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1 Introduction

Motivation. During the last two decades we can see an increasing interest to the Struc-
tural Convex Optimization. This direction of research, which can be seen as an alternative
to the black-box computational model [6], can be traced from the theory of self-concordant
functions [16], through the series of results on fully polynomial approximation schemes
[2, 3, 4, 18], and up to the recent improvements related to the smoothing technique
[1, 9, 10, 12, 14] and applications of the extra-gradient methods for smooth variational
inequalities [5, 11]. We should mention also recently published results [13] for constructing
primal-dual subgradient methods on the basis of available information on the problem’s
structure. In order to see a clear picture of these developments and discover the missing
pieces, let us present some classification of the above results.

In Nonlinear Optimization, the performance of numerical methods is closely related to
our abilities to execute some auxiliary computations related to the convex sets involved
in the problem’s formulation. Usually, the optimization methods assume feasibility of one
of the following operations:

L: Maximization of a linear function 〈c, x〉 over a convex set Q.

S: Maximization of the difference 〈c, x〉 − d(x) in x ∈ Q, where d is a strongly convex
prox-function of the set Q.

B: Computation of the value and first two derivatives of some self-concordant barrier
at the interior points of convex set Q.

Note that in Structural Optimization we always can consider the optimization problem
posed in a primal-dual form. The most important example of such a representation is a
bilinear saddle point formulation:

min
x∈Qp

max
w∈Qd

〈Ax,w〉. (1.1)

where Qp and Qd are closed convex sets in corresponding spaces and A is a linear operator.
Since the structure of the primal and dual sets may be of different complexity, we have
six possible combinations of the above mentioned auxiliary operations. Let us present the
known results on their complexity.

• Lp
⋂

Ld: to the best of our knowledge, no complexity results are obtained for this
combination.

• Sp
⋂

Sd: this case is treated by the smoothing technique [9, 10]. An ε-solution of
the problem (1.1) can be obtained in

O
(

1
ε · ‖A‖ · [D1D2]1/2

)

gradient steps, where D1 and D2 are the sizes of the primal and dual sets, and the
norm ‖A‖ is defined by the norms of the primal and dual spaces.

• Bp
⋂

Bd. In this situation, Interior-Point Methods [16] provide an ε-solution of the
problem (1.1) in

O
(√

ν · ln ν
ε

)

Newton steps, where ν is the parameter of a self-concordant barrier for primal-dual
feasible set Qp ×Qd.
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• Sp
⋂

Ld. This case is similar to the standard Black-Box Nonsmooth Minimization.
Primal-dual subgradient methods [13] provide an ε-solution to (1.1) in

O
(

1
ε2
· ‖A‖2 ·D1 ·D2

)

gradient steps.

• Bp
⋂

Sd. Complexity of this combination is not known yet.

• The last variant Bp
⋂

Ld is studied in the present paper. From the view point
of Black-Box Optimization, it corresponds to a problem of minimizing nonsmooth
convex function over a feasible set endowed by a self-concordant barrier.

Contents. The paper is organized as follows. In Section 2 we study the smoothing of
support function of convex set by a self-concordant barrier. The corresponding barrier
subgradient method (BSM) is described in Section 3. As it is shown in Section 4, this
method can be naturally applied to the problem of maximizing a non-negative concave
function. In this case we can obtain the complexity bounds for computing an approximate
solution in relative scale. In Section 5 we consider several applications: fractional covering
problem, maximal concurrent flow problem, minimax problem with nonnegative compo-
nents, and semidefinite relaxation of boolean quadratic problem. Finally, in Section 6 we
consider the applications of BSM to Online Optimization. We argue that this approach
can be seen as a reasonable alternative to the single-stage Stochastic Optimization. In
Appendix we discuss the complexity of barrier projection onto a standard simplex.

Notation. In what follows, we denote by E (or other capital letter) a finite dimensional
linear vector space. The dual space (the space of linear functions on E) is denoted by E∗.
We denote the value of function s ∈ E∗ on x ∈ E by 〈s, x〉. This notation is used for all
linear spaces employed in the paper. Thus, the actual meaning of 〈·, ·〉 can be understood
from the spaces of the arguments. For example, for the coordinate space E = Rn with
E∗ = Rn, this notation has the following sense:

〈s, x〉 =
n∑

i=1
s(i)x(i), x, s ∈ Rn.

For a linear operator A : E → H∗ we denote by A∗ : H → E∗ the adjoint operator:

〈Ax, y〉 = 〈A∗y, x〉, x ∈ E, y ∈ H.

For a positive-semidefinte self-adjoint linear operator B : E → E∗ we use notation B º 0.
For a concave function f(x) we denote by ∇f(x) one of its subgradients at x:

f(y) ≤ f(x) + 〈∇f(x), y − x〉, y, x ∈ dom f.

For function of two vector variables Ψ(u, x) notation ∇2Ψ(u, x) is used for its subgradient
with respect to the second argument.

2 Smoothing by self-concordant barrier

Let Q ⊂ E be a closed convex set containing no straight line. We assume Q be endowed
with a ν-self-concordant barrier F . Consider another closed convex set P̂ ⊆ E. The set
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of our main interest is
P = P̂

⋂
Q,

which we assume to be bounded. Denote by x0 its constrained analytic center:

x0 = arg min
x∈P0

F (x) ∈ P0
def= P̂

⋂
intQ ⊆ P. (2.1)

Thus, F (x) ≥ F (x0) for all x ∈ P . Since Q contains no straight line, x0 is well defined
(e.g. Theorem 4.1.3 [8]).

For the set P , we introduce the following smooth approximation of its support function:

Uβ(s) = max
x∈P̂

{〈s, x− x0〉 − β[F (x)− F (x0)]}, s ∈ E∗, (2.2)

where β > 0 is a smoothing parameter. Denote by u∗β(s) the unique solution of the
maximization problem (2.2). Then

∇Uβ(s) = u∗β(s)− x0, s ∈ E∗. (2.3)

For any x ∈ intQ, consider the following local norms:

‖h‖x = 〈∇2F (x)h, h〉1/2, h ∈ E,

‖s‖∗x = 〈s, [∇2F (x)]−1s〉1/2, s ∈ E∗.

Then, we can guarantee the following level of smoothness of function Uβ(·).
Lemma 1 Let β > 0, s ∈ E∗ and x = u∗β(s). Then for any g ∈ E∗ with ‖g‖∗x < β we
have

Uβ(s + g) ≤ Uβ(s) + 〈g,∇Uβ(s)〉+ βω∗( 1
β‖g‖∗x), (2.4)

where ω∗(τ) = −τ − ln(1− τ) ≤ τ2

2(1−τ) .

Proof:
In view of definition (2.2), for any y ∈ P0 we have

〈s− β∇F (x), y − x〉 ≤ 0. (2.5)

Moreover, since F is a self-concordant function, at any point y ∈ intQ

F (y) ≥ F (x) + 〈∇F (x), y − x〉+ ω(‖y − x‖x), (2.6)

where ω(t) = t− ln(1 + t) (see Theorem 4.1.7 [8]). Hence,

Uβ(s + g)− Uβ(s)− 〈g,∇Uβ(s)〉

(2.3)
= max

y∈P0

{〈s + g, y − x0〉 − β[F (y)− F (x0)]− 〈s + g, x− x0〉+ β[F (x)− F (x0)]}

= max
y∈P0

{〈s + g, y − x〉 − β[F (y)− F (x)]}

(2.5)

≤ max
y∈P0

{〈g, y − x〉+ β[〈∇F (x), y − x〉 − F (y) + F (x)]}

(2.6)

≤ max
y∈P0

{〈g, y − x〉 − βω(‖y − x‖x)} ≤ sup
τ≥0

{ τ‖g‖∗x − βω(τ) }.
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If ‖g‖∗x < β, then the supremum in the right-hand side is equal to βω∗( 1
β‖g‖∗x). 2

Consider now a linear function l(x), x ∈ P . Denote l0 = l(x0), l∗ = max
x∈P

l(x), and

l∗(β) = max
y∈P0

{l(y)− β[F (y)− F (x0)]} ≥ l0 (2.7)

for β ≥ 0.

Lemma 2 For any β > 0 we have

l∗(β) ≤ l∗ ≤ l∗(β) + βν

(
1 +

[
ln l∗−l0

βν

]
+

)
, (2.8)

where [a]+ = max{a, 0}. Moreover,

l∗ − l0 ≤
[√

l∗(β)− l0 +
√

βν
]2

. (2.9)

Proof:
First part of inequality (2.8) follows from definitions (2.1) and (2.7). Let us prove the
second part. Consider arbitrary y∗ ∈ Arg max

x∈P
l(x). Denote

y(α) = x0 + α(y∗ − x0), α ∈ [0, 1].

In view of inequality (2.3.3) in [16], we have

F (y(α)) ≤ F (x0)− ν ln(1− α), α ∈ [0, 1).

Since l(·) is linear, this relation implies that

l∗(β) ≥ max
α∈[0,1)

{l(y(α))− β[F (y(α))− F (x0)]}

≥ (1− α)l0 + αl∗ + βν ln(1− α), α ∈ [0, 1).

(2.10)

Maximum of the right-hand side of this inequality in α is attained at α∗ =
[
1− βν

l∗−l0

]
+
.

Thus, if l∗−l0
βν ≤ 1 (that is α∗ = 0), then l∗ ≤ l0 + βν, and (2.8) follows from (2.7). If

α∗ > 0, then we get (2.8) by direct substitution.
On the other hand, from (2.10) we have

l∗ − l0 ≤ 1
α

[
l∗(β)− l0 + βν ln

(
1 + α

1−α

)]
≤ 1

α [l∗(β)− l0] + βν
1−α .

Minimizing the latter expression in α, we get (2.9). 2

Corollary 1 For any β > 0 we have

l∗ ≤ l∗(β) + βν

[
1 + 2 ln

(
1 +

√
l∗(β)−l0

βν

)]
. (2.11)
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3 Barrier subgradient scheme

In this paper we consider convex optimization problems in the following form

Find f∗
def= max

x
{f(x) : x ∈ P}, (3.1)

where f is a concave function and P satisfies the structural assumptions specified in the
beginning of Section 2. In the sequel, we assume f to be subdifferentiable on P0 and the
set P to be simple. The latter means that the auxiliary optimization problem (2.2) can
be easily solved.

Consider now the generic scheme of Barrier Subgradient Method (BSM).

Initialization: Set s0 = 0 ∈ E∗.

Iteration (k ≥ 0):

1. Choose βk > 0 and compute xk = u∗βk
(sk).

2. Choose λk > 0 and set sk+1 = sk + λk∇f(xk).

(3.2)

In order to analyze performance of this method, consider the following gap functions:

lk(y) =
k∑

i=0
λi〈∇f(xi), y − xi〉,

l∗k
def= max

y∈P
lk(y), k ≥ 0.

Theorem 1 Assume that the parameters of scheme (3.2) satisfy condition

λk‖∇f(xk)‖∗xk
< βk ≤ βk+1, k ≥ 0. (3.3)

Denote Sk =
k∑

i=0
λi, and Ak =

k∑
i=0

βiω∗
(

λi
βi
‖∇f(xi)‖∗xi

)
. Then, for any k ≥ 0 we have

l∗k ≤ Ak + βk+1ν
[
1 + 2 ln

(
1 +

√
Ak

βk+1ν + c(Q) Sk
βk+1

‖∇f(x0)‖∗x0

)]
, (3.4)

where c(Q) = 1 if Q is a cone and F (·) is a logarithmically homogeneous barrier, and
c(Q) = 3 otherwise.

Proof:
Note that for any k ≥ 0 we have

Uβk+1
(sk+1)

(3.3)

≤ Uβk
(sk+1)

(2.4)

≤ Uβk
(sk) + λk〈∇f(xk), u∗βk

(sk)− x0〉+ βkω∗
(

λk
βk
‖∇f(xk)‖∗xk

)
.
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Since Uβ0(0) = 0, we conclude that

〈sk+1, xk+1 − x0〉 − βk+1[F (xk+1)− F (x0)] = Uβk+1
(sk+1)

≤
k∑

i=0
λi〈∇f(xi), xi − x0〉+

k∑
i=0

βiω∗
(

λi
βi
‖∇f(xi)‖∗xi

)
.

(3.5)

In view of the first-order optimality condition for (2.2), for all y ∈ P0 we have

〈sk+1, y − xk+1〉 ≤ βk+1〈∇F (xk+1), y − xk+1〉. (3.6)

Hence, for any y ∈ P0 we obtain

k∑
i=0

λi〈∇f(xi), y − xi〉
(3.5)

≤ 〈sk+1, y − xk+1〉+ βk+1[F (xk+1)− F (x0)] + Ak

(3.6)

≤ βk+1[F (xk+1) + 〈∇F (xk+1), y − xk+1〉 − F (x0)] + Ak

≤ βk+1[F (y)− F (x0)] + Ak.

Hence, l∗k(βk+1) ≤ Ak. On the other hand, since f is concave, we obtain

lk(x0) =
k∑

i=0
λi〈∇f(xi), x0 − xi〉 ≥

k∑
i=0

λi〈∇f(x0), x0 − xi〉

≥ −‖∇f(x0)‖∗x0
·

k∑
i=0

λi‖x0 − xi‖x0 .

In view of definition (2.1), we have 〈∇F (x0), xi − x0〉 ≥ 0. Hence, by Theorem 4.2.5 [8],
‖xi − x0‖x0 ≤ ν + 2

√
ν ≤ 3ν (recall that ν ≥ 1 , e.g. Lemma 4.3.1 [8]). If Q is a cone,

then ‖xi − x0‖x0 ≤ ν (see Lemma 5 [17]). Thus, in any case

‖xi − x0‖x0 ≤ ν · c(Q), i = 0, . . . , k,

and we conclude that lk(x0) ≥ −ν · c(Q)Sk‖∇f(x0)‖∗x0
. Using our observations and

inequality (2.11), we obtain (3.4). 2

Let us estimate now the rate of convergence of method (3.2) as applied to a specific
problem class.

Definition 1 We say that f ∈ BM (P ) if ‖∇f(x)‖∗x ≤ M for any x ∈ P0.

For function f ∈ BM (P ), we suggest the following values of parameters in (3.2):

λk = 1, k ≥ 0, β0 = β1, βk = M ·
(

1 +
√

k
ν

)
, k ≥ 1. (3.7)

Theorem 2 Let problem (3.1) with f ∈ BM (P ) be solved by method (3.2) with parameters
given by (3.7). Then for any k ≥ 0 we have

1
Sk

l∗k ≤ 2M ·
(√

ν
k+1 + ν

k+1

)
·
(
1 + ln

(
2 + 1

2c(Q)
√

ν(k + 1)
))

. (3.8)
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Proof:
Define τk = 1

M βk > 1. In view of the choice of parameters (3.7) and assumptions of the
theorem, we have Sk = k + 1, and

Ak =
k∑

i=0
βiω∗

(
λi
βi
‖∇f(xi)‖∗xi

)
≤ M

k∑
i=0

τiω∗
(

1
τi

)
≤ 1

2M
k∑

i=0
τi

τ−2
i

1−τ−1
i

= 1
2M

k∑
i=0

1
τi−1 =

√
ν

2 M

[
1 +

k∑
i=1

1√
i

]
≤ √

νM
[

1
2 +

√
k
]
.

(3.9)

Further, by the same reasons
Sk

βk+1
‖∇f(x0)‖∗x0

≤ k+1

1+
√

k+1
ν

≤ √
ν(k + 1),

Ak
βk+1ν ≤

1
2+

√
k√

ν+
√

k+1
≤ 1.

Thus, substituting the above estimates in inequality (3.4), we obtain

l∗k
Sk

≤ M

[ √
ν

k+1

(
1
2 +

√
k
)

+ ν+
√

ν(k+1)

k+1

(
1 + 2 ln

(
1 +

√
1 + c(Q)

√
ν(k + 1)

))]

≤ 2M ·
(√

ν
k+1 + ν

k+1

)
·
(
1 + ln

(
2 + 1

2c(Q)
√

ν(k + 1)
))

.

2

With parameters chosen by (3.7), the scheme of method (3.2) can be written in the
following form:

xk+1 = arg max
x∈P0

{
1

k+1

k∑
i=0
〈∇f(xi), x− xi〉 −M

√
ν+
√

k+1√
ν(k+1)

[F (x)− F (x0)]

}
, k ≥ 0.

(3.10)
Since f is a concave function,

1
Sk

l∗k = 1
Sk

max
y∈P

k∑
i=0

λi〈∇f(xi), y − xi〉

≥ 1
Sk

max
y∈P

k∑
i=0

λi[f(y)− f(xi)] = f∗ − 1
Sk

k∑
i=0

λif(xi).

Thus, the estimate (3.8) justifies the following rate of convergence for primal variables:

f∗ − 1
Sk

k∑
i=0

λif(xi) ≤ 2M ·
(√

ν
k+1 + ν

k+1

)
·
(
1 + ln

(
2 + 1

2c(Q)
√

ν(k + 1)
))

. (3.11)

Note that the value l∗k is computable. Hence, it can be used for terminating the process.
To conclude this section, let us show that method (3.10) can also generate approximate

solutions to a dual problem. For that, we need to employ an internal structure of our
problem. Let us assume that it can be represented in a saddle-point form:

f(x) = min
w∈S

Ψ(w, x) → max
x∈P

, (3.12)
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where S ⊂ E1 is a closed convex set, and function Ψ(w, x) is convex in w ∈ S and concave
and subdifferentiable in x ∈ P . Then, the dual problem is defined as

Find f∗ = min
w∈S

η(w),

η(w) = max
y∈P

Ψ(w, y).
(3.13)

Since P is bounded, the above problem is well defined. Without loss of generality, it is
always possible to choose

∇f(x) = ∇2Ψ(w(x), x)

with some w(x) ∈ Arg min
w∈S

Ψ(w, x) ⊆ S.

Let us assume that w(x) is computable for any x ∈ P . For the sake of completeness,
we provide the following standard result with a simple proof.

Lemma 3 Define w̄k = 1
Sk

k∑
i=0

λiw(xi), and x̄k = 1
Sk

k∑
i=0

λixi. Then

η(w̄k)− f(x̄k) ≤ 1
Sk

l∗k. (3.14)

Proof:
Since Ψ is concave in the second argument, for any y ∈ P we have

〈∇f(xi), y − xi〉 = 〈∇2Ψ(w(xi), xi), y − xi〉

≥ Ψ(w(xi), y)−Ψ(w(xi), xi) = Ψ(w(xi), y)− f(xi).

Hence,

1
Sk

l∗k = 1
Sk

max
y∈P

k∑
i=0

λi〈∇f(xi), y − xi〉 ≥ 1
Sk

max
y∈P

k∑
i=0

λi[Ψ(w(xi), y)− f(xi)]

≥ max
y∈P

Ψ(w̄k, y)− 1
Sk

k∑
i=0

λif(xi) = η(w̄k)− 1
Sk

k∑
i=0

λif(xi) ≥ η(w̄k)− f(x̄k).

2

Thus, the scheme (3.10) can indeed generate approximate primal-dual solutions:

η(w̄k)− f(x̄k) ≤ 2M ·
(√

ν
k+1 + ν

k+1

)
·
(
1 + ln

(
2 + 1

2c(Q)
√

ν(k + 1)
))

. (3.15)

4 Maximizing positive concave functions

Consider now a convex optimization problem

Find ψ∗
def= max

x
{ψ(x) : x ∈ P}, (4.1)

where the set P = P̂
⋂

Q satisfies assumptions introduced for problem (3.1). However,
now we assume that function ψ is concave and non-negative on Q:

ψ(x) > 0, ∀x ∈ intQ. (4.2)
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Lemma 4 Let ψ be concave and non-negative on Q. Then for any x ∈ intQ we have

‖∇ψ(x)‖∗x ≤ ψ(x). (4.3)

Proof:
Let us choose an arbitrary x ∈ intQ and r ∈ [0, 1). Define

y = x− r
‖∇ψ(x)‖∗x [∇2F (x)]−1∇ψ(x).

In view of Theorem 4.1.5 [8], y ∈ intQ. Therefore,

0 ≤ ψ(y) ≤ ψ(x) + 〈∇ψ(x), y − x〉 = ψ(x)− r‖∇ψ(x)‖∗x.

Since r is an arbitrary value from [0, 1), we get (4.3). 2

This result has an important corollary. Let us apply to the objective function of
problem (4.1) a logarithmic transformation:

f(x) def= lnψ(x). (4.4)

Lemma 5 Let ψ be concave and positive in the sense of (4.2). Then f ∈ B1(Q), and it
is concave on Q.

Proof:
Indeed, it is well known that the logarithm of concave function is concave. It remains to
note that ∇f(x) = 1

ψ(x)∇ψ(x) and apply inequality (4.3). 2

Thus, in order to solve problem (4.1), we can apply method (3.2) to problem (3.1) with
objective function defined by (4.4). The resulting optimization scheme looks as follows:

xk+1 = arg max
x∈P0

{
1

k+1

k∑
i=0
〈∇ψ(xi)

ψ(xi)
, x− xi〉 −

√
ν+
√

k+1√
ν(k+1)

[F (x)− F (x0)]

}
, k ≥ 0. (4.5)

For scheme (4.5), we can guarantee a certain rate of convergence in relative scale.

Theorem 3 Let sequence {xk}∞k=0 be generated by method (4.5) for problem (4.1). Then
for any k ≥ 0 we have

[
k∏

i=0
ψ(xi)

] 1
k+1

≥ ψ∗ · exp
{
−2

(√
ν

k+1 + ν
k+1

) (
1 + ln

(
2 + c(Q)

2

√
ν(k + 1)

))}

≥ ψ∗ ·
[
1− 2

(√
ν

k+1 + ν
k+1

) (
1 + ln

(
2 + c(Q)

2

√
ν(k + 1)

))]
.

(4.6)

Proof:
Indeed, we just apply method (3.10) to function f defined by (4.4). Since f ∈ B1(Q) ⊆
B1(P ), by (3.8) we conclude that

f∗ − 1
k+1

k∑
i=0

f(xi) ≤ δk
def= 2

(√
ν

k+1 + ν
k+1

) (
1 + ln

(
2 + c(Q)

2

√
ν(k + 1)

))
.
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Hence,

[
k∏

i=0
ψ(xi)

] 1
k+1

≥ ψ∗ · e−δk ≥ ψ∗ · (1− δk). This is exactly (4.6). 2

Let us show how we can treat a problem dual to (4.1). For simplicity, assume that

ψ(x) = min
u∈Ω

Ψ0(u, x), (4.7)

where Ω ⊂ E1 is a closed convex set. In this case, condition (4.2) can be written as

Ψ0(u, x) ≥ 0, u ∈ Ω, x ∈ P. (4.8)

Note that

max
x∈P

ln ψ(x) = max
x∈P

min
τ>0

min
u∈Ω

[ τΨ0(u, x)− ln τ − 1 ]

= max
x∈P

min
v∈τΩ,
τ>0

[
τΨ0

(
1
τ v, x

)
− ln τ − 1

]

= min
v∈τΩ,
τ>0

{
η(w) ≡ η(v, τ) def= −1− ln τ + τψ∗

(
1
τ v

)}
,

where ψ∗(u) = max
x∈P

Ψ0(u, x).

Denote by u(x) a solution of the minimization problem (4.7). Then w(x) is clearly
defined as follows

w(x) = (v(x), τ(x)), v(x) = τ(x)u(x), τ(x) = 1
ψ(x) .

In accordance to Lemma 3, we can form w̄k = (v̄k, τ̄k) with

v̄k = 1
k+1

k∑
i=0

u(xi)
ψ(xi)

, τ̄k = 1
k+1

k∑
i=0

1
ψ(xi)

.

Denote x̄k = 1
k+1

k∑
i=0

xi, and ūk = v̄k
τ̄k

=
k∑

i=0

u(xi)
ψ(xi)

/

[
k∑

i=0

1
ψ(xi)

]
∈ Ω. Then, by (3.14) we get

1
Sk

l∗k ≥ η(w̄k)− ln ψ(x̄k) = −1− ln τ̄k + τ̄kψ
∗
(

1
τ̄k

v̄k

)
− lnψ(x̄k)

= −1− ln τ̄k + τ̄kψ
∗ (ūk)− lnψ(x̄k) ≥ ln ψ∗(ūk)

ψ(x̄k) .

Hence,
ψ(x̄k) ≥ ψ∗(ūk) · exp

{
− 1

Sk
l∗k

}
. (4.9)

5 Applications

In this section we are going to consider several application examples for method (4.5).
We will say that some value φ̄ is a δ-approximation of the optimal value φ∗ > 0 in relative
scale if

φ∗ ≥ φ̄ ≥ φ∗ · e−δ, δ > 0.

In the complexity estimates, a short notation O∗(·) is used for indicating that the loga-
rithmic factors are omitted.
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5.1 Fractional covering problem

Consider the following fractional covering problem:

Find φ∗
def= min

y
{〈b, y〉 : AT y ≥ c, y ≥ 0 ∈ Rm}, (5.1)

where A = (a1, . . . , an) is an (m × n)-matrix with non-negative coefficients, and vectors
b ∈ Rm and c ∈ Rn have positive coefficients. Denote

ψ(y) = min
1≤i≤n

1
c(i)〈ai, y〉.

Note that ψ is concave and homogeneous of degree one. Therefore

φ∗ = min
y

{ 〈b,y〉
ψ(y) : y ≥ 0 ∈ Rm

}

=
[
max

y

{
ψ(y)
〈b,y〉 : y ≥ 0 ∈ Rm

}]−1

=
[
max

y
{ψ(y) : 〈b, y〉 = 1, y ≥ 0 ∈ Rm}

]−1

.

Thus, problem (5.1) can be written in the form (4.1) with K = Rm
+ ,

F (y) = −
m∑

j=1
ln y(j), ν = m,

and P̂ = {y : 〈b, y〉 = 1}. Hence, in accordance to the estimate (4.6) a δ-approximation
of φ∗ = ψ−1∗ in relative scale can be found in O∗(m

δ2 ) iterations of the method (4.5). Each
iteration of the scheme needs O(mn) operations for computing ψ(y) and its subgradient,
and essentially O(m ln m) operation for solving the auxiliary maximization problem in
(4.5) (see Appendix). Of course, this computational strategy is reasonable if m << n.
Otherwise, it is better to solve the dual form of problem (5.1) by smoothing technique [15].

5.2 Maximal concurrent flow problem

Consider a network consisting of the set of nodes N , |N | = n, and the set of directed arcs

A = {α = (i, j), i, j ∈ N}, |A| = m.

We assume that all arcs have bounded capacities. Formally this means that the arc flow
vector f ∈ Rm

+ must satisfy the capacity constraint:

f ≤ f̄ .

Let us introduce the set of origin-destination pairs

OD = {(i, j), i, j ∈ N}.

12



Each pair (i, j) ∈ OD generates for nodes i and j a directed flow fi,j ∈ Rm
+ of level di,j .

Formally, this means that the vectors fi,j must satisfy the system of linear equatuions

Bfi,j = di,j(ei − ej), (i, j) ∈ OD,

where B is the balance matrix of the network and e(·) is the corresponding unit vectors
in Rn.

The maximal concurrent flow problem can be written as follows

Find λ∗
def= max

λf,fi,j

{λ : Bfi,j = λ · di,j(ei − ej), fi,j ≥ 0, (i, j) ∈ OD,
∑

(i,j)∈OD
fi,j ≤ f̄ }. (5.2)

It is well known [19] that this problem can be written in a dual form:

ψ∗
def= λ−1∗ = max

t
{ψ(t) : 〈f̄ , t〉 = 1, t ≥ 0 ∈ Rm},

ψ(t) =
∑

(i,j)∈OD
di,j · SPi,j(t),

(5.3)

where the function SPi,j(t) is the shortest path distance between nodes i and j with respect
to a non-negative arc travel time vector t ∈ Rm.

Clearly, function ψ in (5.3) satisfies all assumptions introduced for problem (4.1).
Therefore (5.3) can be treated by method (4.5). In accordance to the estimate (4.6), a
δ-approximation of ψ∗ in relative scale can be found in O∗(m

δ2 ) iterations. Each iteration
of the scheme needs a computation of shortest-path distances for all origin-destination
pairs. Complexity of solving the auxiliary maximization problem in (4.5) is essentially
O(m ln m) operations (see Appendix). Note that we are also able to reconstruct the dual
solutions (origin-destination flows) using the technique described in the end of Section 4.

5.3 Minimax problem with nonnegative components

Consider the following minimax problem:

Find ψ∗
def= min

x

{
max

1≤i≤m
fi(x) : x ∈ S

}
, (5.4)

where S is a closed convex set and all functions fi(x) are convex and non-negative on S.
We assume that the function

ψ(y) = min
x∈S

{
m∑

i=1
y(i)fi(x)

}

is well defined for any y ≥ 0 ∈ Rm. Moreover, we assume that the values of this function
and its subgradients are easily computable.

Then we can rewrite problem (5.4) in the dual form

ψ∗ = max
y
{ψ(y) : 〈e, y〉 = 1, y ≥ 0 ∈ Rm} , (5.5)

where e ∈ Rm is the vector of all ones.
Note that (5.5) satisfies all assumption of problem (4.1). Therefore, in accordance to

the estimate (4.6), an δ-approximation of ψ∗ in relative scale can be found by method
(4.5) in O∗(m

δ2 ) iterations. Each iteration of the scheme results in minimization of the
weighted sum of functions fi.

13



5.4 Semidefinite relaxation of boolean quadratic problem

Consider the following maximization problem:

Find f∗
def= max

x
{〈Ax, x〉 : x(i) = ±1, i = 1, . . . , n}, (5.6)

where A is a symmetric positive definite (n×n)-matrix. Clearly, this problem is NP-hard.
However, it is well known that its optimal value can be approximated in polynomial time
with certain dimension-independent relative accuracy (see [7]). Namely, define

ψ∗ = min
y
{〈e, y〉 : D(y) º A}, (5.7)

where D(y) is a diagonal (n× n)-matrix with vector y on the diagonal. Then

2
πψ∗ ≤ f∗ ≤ ψ∗.

Usually the problem (5.7) is treated by Interior-Point Methods. However, note that
quite often it is useless to compute an approximation to ψ∗ with a high relative accuracy.
Therefore it seems reasonable to solve it by a cheap gradient scheme.

Let us justify another representation for ψ∗.

Lemma 6 Let A = LT L. Then

ψ∗ = max
X

{
ψ(X) def=

[
n∑

i=1
〈Xqi, qi〉1/2

]2

: 〈I, X〉 = 1, X º 0

}
, (5.8)

where qi are the columns of the matrix L, I is the identity matrix, and the scalar product
in the space of symmetric matrices is defined in a natural way.

Proof:
Indeed, since A Â 0, we have

ψ∗ = min
u

{
n∑

i=1

1
u(i) : A−1 º D(u)

}

= min
u

max
Yº0

{
n∑

i=1

1
u(i) + 〈Y,D(u)−A−1〉

}

= max
Yº0

min
u

{
n∑

i=1

(
1

u(i) + Y (i,i) u(i)
)
− 〈Y, A−1〉

}

Thus, ψ∗ = max
Yº0

{
2

n∑
i=1

[
Y (i,i)

]1/2 − 〈Y, A−1〉
}

. Maximizing the objective function in this

problem along a fixed direction Y ≥ 0, we obtain

ψ∗ = max
Yº0

{
1

〈Y,A−1〉

[
n∑

i=1

[
Y (i,i)

]1/2
]2

}
.

Choosing in this problem new variables X = L−T Y L−1, we obtain representation (5.8).
2
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Note that function ψ in (5.8) is concave. Moreover, it is differentiable and positive at
any X Â 0. In our case, Q is the cone of positive-semidefinite matrices with

F (X) = − ln detX, ν = n.

Hence, (5.8) satisfies conditions of the problem (4.1). Consequently, ψ∗ can be approxi-
mated by (4.5) in O∗( n

δ2 ) iterations, where δ is the desired relative accuracy. In our case,
each iteration of the scheme (4.5) requires a Cholesky decomposition of (n× n)-matrix.

6 Online optimization as an alternative to

Stochastic Programming

6.1 Decision-making in uncertain environment

Consider a repeatable decision-making process with uncertain income. Assume we have
N + 1 periods of time, each of which corresponds to a full production cycle. In the
beginning of kth period we choose a production strategy

xk ∈ P, k = 0, . . . , N,

where the structure of P satisfies the assumptions of Section 2. The results of different
economic activities in this period are given by production function ψk(x) ≥ 0, x ∈ P . The
value ψk(x) is equal to the rate of growth of the capital invested at the beginning of period
k in accordance to production strategy x ∈ P . Function ψk(·) becomes known only in the
end of the period k. So, it can be used for choosing the production strategies of the next
periods.

Assume for a moment that we know in advance all production functions

ψk(x), k = 0, . . . , N.

However, by certain conditions we are obliged to apply in all these periods the same
strategy x ∈ P . In this case, of course, it is reasonable to use

x∗N
def= arg max

x∈P

N∏
k=0

ψk(x).

Then, the average efficiency of this static strategy is given by

ψ∗N =

[
N∏

k=0
ψk(x∗)

] 1
N+1

.

However, usually the future is unknown. Instead, we have a freedom in choosing for
each period k a specific production strategy xk ∈ P . Let us look at its possible efficiency.

Suppose we know a ν-self-concordant barrier F (x) for the set Q. Then, we could apply
the following variant of method (4.5):

xk+1 = arg max
x∈P0

{
1

k+1

k∑
i=0
〈∇ψi(xi)

ψi(xi)
, x− xi〉 −

√
ν+
√

k+1√
ν(k+1)

[F (x)− F (x0)]

}
, k ≥ 0. (6.1)
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In this case, after N + 1 periods, the average rate of growth is given by

ΨN
def=

[
N∏

k=0
ψk(xk)

] 1
N+1

.

Theorem 4 For any N ≥ 0 we have ΨN ≥ ψ∗N · e−δN with

δN = 2
(√

ν
N+1 + ν

N+1

)
·
(
1 + ln

(
2 + c(Q)

2

√
ν(N + 1)

))
→ 0

as N →∞.

Proof:
The proof is very similar to proofs of Theorems 1 and 2. Denote

fk(x) = lnψk(x), f(x) = 1
N+1

N∑
k=0

fk(x), sk =
k∑

i=0
∇fi(xi) =

k∑
i=0

∇ψi(xi)
ψi(xi)

.

Note that method (6.1) can be seen as an application of scheme (3.2), (3.7) to a varying
objective function.

For any k ≥ 0 we have

Uβk+1
(sk+1) ≤ Uβk

(sk+1)

(2.4)

≤ Uβk
(sk) + 〈∇fk(xk), u∗βk

(sk)− x0〉+ βkω∗
(

1
βk
‖∇fk(xk)‖∗xk

)

(4.3)

≤ Uβk
(sk) + 〈∇fk(xk), u∗βk

(sk)− x0〉+ βkω∗
(

1
βk

)
.

Since Uβ0(0) = 0, we conclude that

〈sN+1, xN+1 − x0〉 − βN+1[F (xN+1)− F (x0)]

= UβN+1
(sN+1) ≤

N∑
i=0
〈∇fi(xi), xi − x0〉+

N∑
i=0

βiω∗
(

1
βi

)

(3.9)

≤
N∑

i=0
〈∇fi(xi), xi − x0〉+

√
ν

[
1
2 +

√
N

]
.

(6.2)

In view of the first-order optimality condition for (2.2), for all y ∈ P0 we have

〈sN+1, y − xN+1〉 ≤ βN+1〈∇F (xN+1), y − xN+1〉. (6.3)

Hence, using concavity of all functions fi, for any y ∈ P we obtain

lN (y) def=
N∑

i=0
〈∇fi(xi), y − xi〉

(6.2)

≤ 〈sN+1, y − xN+1〉+ βN+1[F (xN+1)− F (x0)] +
√

ν
[

1
2 +

√
N

]

(6.3)

≤ βN+1[F (xN+1) + 〈∇F (xN+1), y − xN+1〉 − F (x0)] +
√

ν
[

1
2 +

√
N

]

≤ βN+1[F (y)− F (x0)] +
√

ν
[

1
2 +

√
N

]
.
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Hence, l∗N (βN+1) ≤
√

ν
[

1
2 +

√
N

]
. On the other hand,

lN (x0) =
N∑

i=0
〈∇fi(xi), x0 − xi〉 ≥

N∑
i=0
〈∇fi(xi), x0 − xi〉

≥ −ν · c(Q) · (N + 1).

Hence, by (3.4) l∗N ≤ (N + 1) · δN . On the other hand,

1
N+1 l∗N = 1

N+1 max
y∈P

{
N∑

i=0
〈∇fi(xi), y − xi〉

}

≥ 1
N+1 max

y∈P

{
N∑

i=0
[fi(y)− fi(xi)]

}

= lnψ∗N − lnΨN .

2

Let us look now at several applications of above theorem.

6.2 Portfolio management

Let x ∈ ∆n be the structure of our portfolio. Denote by c
(i)
k ≥ 0, i = 1, . . . , n, the growth

of the price of the stock i during the day k ≥ 0. Then the optimal constant rebalanced
portfolio is defined as

x∗N = arg max
x∈P

N∏
k=0

〈ck, x〉, ψ∗N =

[
N∏

k=0
〈ck, x

∗
N 〉

]1/(N+1)

.

For the set Q = Rn
+, we can apply the standard n-self-concordant barrier

F (x) = −
n∑

i=1
ln x(i).

Then, we can apply the following variant of method (6.1):

xk+1 = arg max
x∈P0

{
1

k+1

k∑
i=0

〈ci,x−xi〉
〈ci,xi〉 −

√
ν+
√

k+1√
ν(k+1)

[F (x)− F (x0)]

}
, k ≥ 0. (6.4)

In this case, after N + 1 periods, the average rate of growth of our portfolio is given by

ΨN
def=

[
N∏

k=0
〈ck, xk〉

] 1
N+1

.

In view of Theorem 4, we have ΨN ≥ ψ∗N · e−δN (n). Note that each step of the algo-
rithm (6.4) is implementable in O(n ln n) arithmetic operations (see Appendix).
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6.3 Processes with full production cycles

Assume that in our economy there are n elastic production processes. In the beginning
of kth period, we know the cost a

(i)
k > 0 for producing one unit of product i, i = 1, . . . , n.

This cost is derived from the prices of row materials, labor, equipment, etc. However,
the price b

(i)
k ≥ 0 of the unit of product i becomes known only in the end of period k,

when we sell it. It may depend on competition in the market, uncertain preferences of
the consumers, etc. Denoting by x(i) the fraction of the capital invested in the process i,
we come to the following model:

ψk(x) =
n∑

i=1

b
(i)
k

a
(i)
k

· x(i),

x = (x(1), . . . , x(n))T ∈ Q
def= Rn

+,

P̂ = ∆n.

(6.5)

Then we can apply method (6.1) with

F (x) = −
n∑

i=1
ln x(i), ν = n.

In this situation, the complexity of solving the auxiliary maximization problem in (6.1) is
again O(n lnn) arithmetic operations (see Appendix).

6.4 Discussion

Without entering into a long discussion of the results of this section, let us mention that
Theorem 4, being applied in an uncertain environment, delivers an absolute and risk-
free guarantee for a certain level of efficiency of online optimization strategy (6.1). For
obtaining such a result, we do not need to introduce the standard machinery related
to random events, risk measures, stochastic or robust optimization. Since we compare
the efficiency of dynamic strategy with a static one, this guarantee may look too weak.
However, note that the solution of the standard one-stage stochastic programming problem

x∗ = arg max
x∈P

Eζ [f(x, ζ)], (6.6)

where Eζ [·] denotes the expectation with respect to random vector ζ, is static by its origin
(otherwise, maximization of expectation has no sense). At the same time, the model
f(x, ξ), constructed by the analysis of the past, can hardly overpass by its quality the
advantages of knowing exactly the future. Of course, one could suggest to apply multi-
stage stochastic models. However, from the best of our knowledge, these models are quite
far from being numerically tractable.

From our point of view, the main drawback of online optimization strategy (6.1) is its
low rate of convergence. Therefore, it is efficient only for the processes where the average
gain is big as compared to the number of iterations and the parameter of the barrier
function. An interesting application of this technique can be rather found in a long-run
production planning and management, than in the stock market.
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7 Appendix: Complexity of barrier projection

onto the standard simplex

In the case K = Rn
+, we can take

F (x) = −
n∑

i=1
ln x(i), ν = n.

Consider P̂ = {x ∈ Rn : 〈e, x〉 = 1}. Then, at each iteration of method (4.5) we need to
solve the following problem:

φ∗ def= max
x

{
〈s, x〉+

n∑
i=1

ln x(i) :
n∑

i=1
x(i) = 1

}
. (7.1)

Let us show that its complexity does not depend on the size of particular data (that is
the coefficients of vector s ∈ Rn).

Consider the following Lagrangian:

L(x, λ) = 〈s, x〉+
n∑

i=1
ln x(i) + λ ·

[
1−

n∑
i=1

x(i)

]
, x ∈ Rn, λ ∈ R.

The dual function

φ(λ) = max
x

{
L(x, λ) :

n∑
i=1

x(i) = 1
}

def= L(x(λ), λ)

is defined by the vector x(λ) : x(i)(λ) = 1
λ−s(i) , i = 1, . . . , n. Thus,

φ(λ) = −n + λ−
n∑

i=1
ln

(
λ− s(i)

)
,

φ∗ = min
λ

{
φ(λ) : λ > max

1≤i≤n
s(i)

}
.

(7.2)

Note that φ(·) is a self-concordant function. Therefore we can apply to its minimization
a standard Newton scheme, which converges quadratically starting from any λ from the
region

Q(s) = {λ : 4(φ′(λ))2 ≤ φ′′(λ)}.
(see, for example, Section 4.1.5 in [8]). Let us show that the complexity of finding a
starting point from this set does not depend on initial data.

Consider the function ψ(λ) = −φ′(λ) =
n∑

i=1

1
λ−s(i) − 1. Clearly, the problem (7.2) is

equivalent to finding the largest root λ∗ of the equation

ψ(λ) = 1. (7.3)

Denote λ0 = 1+ max
1≤i≤n

s(i). Then ψ(λ0) ≥ 0 and therefore λ0 ≤ λ∗. Consider the following
process:

λk+1 = λk − ψ(λk)
ψ′(λk) , k ≥ 0. (7.4)

This is a standard Newton method for solving the equation (7.3), which can be also
interpreted as a Newton method for minimization problem (7.2).
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Lemma 7 For any k ≥ 0 we have (φ′(λk))2 ≤ n7 ·
(

1
16

)k
φ′′(λk).

Proof:
Note that function ψ is decreasing and strictly convex. Therefore, for any k ≥ 0 we have

λk < λk+1 < λ∗, ψ′(λk) < 0 , ψ(λk) > 0.

Since ψ(λk) ≥ ψ(λk+1) + ψ′(λk+1)(λk − λk+1) = ψ(λk+1) + ψ′(λk+1)
ψ′(λk) ψ(λk), we obtain

1 ≥ ψ(λk+1)
ψ(λk) + ψ′(λk+1)

ψ′(λk) ≥ 2
√

ψ(λk+1)ψ′(λk+1)
ψ(λk)ψ′(λk) .

Thus, for any k ≥ 0 we get

φ′′(λk) · |φ′(λk)| ≤
(

1
4

)k
φ′′(λ0) · |φ′(λ0)|. (7.5)

Further, in view of the choice of λ0 we have

|φ′(λ0)| = ψ(λ0) =
n∑

i=1

1
λ0−s(i) − 1 < n− 1,

φ′′(λ0) =
n∑

i=1

1
(λ0−s(i))2

≤ n.

Finally, since 0 ≤ ψ(λk) =
n∑

i=1

1
λk−s(i) − 1, we conclude that

φ′′(λk) =
n∑

i=1

1
(λk−s(i))2

≥ 1
n .

Using these bounds in (7.5), we obtain

1
φ′′(λk)(φ

′(λk))2 ≤
(

1
16

)k (φ′′(λ0))2(φ′(λ0))2

(φ′′(λk))3
≤

(
1
16

)k · n7.

2

Comparing statement of Lemma 7 with definition ofQ(s), we conclude that the process
(7.4) arrives at the region of quadratic convergence at most after

⌈
1
4(2 + 7 log2 n)

⌉
(7.6)

iterations. Each of such iterations takes O(n) arithmetic operations.
A similar technique can be used for finding the barrier projection in the cone of

positive-semidefinite matrices:

max
X
{〈S,X〉+ ln detX : 〈I, X〉 = 1}.

The most straightforward strategy consists in finding an eigenvalue decomposition of
matrix S and solving the problem (7.1) with s being the spectrum of the matrix. In a more
efficient strategy, we transform S in a tridiagonal form by an orthogonal transformation,
compute its maximal eigenvalue and apply the Newton method to corresponding dual
function.
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