (1 + ξ′)

∑
j∈Pn∩I

|µzj − δij | − (Av)i

≤ η+ =

{
θ′ξ′, i ∈ P+,
ξ′, i ∈ Pn.

(48)

Proof. Taking into account the definition of λ, µ, in the case of i 6∈ I the relations (48) are readily
given by (47), hence we can assume i ∈ I. Consider two possible cases: i ∈ P+ ∩ I and i ∈ Pn ∩ I.

The case of i ∈ P+ ∩ I. In this case (47) reads:

(a) (1 + θξ)max[zi − 1, 0] + (1 + θξ)
∑

j∈P+∩I,j 6=i

max[zj , 0]

+(1 + ξ)
∑

j∈Pn∩I
|zj |+ (Av)i ≤ ξ,

(b) (1 + θξ)max[1− zi, 0] + (1 + θξ)
∑

j∈P+∩I,j 6=i

max[−zj , 0]

+(1 + ξ)
∑

j∈Pn∩I
|zj | − (Av)i ≤ θξ,

(49)
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and our goal is to verify that then

(a) (1 + θ′ξ′)max[λzi − 1, 0]

+

=1+θξ︷ ︸︸ ︷
(1 + θ′ξ′)λ

∑
j∈P+∩I,j 6=i

max[zj , 0] +

=1+ξ︷ ︸︸ ︷
(1 + ξ′)µ

∑
j∈Pn∩I

|zj |+ (Av)i ≤ ξ′,

(b) (1 + θ′ξ′)max[1− λzi, 0]

+ (1 + θξ)
∑

j∈P+∩I,j 6=i

max[−zj , 0] + (1 + ξ)
∑

j∈Pn∩I

|zj | − (Av)i

︸ ︷︷ ︸
:=R

≤ θ′ξ′.

(50)

We have λzi − 1 ≤ λ(zi − 1) due to λ ≤ 1, consequently

max[λzi − 1, 0] ≤ max[λ(zi − 1), 0] = λmax[zi − 1, 0],

and therefore (50.a) follows from (49.a) due to (1+ θ′ξ′)λ = 1+ θξ and ξ′ ≥ ξ. It remains to verify
(50.b). Assume, first, that λzi ≤ 1. From (49.b) it follows that

(1 + θξ)[1− zi] +R ≤ (1 + θξ)max[1− zi, 0] +R ≤ θξ,

implying zi ≥ 1+R
1+θξ and therefore

1− λzi ≤ 1− 1 +R

1 + θ′ξ′
=
θ′ξ′ −R

1 + θ′ξ′
.

Since we are in the case 1− λzi ≥ 0, we arrive at

(1 + θ′ξ′)max[1− λzi, 0] +R = (1 + θ′ξ′)[1 − λzi] +R ≤ (1 + θ′ξ′)
θ′ξ′ −R

1 + θ′ξ′
+R = θ′ξ′,

as required in (50.b). The case of 1−λzi ≤ 0 is trivial, since here the left hand side in (50.b) clearly
is ≤ the left hand side in (49.b), while θ′ξ′ ≥ θξ, so that (50.b) is readily given by (49.b). Thus,
when i ∈ P+ ∩ I, (50) follows from (49).

The case of i ∈ Pn ∩ I. In this case (47) means that

(a) (1 + θξ)
∑

j∈P+∩I,j 6=i

max[zj , 0] + (1 + ξ)|1− zi|+ (1 + ξ)
∑

j∈Pn∩I,j 6=i

|zj |+ (Av)i ≤ ξ,

(b) (1 + θξ)
∑

j∈P+∩I
max[−zj , 0] + (1 + ξ)|1− zi|+ (1 + ξ)

∑
j∈Pn∩I,j 6=i

|zj | − (Av)i ≤ ξ,
(51)

and our goal is to verify that then

(a) (1 + θ′ξ′)
∑

j∈P+∩I,j 6=i

max[λzj , 0]

+(1 + ξ′)|1− µzi|+ (1 + ξ′)µ
∑

j∈Pn∩I,j 6=i

|zj |+ (Av)i ≤ ξ′,

(b) (1 + θ′ξ′)
∑

j∈P+∩I
max[−λzj, 0]

+(1 + ξ′)|1− µzi|+ (1 + ξ′)
∑

j∈Pn∩I,j 6=i

|µzj | − (Av)i ≤ ξ′.

(52)
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Comparing (51.a) with (52.a), and (51.b) with (52.b), we see that all we need in order to derive (52)
from (51) is to verify the following statement: if (1+ ξ)|1− z| ≤ ξ+a, then (1+ ξ′)|1−µz| ≤ ξ′+a.
This is immediate: assuming (1 + ξ)|1 − z| ≤ ξ + a, the premises in the following two implication
chains hold true:

(1 + ξ)[1− z] ≤ ξ + a⇒ z ≥ 1−a
1+ξ ⇒ µz ≥ 1−a

1+ξ′ ⇒ 1− µz ≤ 1− 1−a
1+ξ′ =

ξ′+a
1+ξ′

⇒ (1 + ξ′)[1− µz] ≤ ξ′ + a,

(1 + ξ)[z − 1] ≤ ξ + a⇒ z ≤ 1 + ξ+a
1+ξ ⇒ µz ≤ 1+2ξ+a

1+ξ′ ⇒ µz − 1 ≤ 2ξ−ξ′+a
1+ξ′

⇒ (1 + ξ′)[µz − 1] ≤ 2ξ − ξ′ + a⇒ (1 + ξ′)[µz − 1] ≤ ξ′ + a,

while the resulting inequalities in these chains lead to the desired conclusion (1+ξ′)|1−µz| ≤ ξ′+a.
�

F.2 “Trigonometric polynomials” example

The validity of the claim concluding Section 5 is readily given by the following

Lemma F.2 For any positive integer d, let n ≥ 4πd, and A be the matrix obtained from the basic
trigonometric polynomials as described in Section 5, then the condition VSGs(ξ, θ, ρ, σ) can hold
true for s ≤ 2 only.

Proof. Let L be the n × n permutation matrix corresponding to the cyclic shift ej 7→ ej+ ,
j+ = (j + 1)modn, of the standard basic orths e0, ..., en−1 in Rn, and R be the m×m orthogonal
block-diagonal matrix with the North-Western block 1 and d additional 2 × 2 diagonal blocks[
cos(2πi/n) − sin(2πi/n)
sin(2πi/n) cos(2πi/n)

]
, 1 ≤ i ≤ d. Denoting by Aj the j-th column of A, 0 ≤ j ≤ n− 1, we

clearly have RAj = Aj+ , hence A = RAL−1 and therefore also A = RiAL−i for 1 ≤ i ≤ n. Now
assume that Y, v satisfy (13) for certain ξ < 1, θ ≥ 1, ρ, σ. Then

max
i

[Φs(−Ci[Y,A]) + Φs(Ci[Y,A])] ≤ ξ(1 + θ),

in this way, it is immediately seen, maxi ‖Ci[Y,A]‖s,1 ≤ κ := ξ(1+θ)
1+θξ < 1, or, which is the same,

Γ(I − Y TA) ≤ κ < 1,

where Γ(Z) is the maximum of the ‖ · ‖s,1-norms of columns of Z ∈ Rn×n. Observe that Γ is a
convex function which is symmetric in the sense that Γ(PZP T ) = Γ(Z) whenever P is a permutation
matrix. Now let Ȳ = 1

n

∑n
i=1R

−iY Li. Since Ln = In, R
−n = Im, we have R−1Ȳ L = Ȳ . We claim

that
Γ(I − Ȳ TA) ≤ κ.
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Indeed, we have

Γ(I − Ȳ TA) = Γ(
1

n

n∑

i=1

[I − L−iY TRiA])

≤ 1

n

n∑

i=1

Γ(I − L−iY TRiA) [since Γ is convex]

=
1

n

n∑

i=1

Γ(L−i
[
I − Y T [RiAL−i]

]
Li)

=
1

n

n∑

i=1

Γ(I − Y TA) [since Γ is symmetric and RiAL−i = A]

= Γ(I − Y TA)

Now let

yj(φ) = Ȳ0j +

d∑

i=1

[Ȳ2i−1,j cos(iφ) + Ȳ2i,j sin(iφ)].

We have R−1Ȳ L = Ȳ , that is, R−1Ȳ = Ȳ L−1. In other words, the columns Ȳj of Ȳ satisfy the
relation Ȳj = RȲj−, where j− = (j − 1)mod n. This is nothing but yj(φ) ≡ yj−(φ − δ), δ = 2π/n,
whence yj(φ) = y0(φ− jδ). Observe that the j-th column in Ȳ TA has the entries

Ȳ T
i Aj = yi(jδ) = y0((j − i)δ), 0 ≤ i ≤ n− 1,

meaning that the columns in the matrix I − Ȳ TA are cyclic shifts of each other (so that the
‖ · ‖s,1-norms of all columns are the same), and the zero column is comprised of the values of the
trigonometric polynomial 1 − y0(φ) on the grid G = {φj = 2πj

n : 0 ≤ j < n}. Assuming s > 1,
when denoting by γ the sum of s−1 largest magnitudes of entries in the (n−1)-dimensional vector
{y0(φi)}n−1

i=1 , we have
1− y0(0) + γ ≤ ‖C0[Ȳ , A]‖s,1 ≤ κ < 1,

thereby µ := y0(0) > γ. Now let M = max
0≤φ≤2π

|y0(φ)|, and let φ̄ ∈ Argmaxφ|y0(φ)|, so that

y′0(φ̄) = 0. By Bernstein theorem, we have |y′′0 (φ)| ≤ d2M for all φ, whence |y0(φ)| ≥ M/2 when
|φ− φ̄| ≤ 1/d, so that

Card{j : |y0(φj)| ≥M/2} > n

πd
− 1.

It follows that γ ≥ min
[
s− 1, n

πd − 2
]
M/2, while µ = y0(0) ≤M . Thus, the relation µ > γ implies

that
min[s− 1,

n

πd
− 2] < 2,

that is, s ≤ 2 provided that n ≥ 4πd. �
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