Skip to main content
Log in

Hyperbolic set covering problems with competing ground-set elements

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Motivated by a challenging problem arising in wireless network design, we investigate a new nonlinear variant of the set covering problem with hyperbolic objective function. Each ground-set element (user) competes with all its neighbors (interfering users) for a shared resource (the network access time), and the goal is to maximize the sum of the resource share assigned to each ground-set element (the network efficiency) while covering all of them. The hyperbolic objective function privileges covers with limited overlaps among selected subsets. In a sense, this variant lies in between the set partitioning problem, where overlaps are forbidden, and the standard set covering problem, where overlaps are not an issue at all. We study the complexity and approximability of generic and Euclidean versions of the problem, present an efficient Lagrangean relaxation approach to tackle medium-to-large-scale instances, and compare the computational results with those obtained by linearizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amaldi, E., Capone, A., Cesana, M., Malucelli, F.: Optimizing WLAN radio coverage. In: Proceedings of the 2004 IEEE International Conference on Communications, vol. 1, pp. 180–184 (2004)

  2. Balas E., Padberg M.W.: Set partitioning: A survey. SIAM Rev. 18(4), 710–760 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazaraa, M.S.: A cutting-plane algorithm for the quadratic set-covering problem. Oper. Res. 23(1) (1975)

  4. Beasley J.E.: OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)

    Google Scholar 

  5. Berman, P., DasGupta, B., Sontag, E.D.: Randomized approximation algorithms for set multicover problems with applications to reverse engineering of protein and gene networks. In: APPROX: international workshop on approximation algorithms for combinatorial optimization (2004)

  6. Bosio, S.: Instance library for the hyperbolic set covering problem. Available online at http://orgroup.dei.polimi.it/people/bosio/Instances.zip

  7. Bosio, S.: On a new class of set covering problems arising in wireless network design. Ph.D. thesis, Dipartimento di Matematica, Politecnico di Milano, April (2006). Available online at http://orgroup.dei.polimi.it/people/bosio/publications/PhD.pdf

  8. Bosio S., Capone A., Cesana M.: Radio planning of wireless local area networks. IEEE/ACM Trans. Netw. 15(6), 1414–1427 (2007)

    Article  Google Scholar 

  9. Ceria S., Nobili P., Sassano A.: Set covering problem. In: Dell’Amico, M., Maffioli, F., Martello, S. (eds) Annotated bibliographies in combinatorial optimization, Wiley, New York (1997)

    Google Scholar 

  10. Chvátal V.: A greedy heuristic for the set covering problem. Math. Oper. Res. 4, 233–235 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cornuejols, G.: Combinatorial optimization: packing and covering. Number 74 in CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM (2001)

  12. Engebretsen, L., Holmerin, J.: Clique is hard to approximate within n 1−o(1). In: Proceedings of the 27th International Colloquium on Automata, Languages and Programming (ICALP 2000), Lecture Notes in Computer Science, July 2000

  13. Escoffier, B., Hammer, P.L.: Approximation of the quadratic set covering problem. Technical report 2005–09, DIMACS (2005)

  14. Feige U.: A threshold of ln(n) for approximating set cover. J. ACM 45, 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fowler R.J., Paterson M.S., Tanimoto S.L.: Optimal packing and covering in the plane are NP- complete. Inf. Process. Lett. 12, 133–137 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frangioni, A.: Object bundle package—an OOP version of a proximal bundle algorithm for linearly constrained nondifferentiable convex optimization. Available online at http://www.di.unipi.it/~frangio (2005)

  17. Garey M.R., Johnson D.S.: Computers and Intractability. A Guide to the Theory of NP- Completeness. W.H. Freeman and Co, New York (1979)

    MATH  Google Scholar 

  18. Hall N.G., Hochbaum D.S.: A fast approximation algorithm for the multicovering problem. Discrete Appl. Math. 15, 35–40 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hammer, P.L.: Logical analysis of data: from combinatorial optimization to biomedical, financial and management applications. In: Fifth International Colloquium on Graphs and Optimisation (GO-V), 2006 (personal communication)

  20. Hammer P.L., Rudeanu S.: Boolean Methods in Operations Research and Related Areas. Springer, Dordrecht (1968)

    Book  MATH  Google Scholar 

  21. Hansen P., Poggi de Aragão M., Ribeiro C.: Boolean query optimization and the 0-1 hyperbolic sum problem. Ann. Math. Artif. Intell. 1, 97–109 (1990)

    Article  MATH  Google Scholar 

  22. Hansen P., Poggi de Aragão M., Ribeiro C.: Hyperbolic 0-1 programming and query optimization in information retrieval. Math. Program. 52, 255–263 (1991)

    Article  MATH  Google Scholar 

  23. Håstad J.: Clique is hard to approximate within n 1−ε. Acta Math. 182, 105–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hills A.: Large-scale wireless LAN design. IEEE Commun. Mag. 39, 98–107 (2001)

    Article  Google Scholar 

  25. Hochbaum D., Maass W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32, 130–136 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Israeli, Y., Ceder,A.: Transit route design using scheduling and multiobjective programming techniques. In: Proceedings of the Sixth International Workshop on Computer-Aided Scheduling of Public Transport, vol. 430 Lecture Notes in Economics and Mathematical Systems, pp. 56–75 (1995)

  27. Mc Cormick G.P.: Nonlinear Programming: Theory, Algorithms and Applications. Wiley, New York (1982)

    Google Scholar 

  28. Papadimitriou C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  29. Prokopyev O.A., Huang H., Pardalos P.M.: On complexity of unconstrained hyperbolic 0-1 programming problems. Oper. Res. Lett. 33(3), 312–318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schilling D., Jayaraman V., Barkhi R.: A review of covering problems in facility location. Locat. Sci. 1, 25–55 (1993)

    MATH  Google Scholar 

  31. Schrijver A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  32. Stancu-Minasian I.M.: Fractional Programming. Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

  33. Tawarmalani M., Ahmed S., Sahinidis N.V.: Global optimization of 0-1 hyperbolic programs. J. Glob. Optim. 24, 385–416 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Amaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaldi, E., Bosio, S. & Malucelli, F. Hyperbolic set covering problems with competing ground-set elements. Math. Program. 134, 323–348 (2012). https://doi.org/10.1007/s10107-010-0431-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0431-1

Keywords

Mathematics Subject Classification (2000)

Navigation