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Abstract We consider the minimization of a sum
∑m

i=1 fi (x) consisting of a large
number of convex component functions fi . For this problem, incremental methods
consisting of gradient or subgradient iterations applied to single components have
proved very effective. We propose new incremental methods, consisting of proximal
iterations applied to single components, as well as combinations of gradient, subgra-
dient, and proximal iterations. We provide a convergence and rate of convergence
analysis of a variety of such methods, including some that involve randomization in
the selection of components. We also discuss applications in a few contexts, including
signal processing and inference/machine learning.
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1 Introduction

In this paper we focus on problems of minimization of a cost consisting of a large
number of component functions, such as
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164 D. P. Bertsekas

minimize
m∑

i=1

fi (x)

subject to x ∈ X, (1)

where fi : �n �→ �, i = 1, . . . , m, are convex, and X is a closed convex set.1 When
m, the number of component functions, is very large there is an incentive to use incre-
mental methods that operate on a single component fi at each iteration, rather than
on the entire cost function. If each incremental iteration tends to make reasonable
progress in some “average“ sense, then depending on the value of m, an incremental
method may significantly outperform (by orders of magnitude) its nonincremental
counterpart, as experience has shown.

Additive cost problems of the form (1) arise in many contexts such as dual optimi-
zation of separable problems, machine learning (regularized least squares, maximum
likelihood estimation, the EM algorithm, neural network training), and others (e.g.,
distributed estimation, the Fermat–Weber problem in location theory, etc). They also
arise in the minimization of an expected value that depends on x and some random
vector; then the sum

∑m
i=1 fi (x) is either an expected value with respect to a discrete

distribution, as for example in stochastic programming, or is a finite sample approx-
imation to an expected value. The author’s paper [16] surveys applications that are
well-suited for the incremental approach. In the case where the components fi are
differentiable, incremental gradient methods take the form

xk+1 = PX
(
xk − αk∇ fik (xk)

)
, (2)

where αk is a positive stepsize, PX (·) denotes projection on X , and ik is the index of the
cost component that is iterated on. Such methods have a long history, particularly for
the unconstrained case (X = �n), starting with the Widrow–Hoff least mean squares
(LMS) method [58] for positive semidefinite quadratic component functions (see e.g.,
[35], and [7, Section 3.2.5]). For nonquadratic cost components, such methods have
been used extensively for the training of neural networks under the generic name
“backpropagation methods. “There are several variants of these methods, which differ
in the stepsize selection scheme, and the order in which components are taken up for
iteration (it could be deterministic or randomized). They are related to gradient meth-
ods with errors in the calculation of the gradient, and are supported by convergence
analyses under various conditions; see Luo [35], Grippo [26,27], Luo and Tseng [34],
Mangasarian and Solodov [36], Bertsekas [12,13], Solodov [54], Tseng [55]. An
alternative method that also computes the gradient incrementally, one component per
iteration, is proposed by Blatt et al. [1]. Stochastic versions of these methods also
have a long history, and are strongly connected with stochastic approximation meth-
ods. The main difference between stochastic and deterministic formulations is that the
former involve sampling a sequence of cost components from an infinite population

1 Throughout the paper, we will operate within the n-dimensional space �n with the standard Euclid-
ean norm, denoted ‖ · ‖. All vectors are considered column vectors and a prime denotes transposition, so
x ′x = ‖x‖2. Throughout the paper we will be using standard terminology of convex optimization, as given
for example in textbooks such as Rockafellar’s [50], or the author’s recent book [15].
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under some statistical assumptions, while in the latter the set of cost components is
predetermined and finite.

Incremental gradient methods typically have a slow asymptotic convergence rate not
only because they are first order gradient-like methods, but also because they require
a diminishing stepsize [such as αk = O(1/k)] for convergence. If αk is instead taken
to be constant, an oscillation whose size depends on ak typically arises, as shown by
[35]. These characteristics are unavoidable in incremental methods, and are typical
of all the methods to be discussed in this paper. However, because of their frequently
fast initial convergence rate, incremental methods are often favored for large problems
where great solution accuracy is not of paramount importance (see [14] and [16] for
heuristic arguments supporting this assertion).

Incremental subgradient methods apply to the case where the component functions
fi are convex and nondifferentiable. They are similar to their gradient counterparts
(2) except that an arbitrary subgradient ∇̃ fik (xk) of the cost component fik is used in
place of the gradient:2

xk+1 = PX

(
xk − αk∇̃ fik (xk)

)
. (3)

Such methods were proposed in the Soviet Union by Kibardin [30], following the
earlier paper by Litvakov [33] (which considered convex nondifferentiable extensions
of linear least squares problems) and other related subsequent proposals. These works
remained unnoticed in the Western literature, where incremental methods were rein-
vented often in different contexts and with different lines of analysis; see Solodov
and Zavriev [53], Ben-Tal et al. [4], Nedić and Bertsekas [39–41], Nedić et al. [38],
Kiwiel [31], Rabbat and Nowak [48,49], Shalev-Shwartz et al. [52], Johansson et al.
[29], Helou and De Pierro [28], Predd et al. [44], and Ram et al. [46,47]. Incremen-
tal subgradient methods have convergence properties that are similar in many ways
to their gradient counterparts, the most important similarity being the necessity of a
diminishing stepsize αk for convergence. The lines of analysis, however, tend to be
different, since incremental gradient methods rely for convergence on the decrease of
the cost function value, while incremental gradient methods rely on the decrease of
the iterates’ distance to the optimal solution set. The line of analysis of the present
paper is of the latter type, similar to earlier works of the author and his collaborators
(see [38–40], and the textbook presentation in [5]).

In this paper, we propose and analyze for the first time incremental methods that
relate to proximal algorithms. The simplest one for problem (1) is of the form

xk+1 = arg min
x∈X

{

fik (x) + 1

2αk
‖x − xk‖2

}

, (4)

which bears the same relation to the proximal minimization algorithm (Martinet [37],
Rockafellar [51]) as the incremental subgradient method (3) bears to the classical

2 In this paper, we use ∇̃ f (x) to denote a subgradient of a convex function f at a vector x . The choice of
∇̃ f (x) from within ∂ f (x) is clear from the context.
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subgradient method.3 Here {αk} is a positive scalar sequence, and we assume that
each fi : �n �→ � is a convex function and X is a closed convex set. The motivation
for this method is that with a favorable structure of the components, the proximal
iteration (3) may be obtained in closed form or be relatively simple, in which case it
may be preferable to a gradient or subgradient iteration. In this connection, we note
that generally, proximal iterations are considered more stable than gradient iterations;
for example in the nonincremental case, they converge essentially for any choice of
αk , but this is not so for gradient methods.

While some cost function components may be well suited for a proximal iteration,
others may not be, so it makes sense to consider combinations of gradient/subgradient
and proximal iterations. In fact nonincremental combinations of gradient and proximal
methods for minimizing the sum of two functions f and h (or more generally, finding
a zero of the sum of two nonlinear operators) have a long history, dating to the split-
ting algorithms of Lions and Mercier [32], and Passty [45], and have become popular
recently (see Beck and Teboulle [9,10], and the references they give to specialized
algorithms, such as shrinkage/thresholding, cf. Sect. 5.1).

In this paper we adopt a unified analytical framework that includes incremental
gradient, subgradient, and proximal methods, and their combinations, and highlights
their common behavior. In particular, we consider the problem

minimize F(x)
def=

m∑

i=1

Fi (x)

subject to x ∈ X, (5)

where for all i , Fi is of the form

Fi (x) = fi (x) + hi (x), (6)

fi : �n �→ � and hi : �n �→ � are real-valued convex (and hence continuous)
functions, and X is a nonempty closed convex set. We implicitly assume here that the
functions fi are suitable for a proximal iteration, while the functions hi are not and
thus may be preferably treated with a subgradient iteration.

One of our algorithms has the form

zk = arg min
x∈X

{

fik (x) + 1

2αk
‖x − xk‖2

}

, (7)

xk+1 = PX

(
zk − αk∇̃hik (zk)

)
, (8)

where ∇̃hik (zk) is an arbitrary subgradient of hik at zk . Note that the iteration is well-
defined because the minimum in Eq. (7) is uniquely attained since fi is continuous

3 In this paper we restrict attention to proximal methods with the quadratic regularization term ‖x − xk‖2.
Our approach is applicable in principle when a nonquadratic term is used instead in order to match the
structure of the given problem. The discussion of such alternative algorithms is beyond our scope, but the
analysis of this paper may serve as a guide for their investigation.
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and ‖x − xk‖2 is real-valued, strictly convex, and coercive, while the subdifferential
∂hi (zk) is nonempty since hi is real-valued. Note also that by choosing all the fi or all
the hi to be identically zero, we obtain as special cases the subgradient and proximal
iterations (3) and (4), respectively.

Both iterations (7) and (8) maintain the sequences {zk} and {xk} within the con-
straint set X , but it may be convenient to relax this constraint for either the proximal
or the subgradient iteration, thereby requiring a potentially simpler computation. This
leads to the algorithm

zk = arg min
x∈�n

{

fik (x) + 1

2αk
‖x − xk‖2

}

, (9)

xk+1 = PX

(
zk − αk∇̃hik (zk)

)
, (10)

where the restriction x ∈ X has been omitted from the proximal iteration, and the
algorithm

zk = xk − αk∇̃hik (xk), (11)

xk+1 = arg min
x∈X

{

fik (x) + 1

2αk
‖x − zk‖2

}

, (12)

where the projection onto X has been omitted from the subgradient iteration. It is also
possible to use different stepsize sequences in the proximal and subgradient iterations,
but for notational simplicity we will not discuss this type of algorithm. Still another
possibility is to replace hik by a linear approximation in an incremental proximal
iteration that also involves fik . This leads to the algorithm

xk+1 = arg min
x∈X

{

fik (x) + hik (xk) + ∇̃hik (xk)
′(x − xk) + 1

2αk
‖x − xk‖2

}

, (13)

which also yields as special cases the subgradient and proximal iterations (3) and (4),
when all the fi or all the hi are identically zero, respectively.

All of the incremental proximal algorithms given above are new to our knowledge.
The closest connection to the existing proximal methods literature is the differentiable
nonincremental case of the algorithm (13) (hi is differentiable, possibly nonconvex,
with Lipschitz continuous gradient, and m = 1), which has been called the “proxi-
mal gradient” method, and has been analyzed and discussed recently in the context
of several machine learning applications by Beck and Teboulle [9,10] (it can also be
interpreted in terms of splitting algorithms [32,45]). We note that contrary to sub-
gradient and incremental methods, the proximal gradient method does not require a
diminishing stepsize for convergence to the optimum. In fact, the line of convergence
analysis of Beck and Teboulle relies on the differentiability of hi and the nonincre-
mental character of the proximal gradient method, and is thus different from ours.

Aside from the introduction of a unified incremental framework within which prox-
imal and subgradient methods can be embedded and combined, the purpose of the
paper is to establish the convergence properties of the incremental methods (7)–(8),
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(9)–(10), (11)–(12), and (13). This includes convergence within a certain error bound
for a constant stepsize, exact convergence to an optimal solution for an appropriately
diminishing stepsize, and improved convergence rate/iteration complexity when ran-
domization is used to select the cost component for iteration. In Sect. 2, we show
that proximal iterations bear a close relation to subgradient iterations, and we use this
relation to write our methods in a form that is convenient for the convergence analy-
sis. In Sect. 3 we discuss convergence with a cyclic rule for component selection. In
Sect. 4, we discuss a randomized component selection rule and we demonstrate a more
favorable convergence rate estimate over the cyclic rule, as well as over the classical
nonincremental subgradient method. In Sect. 5 we discuss some applications.

2 Incremental subgradient-proximal methods

We first show some preliminary properties of the proximal iteration in the follow-
ing proposition. These properties have been commonly used in the literature, but for
convenience of exposition, we collect them here in the form we need them. Part (a)
provides a key fact about incremental proximal iterations. It shows that they are closely
related to incremental subgradient iterations, with the only difference being that the
subgradient is evaluated at the end point of the iteration rather than at the start point.
Part (b) of the proposition provides an inequality that is useful for our convergence
analysis. In the following, we denote by ri(S) the relative interior of a convex set S, and
by dom( f ) the effective domain {x | f (x) < ∞} of a function f : �n �→ (−∞,∞].

Proposition 1 Let X be a nonempty closed convex set, and let f : �n �→ (−∞,∞]
be a closed proper convex function such that ri(X)∩ri (dom( f )) �= ∅. For any xk ∈ �n

and αk > 0, consider the proximal iteration

xk+1 = arg min
x∈X

{

f (x) + 1

2αk
‖x − xk‖2

}

. (14)

(a) The iteration can be written as

xk+1 = PX

(
xk − αk∇̃ f (xk+1)

)
, i = 1, . . . , m, (15)

where ∇̃ f (xk+1) is some subgradient of f at xk+1.
(b) For all y ∈ X, we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk ( f (xk+1) − f (y)) − ‖xk − xk+1‖2

≤ ‖xk − y‖2 − 2αk ( f (xk+1) − f (y)) . (16)

Proof (a) We use the formula for the subdifferential of the sum of the three functions
f, (1/2αk)‖x − xk‖2, and the indicator function of X (cf. Proposition 5.4.6 of [15]),
together with the condition that 0 should belong to this subdifferential at the
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optimum xk+1. We obtain that Eq. (14) holds if and only if

1

αk
(xk − xk+1) ∈ ∂ f (xk+1) + NX (xk+1), (17)

where NX (xk+1) is the normal cone of X at xk+1 [the set of vectors y such that
y′(x − xk+1) ≤ 0 for all x ∈ X , and also the subdifferential of the indicator function
of X at xk+1; see [15], p. 185]. This is true if and only if

xk − xk+1 − αk∇̃ f (xk+1) ∈ NX (xk+1),

for some ∇̃ f (xk+1) ∈ ∂ f (xk+1), which in turn is true if and only if Eq. (15) holds, by
the projection theorem.
(b) By writing ‖xk − y‖2 as ‖xk − xk+1 + xk+1 − y‖2 and expanding, we have

‖xk − y‖2 = ‖xk − xk+1‖2 − 2(xk − xk+1)
′(y − xk+1) + ‖xk+1 − y‖2. (18)

Also since from Eq. (17), 1
αk

(xk − xk+1) is a subgradient at xk+1 of the sum of f and
the indicator function of X , we have (using also the assumption y ∈ X )

f (xk+1) + 1

αk
(xk − xk+1)

′(y − xk+1) ≤ f (y).

Combining this relation with Eq. (18), the result follows. ��
Based on part (a) of the preceding proposition, we see that all the iterations (7)–(8),

(9)–(10), and (13) can be written in an incremental subgradient format:

(a) Iteration (7)–(8) can be written as

zk = PX

(
xk − αk∇̃ fik (zk)

)
, xk+1 = PX

(
zk − αk∇̃hik (zk)

)
, (19)

(b) Iteration (9)–(10) can be written as

zk = xk − αk∇̃ fik (zk), xk+1 = PX

(
zk − αk∇̃hik (zk)

)
, (20)

(c) Iteration (11)–(12) can be written as

zk = xk − αk∇̃hik (xk), xk+1 = PX

(
zk − αk∇̃ fik (xk+1)

)
. (21)

Using Proposition 1(a), we see that iteration (13) can be written into the form (21),
so we will not consider it further. To show this, note that by Proposition 1(b) with

f (x) = fik (x) + hik (xk) + ∇̃hik (xk)
′(x − xk),
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we may write iteration (13) in the form

xk+1 = PX

(
xk − αk∇̃ fik (xk+1) − αk∇̃hik (xk)

)
,

which is just iteration (21). Note that in all the preceding updates, the subgradient
∇̃hik can be any vector in the subdifferential of hik , while the subgradient ∇̃ fik must
be a specific vector in the subdifferential of fik , specified according to Proposition
1(a). Note also that iteration (20) can be written as

xk+1 = PX

(
xk − αk∇̃Fik (zk)

)
,

and resembles the incremental subgradient method for minimizing over X the cost
function

F(x) =
m∑

i=1

Fi (x) =
m∑

i=1

( fi (x) + hi (x))

[cf. Eq. (5)], the only difference being that the subgradient of Fik is taken at zk rather
than xk .

For a convergence analysis, we need to specify the order in which the components
{ fi , hi } are chosen for iteration. We consider two possibilities:

(1) A cyclic order, whereby { fi , hi } are taken up in the fixed deterministic order
1, . . . , m, so that ik is equal to (k modulo m) plus 1. A contiguous block of iter-
ations involving { f1, h1}, . . . , { fm, hm} in this order and exactly once is called
a cycle. We assume that the stepsize αk is constant within a cycle (for all k with
ik = 1 we have αk = αk+1 = · · · = αk+m−1).

(2) A randomized order, whereby at each iteration a component pair { fi , hi } is cho-
sen randomly by sampling over all component pairs with a uniform distribution,
independently of the past history of the algorithm.4

Note that it is essential to include all components in a cycle in the cyclic case, and to
sample according to the uniform distribution in the randomized case, for otherwise
some components will be sampled more often than others, leading to a bias in the con-
vergence process. For the remainder of the paper, we denote by F∗ the optimal value:

F∗ = inf
x∈X

F(x),

4 Another technique for incremental methods, popular in neural network training practice, is to reshuffle
randomly the order of the component functions after each cycle. This alternative order selection scheme
leads to convergence, like the preceding two. Moreover, this scheme has the nice property of allocating
exactly one computation slot to each component in an m-slot cycle (m incremental iterations). By com-
parison, choosing components by uniform sampling allocates one computation slot to each component on
the average, but some components may not get a slot while others may get more than one. A nonzero
variance in the number of slots that any fixed component gets within a cycle, may be detrimental to perfor-
mance, and indicates that reshuffling randomly the order of the component functions after each cycle may
work better; this is consistent with experimental observations shared with the author by B. Recht (private
communication). However, establishing this fact analytically seems difficult, and remains an open question.
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and by X∗ the set of optimal solutions (which could be empty):

X∗ = {
x∗ | x∗ ∈ X, F(x∗) = F∗} .

Also, for a nonempty closed convex set X , we denote by dist(·; X) the distance function
given by

dist(x; X) = min
z∈X

‖x − z‖, x ∈ �n .

In our convergence analysis of Sect. 4, we will use the following well-known
theorem (see e.g., [7,43]). We will use a simpler deterministic version of the theorem
in Sect. 3.

Proposition 2 (Supermartingale Convergence Theorem) Let Yk, Zk, and Wk, k =
0, 1, . . ., be three sequences of random variables and let Fk, k = 0, 1, . . ., be sets of
random variables such that Fk ⊂ Fk+1 for all k. Suppose that:

(1) The random variables Yk, Zk, and Wk are nonnegative, and are functions of the
random variables in Fk .

(2) For each k, we have

E {Yk+1 | Fk} ≤ Yk − Zk + Wk .

(3) There holds, with probability 1,
∑∞

k=0 Wk < ∞.

Then we have
∑∞

k=0 Zk < ∞, and the sequence Yk converges to a nonnegative random
variable Y , with probability 1.

3 Convergence analysis for methods with cyclic order

In this section, we analyze convergence under the cyclic order. We consider a ran-
domized order in the next section. We focus on the sequence {xk} rather than {zk},
which need not lie within X in the case of iterations (20) and (21) when X �= �n . In
summary, the idea that guides the analysis is to show that the effect of taking subgra-
dients of fi or hi at points near xk (e.g., at zk rather than at xk) is inconsequential, and
diminishes as the stepsize αk becomes smaller, as long as some subgradients relevant
to the algorithms are uniformly bounded in norm by some constant. In particular, we
assume the following throughout this section.

Assumption 1 (For iterations (19) and (20)) There is a constant c ∈ � such that for
all k

max
{
‖∇̃ fik (zk)‖, ‖∇̃hik (zk)‖

}
≤ c. (22)

Furthermore, for all k that mark the beginning of a cycle (i.e., all k > 0 with ik = 1),
we have for all j = 1, . . . , m,

max
{

f j (xk) − f j (zk+ j−1), h j (xk) − h j (zk+ j−1)
} ≤ c ‖xk − zk+ j−1‖. (23)
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Assumption 2 (For iteration (21)) There is a constant c ∈ � such that for all k

max
{
‖∇̃ fik (xk+1)‖, ‖∇̃hik (xk)‖

}
≤ c. (24)

Furthermore, for all k that mark the beginning of a cycle (i.e., all k > 0 with ik = 1),
we have for all j = 1, . . . , m,

max
{

f j (xk) − f j (xk+ j−1), h j (xk) − h j (xk+ j−1)
} ≤ c ‖xk − xk+ j−1‖, (25)

f j (xk+ j−1) − f j (xk+ j ) ≤ c ‖xk+ j−1 − xk+ j‖. (26)

Note that conditions (23) and (25) are satisfied if for each j and k, there is a sub-
gradient of f j at xk and a subgradient of h j at xk , whose norms are bounded by c.
Conditions that imply the preceding assumptions are that:

(a) For algorithm (19): fi and hi are Lipschitz continuous over X .
(b) For algorithms (20) and (21): fi and hi are Lipschitz continuous over �n .
(c) For all algorithms (19), (20), and (21): fi and hi are polyhedral [this is a special

case of (a) and (b)].
(d) The sequences {xk} and {zk} are bounded [since then fi and hi , being real-valued

and convex, are Lipschitz continuous over any bounded set that contains {xk}
and {zk} (see e.g., [15], Proposition 5.4.2)].

The following proposition provides a key estimate.

Proposition 3 Let {xk} be the sequence generated by any one of the algorithms
(19)–(21), with a cyclic order of component selection. Then for all y ∈ X and all
k that mark the beginning of a cycle (i.e., all k with ik = 1), we have

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk (F(xk) − F(y)) + α2
k βm2c2, (27)

where β = 1
m + 4 in the case of (19) and (20), and β = 5

m + 4 in the case of (21).

Proof We first prove the result for algorithms (19) and (20), and then indicate the
modifications necessary for algorithm (21). Using Proposition 1(b), we have for all
y ∈ X and k,

‖zk − y‖2 ≤ ‖xk − y‖2 − 2αk
(

fik (zk) − fik (y)
)
. (28)

Also, using the nonexpansion property of the projection [i.e., ‖PX (u) − PX (v)‖ ≤
‖u − v‖ for all u, v ∈ �n], the definition of subgradient, and Eq. (22), we obtain for
all y ∈ X and k,

‖xk+1 − y‖2 = ∥
∥PX

(
zk − αk∇̃hik (zk)

)
− y

∥
∥2

≤ ‖zk − αk∇̃hik (zk) − y‖2

≤ ‖zk − y‖2 − 2αk∇̃hik (zk)
′(zk − y) + α2

k

∥
∥
∥∇̃hik (zk)

∥
∥
∥

2

≤ ‖zk − y‖2 − 2αk
(
hik (zk) − hik (y)

) + α2
k c2. (29)
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Combining Eqs. (28) and (29), and using the definition Fj = f j + h j , we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk
(

fik (zk) + hik (zk) − fik (y) − hik (y)
) + α2

k c2

= ‖xk − y‖2 − 2αk
(
Fik (zk) − Fik (y)

) + α2
k c2. (30)

Let now k mark the beginning of a cycle (i.e., ik = 1). Then at iteration k + j − 1,

j = 1, . . . , m, the selected components are { f j , h j }, in view of the assumed cyclic
order. We may thus replicate the preceding inequality with k replaced by k+1, . . . , k+
m − 1, and add to obtain

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk

m∑

j=1

(
Fj (zk+ j−1) − Fj (y)

) + mα2
k c2,

or equivalently, since F = ∑m
j=1 Fj ,

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk (F(xk) − F(y)) + mα2
k c2

+2αk

m∑

j=1

(
Fj (xk) − Fj (zk+ j−1)

)
. (31)

The remainder of the proof deals with appropriately bounding the last term above.
From Eq. (23), we have for j = 1, . . . , m,

Fj (xk) − Fj (zk+ j−1) ≤ 2c ‖xk − zk+ j−1‖. (32)

We also have

‖xk − zk+ j−1‖ ≤ ‖xk − xk+1‖ + · · · + ‖xk+ j−2 − xk+ j−1‖ + ‖xk+ j−1 − zk+ j−1‖,
(33)

and by the definition of the algorithms (19) and (20), the nonexpansion property
of the projection, and Eq. (22), each of the terms in the right-hand side above is
bounded by 2αkc, except for the last, which is bounded by αkc. Thus Eq. (33) yields
‖xk − zk+ j−1‖ ≤ αk(2 j − 1)c, which together with Eq. (32), shows that

Fj (xk) − Fj (zk+ j−1) ≤ 2αkc2(2 j − 1). (34)

Combining Eqs. (31) and (34), we have

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk (F(xk) − F(y)) + mα2
k c2 + 4α2

k c2
m∑

j=1

(2 j − 1),
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and finally

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk (F(xk) − F(y)) + mα2
k c2 + 4α2

k c2m2,

which is of the form (27) with β = 1
m + 4.

For the algorithm (21), a similar argument goes through using Assumption 2. In
place of Eq. (28), using the nonexpansion property of the projection, the definition of
subgradient, and Eq. (24), we obtain for all y ∈ X and k ≥ 0,

‖zk − y‖2 ≤ ‖xk − y‖2 − 2αk
(
hik (xk) − hik (y)

) + α2
k c2, (35)

while in place of Eq. (29), using Proposition 1(b), we have

‖xk+1 − y‖2 ≤ ‖zk − y‖2 − 2αk
(

fik (xk+1) − fik (y)
)
. (36)

Combining these equations, in analogy with Eq. (30), we obtain

||xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk
(

fik (xk+1) + hik (xk) − fik (y) − hik (y)
) + α2

k c2

= ‖xk − y‖2 − 2αk
(
Fik (xk) − Fik (y)

) + α2
k c2 + 2αk

(
fik (xk) − fik (xk+1)

)
.

(37)

As earlier, we let k mark the beginning of a cycle (i.e., ik = 1). We replicate the
preceding inequality with k replaced by k + 1, . . . , k + m − 1, and add to obtain
[in analogy with Eq. (31)]

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk (F(xk) − F(y)) + mα2
k c2

+2αk

m∑

j=1

(
Fj (xk) − Fj (xk+ j−1)

) + 2αk

m∑

j=1

(
f j (xk+ j−1) − f j (xk+ j )

)
. (38)

[Note that relative to Eq. (31), the preceding equation contains an extra last term,
which results from a corresponding extra term in Eq. (37) relative to Eq. (30). This
accounts for the difference in the value of β in the statement of the proposition.]

We now bound the two sums in Eq. (38), using Assumption 2. From Eq. (25), we
have

Fj (xk) − Fj (xk+ j−1)

≤ 2c‖xk − xk+ j−1‖ ≤ 2c
(‖xk − xk+1‖ + · · · + ‖xk+ j−2 − xk+ j−1‖

)
,

and since by Eq. (24) and the definition of the algorithm, each of the norm terms in
the right-hand side above is bounded by 2αkc,

Fj (xk) − Fj (xk+ j−1) ≤ 4αkc2( j − 1).
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Also from Eqs. (24) and (47), and the nonexpansion property of the projection, we
have

f j (xk+ j−1) − f j (xk+ j ) ≤ c ‖xk+ j−1 − xk+ j‖ ≤ 2αkc2.

Combining the preceding relations and adding, we obtain

2αk

m∑

j=1

(
Fj (xk) − Fj (xk+ j−1)

) + 2αk

m∑

j=1

(
f j (xk+ j−1) − f j (xk+ j )

)

≤ 8α2
k c2

m∑

j=1

( j − 1) + 4α2
k c2m

= 4α2
k c2m2 + 4α2

k c2m

=
(

4 + 4

m

)

α2
k c2m2,

which together with Eq. (38), yields Eq. (27) with β = 4 + 5
m . ��

Among other things, Proposition 3 guarantees that with a cyclic order, given the
iterate xk at the start of a cycle and any point y ∈ X having lower cost than xk , the
algorithm yields a point xk+m at the end of the cycle that will be closer to y than xk ,
provided the stepsize αk is sufficiently small [less than 2 (F(xk) − F(y)) /βm2c2]. In
particular, for any ε > 0 and assuming that there exists an optimal solution x∗, either

we are within αkβm2c2

2 + ε of the optimal value,

F(xk) ≤ F(x∗) + αkβm2c2

2
+ ε,

or else the squared distance to x∗ will be strictly decreased by at least 2αkε,

‖xk+m − x∗‖2 < ‖xk − x∗‖2 − 2αkε.

Thus, using this argument, we can provide convergence results for various stepsize
rules, and this is done in the next two subsections.

3.1 Convergence within an error bound for a constant stepsize

For a constant stepsize (αk ≡ α), convergence can be established to a neighborhood of
the optimum, which shrinks to 0 as α → 0. We show this in the following proposition.

Proposition 4 Let {xk} be the sequence generated by any one of the algorithms
(19)–(21), with a cyclic order of component selection, and let the stepsize αk be fixed
at some positive constant α.
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(a) If F∗ = −∞, then

lim inf
k→∞ F(xk) = F∗.

(b) If F∗ > −∞, then

lim inf
k→∞ F(xk) ≤ F∗ + αβm2c2

2
,

where c and β are the constants of Proposition 3.

Proof We prove (a) and (b) simultaneously. If the result does not hold, there must
exist an ε > 0 such that

lim inf
k→∞ F(xkm) − αβm2c2

2
− 2ε > F∗.

Let ŷ ∈ X be such that

lim inf
k→∞ F(xkm) − αβm2c2

2
− 2ε ≥ F(ŷ),

and let k0 be large enough so that for all k ≥ k0, we have

F(xkm) ≥ lim inf
k→∞ F(xkm) − ε.

By combining the preceding two relations, we obtain for all k ≥ k0,

F(xkm) − F(ŷ) ≥ αβm2c2

2
+ ε.

Using Proposition 3 for the case where y = ŷ together with the above relation, we
obtain for all k ≥ k0,

‖x(k+1)m − ŷ‖2 ≤ ‖xkm − ŷ‖2 − 2α
(
F(xkm) − F(ŷ)

) + βα2m2c2

≤ ‖xkm − ŷ‖2 − 2αε.

This relation implies that for all k ≥ k0,

‖x(k+1)m − ŷ‖2 ≤ ‖x(k−1)m − ŷ‖2 − 4αε ≤ · · · ≤ ‖xk0 − ŷ‖2 − 2(k + 1 − k0)αε,

which cannot hold for k sufficiently large—a contradiction. ��
The next proposition gives an estimate of the number of iterations needed to guar-

antee a given level of optimality up to the threshold tolerance αβm2c2/2 given in the
preceding proposition.
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Proposition 5 Let {xk} be a sequence generated as in Proposition 4. Then for ε > 0,
we have

min
0≤k≤N

F(xk) ≤ F∗ + αβm2c2 + ε

2
, (39)

where N is given by

N = m

⌊
dist(x0; X∗)2

αε

⌋

. (40)

Proof Assume, to arrive at a contradiction, that Eq. (39) does not hold, so that for all
k with 0 ≤ km ≤ N , we have

F(xkm) > F∗ + αβm2c2 + ε

2
.

By using this relation in Proposition 3 with αk replaced by α and y equal to the vector
of X∗ that is at minimum distance from xkm , we obtain for all k with 0 ≤ km ≤ N ,

dist(x(k+1)m; X∗)2 ≤ dist(xkm; X∗)2 − 2α
(
F(xkm) − F∗)+α2βm2c2

≤ dist(xkm; X∗)2 − (α2βm2c2 + αε) + α2βm2c2

= dist(xkm; X∗)2 − αε.

Adding the above inequalities for k = 0, . . . , N
m , we obtain

dist(xN+m; X∗)2 ≤ dist(x0; X∗)2 −
(

N

m
+ 1

)

αε,

so that
(

N

m
+ 1

)

αε ≤ dist(x0; X∗)2,

which contradicts the definition of N . ��
According to Proposition 5, to achieve a cost function value within O(ε) of the opti-

mal, the term αβm2c2 must also be of order O(ε), so α must be of order O(ε/m2c2),
and from Eq. (40), the number of necessary iterations N is O(m3c2/ε2), and the
number of necessary cycles is O

(
(mc)2/ε2)

)
. This is the same type of estimate as

for the nonincremental subgradient method [i.e., O(1/ε2), counting a cycle as one
iteration of the nonincremental method, and viewing mc as a Lipschitz constant for
the entire cost function F], and does not reveal any advantage for the incremental
methods given here. However, in the next section, we demonstrate a much more favor-
able iteration complexity estimate for the incremental methods that use a randomized
order of component selection.
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3.2 Exact convergence for a diminishing stepsize

We also obtain an exact convergence result for the case where the stepsize αk dimin-
ishes to zero, but satisfies

∑∞
k=0 αk = ∞ (so that the method can “travel” infinitely

far if necessary).

Proposition 6 Let {xk} be the sequence generated by any one of the algorithms
(19)–(21), with a cyclic order of component selection, and let the stepsize αk

satisfy

lim
k→∞ αk = 0,

∞∑

k=0

αk = ∞.

Then,

lim inf
k→∞ F(xk) = F ∗.

Furthermore, if X∗ is nonempty and

∞∑

k=0

α2
k < ∞,

then {xk} converges to some x∗ ∈ X∗.

Proof For the first part, it will be sufficient to show that lim infk→∞ F(xkm) = F ∗.
Assume, to arrive at a contradiction, that there exists an ε > 0 such that

lim inf
k→∞ F(xkm) − 2ε > F ∗.

Then there exists a point ŷ ∈ X such that

lim inf
k→∞ F(xkm) − 2ε > F(ŷ).

Let k0 be large enough so that for all k ≥ k0, we have

F(xkm) ≥ lim inf
k→∞ F(xkm) − ε.

By combining the preceding two relations, we obtain for all k ≥ k0,

F(xkm) − F(ŷ) > ε.
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By setting y = ŷ in Proposition 3, and by using the above relation, we have for all
k ≥ k0,

‖x(k+1)m − ŷ‖2 ≤ ‖xkm − ŷ‖2 − 2αkmε + βα2
kmm2c2

= ‖xkm − ŷ‖2 − αkm

(
2ε − βαkmm2c2

)
.

Since αk → 0, without loss of generality, we may assume that k0 is large enough so
that

2ε − βαkm2c2 ≥ ε, ∀ k ≥ k0.

Therefore for all k ≥ k0, we have

‖x(k+1)m − ŷ‖2 ≤ ‖xkm − ŷ‖2 − αkmε ≤ · · · ≤ ‖xk0m − ŷ‖2 − ε

k∑

�=k0

α�m,

which cannot hold for k sufficiently large. Hence lim infk→∞ F(xkm) = F ∗.
To prove the second part of the proposition, note that from Proposition 3, for every

x∗ ∈ X∗ and k ≥ 0 we have

‖x(k+1)m − x∗‖2 ≤ ‖xkm − x∗‖2 − 2αkm
(
F(xkm) − F(x∗)

) + α2
kmβm2c2. (41)

From the Supermartingale Convergence Theorem (Proposition 2) and the hypothesis∑∞
k=0 α2

k < ∞, we see that {‖xkm − x∗‖} converges for every x∗ ∈ X∗.5 Since then
{xkm} is bounded, it has a limit point x̄ ∈ X that satisfies

F(x̄) = lim inf
k→∞ F(xkm) = F ∗.

This implies that x̄ ∈ X∗, so it follows that {‖xkm − x̄‖} converges, and that the entire
sequence {xkm} converges to x̄ (since x̄ is a limit point of {xkm}).

Finally, to show that the entire sequence {xk} also converges to x̄ , note that from
Eqs. (22) and (24), and the form of the iterations (19)–(21), we have ‖xk+1 − xk‖ ≤
2αkc → 0. Since {xkm} converges to x̄ , it follows that {xk} also converges to x̄ . ��

4 Convergence analysis for methods with randomized order

In this section, we analyze our algorithms for the randomized component selection
order and a constant stepsize α. The randomized versions of iterations (19), (20), and
(21), are

5 Actually we use here a deterministic version/special case of the theorem, where Yk , Zk , and Wk are
nonnegative scalar sequences satisfying Yk+1 ≤ Yk − Zk + Wk with

∑∞
k=0 Wk < ∞. Then the sequence

Yk must converge. This version is given with proof in many sources, including [7] (Lemma 3.4), and [8]
(Lemma 1).
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zk = PX

(
xk − α∇̃ fωk (zk)

)
, xk+1 = PX

(
zk − α∇̃hωk (zk)

)
, (42)

zk = xk − α∇̃ fωk (zk), xk+1 = PX

(
zk − α∇̃hωk (zk)

)
, (43)

zk = xk − αk∇̃hωk (xk), xk+1 = PX

(
zk − αk∇̃ fωk (xk+1)

)
, (44)

respectively, where {ωk} is a sequence of random variables, taking values from the
index set {1, . . . , m}.

We assume the following throughout the present section.

Assumption 3 (For iterations (42) and (43)) (a) {ωk} is a sequence of random
variables, each uniformly distributed over {1, . . . , m}, and such that for each k, ωk is
independent of the past history {xk, zk−1, xk−1, . . . , z0, x0}.
(b) There is a constant c ∈ � such that for all k, we have with probability 1

max
{
‖∇̃ fi (z

i
k)‖, ‖∇̃hi (z

i
k)‖

}
≤ c, ∀ i = 1, . . . , m, (45)

max
{

fi (xk) − fi (z
i
k), hi (xk) − hi (z

i
k)

}
≤ c‖xk − zi

k‖, ∀ i = 1, . . . , m,

(46)

where zi
k is the result of the proximal iteration, starting at xk if ωk would be i , i.e.,

zi
k = arg min

x∈X

{

fi (x) + 1

2αk
‖x − xk‖2

}

,

in the case of iteration (42), and

zi
k = arg min

x∈�n

{

fi (x) + 1

2αk
‖x − xk‖2

}

,

in the case of iteration (43).

Assumption 4 (For iteration (44)) (a) {ωk} is a sequence of random variables, each
uniformly distributed over {1, . . . , m}, and such that for each k, ωk is independent of
the past history {xk, zk−1, xk−1, . . . , z0, x0}.
(b) There is a constant c ∈ � such that for all k, we have with probability 1

max
{
‖∇̃ fi (xi

k+1)‖, ‖∇̃hi (xk)‖
}

≤ c, ∀ i = 1, . . . , m, (47)

fi (xk) − fi (xi
k+1) ≤ c‖xk − xi

k+1‖, ∀ i = 1, . . . , m, (48)

where xi
k+1 is the result of the iteration, starting at xk if ωk would be i , i.e.,

xi
k+1 = PX

(
zi

k − αk∇̃ fi (xi
k+1)

)
,
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with

zi
k = xk − αk∇̃hi (xk).

Note that condition (46) is satisfied if there exist subgradients of fi and hi at xk with
norms less than or equal to c. Thus the conditions (45) and (46) are similar, the main
difference being that the first applies to “slopes” of fi and hi at zi

k while the second
applies to the “slopes” of fi and hi at xk . There is an analogous similarity between
conditions (47) and (48). As in the case of Assumptions 1 and 2, these conditions are
guaranteed by Lipschitz continuity assumptions on fi and hi . We will first deal with
the case of a constant stepsize, and then consider the case of a diminishing stepsize.

Proposition 7 Let {xk} be the sequence generated by one of the randomized incre-
mental methods (42)–(44), and let the stepsize αk be fixed at some positive constant α.

(a) If F∗ = −∞, then with probability 1

inf
k≥0

F(xk) = F∗.

(b) If F∗ > −∞, then with probability 1

inf
k≥0

F(xk) ≤ F∗ + αβmc2

2
,

where β = 5.

Proof Consider first algorithms (42) and (43). By adapting the proof argument of
Proposition 3 with Fik replaced by Fωk [cf. Eq. (30)], we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2α
(
Fωk (zk) − Fωk (y)

) + α2c2, ∀ y ∈ X, k ≥ 0.

By taking the conditional expectation with respect to Fk = {xk, zk−1, . . . , z0, x0},
and using the fact that ωk takes the values i = 1, . . . , m with equal probability 1/m,
we obtain for all y ∈ X and k,

E
{
‖xk+1 − y‖2 | Fk

}
≤ ‖xk − y‖2 − 2αE

{
Fωk (zk) − Fωk (y) | Fk

} + α2c2

= ‖xk − y‖2 − 2α

m

m∑

i=1

(
Fi (z

i
k) − Fi (y)

)
+ α2c2

= ‖xk − y‖2 − 2α

m
(F(xk) − F(y)) + 2α

m

m∑

i=1

(
Fi (xk) − Fi (z

i
k)

)
+ α2c2. (49)

By using Eqs. (45) and (46),

m∑

i=1

(
Fi (xk) − Fi (z

i
k)

)
≤ 2c

m∑

i=1

‖xk − zi
k‖ = 2cα

m∑

i=1

‖∇̃ fi (z
i
k)‖ ≤ 2mαc2.
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By combining the preceding two relations, we obtain

E{‖xk+1 − y‖2 | Fk} ≤ ‖xk − y‖2 − 2α

m
(F(xk) − F(y)) + 4α2c2 + α2c2

= ‖xk − y‖2 − 2α

m
(F(xk) − F(y)) + βα2c2, (50)

where β = 5.
The preceding equation holds also for algorithm (44). To see this note that Eq. (37)

yields for all y ∈ X

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2α
(
Fωk (xk) − Fωk (y)

) + α2c2 + 2α
(

fωk (xk) − fωk (xk+1)
)
.

(51)

and similar to Eq. (49), we obtain

E{‖xk+1 − y‖2 | Fk} ≤ &|xk − y‖2 − 2α

m
(F(xk) − F(y))

+2α

m

m∑

i=1

(
fi (xk) − fi (xi

k+1)
)

+ α2c2. (52)

From Eq. (48), we have

fi (xk) − fi (xi
k+1) ≤ c‖xk − xi

k+1‖,

and from Eq. (47) and the nonexpansion property of the projection,

‖xk − xi
k+1‖ ≤

∥
∥
∥xk − zi

k + α∇̃ fi (xi
k+1)

∥
∥
∥ =

∥
∥
∥xk − xk + α∇̃hi (xk) + α∇̃ fi (xi

k+1)

∥
∥
∥ ≤ 2αc.

Combining the preceding inequalities, we obtain Eq. (50) with β = 5.
Let us fix a positive scalar γ , consider the level set Lγ defined by

Lγ =
⎧
⎨

⎩

{
x ∈ X | F(x) < −γ + 1 + αβmc2

2

}
if F∗ = −∞,

{
x ∈ X | F(x) < F∗ + 2

γ
+ αβmc2

2

}
if F∗ > −∞,

and let yγ ∈ X be such that

F(yγ ) =
{−γ if F∗ = −∞,

F∗ + 1
γ

if F∗ > −∞,

Note that yγ ∈ Lγ by construction. Define a new process {x̂k} that is identical to {xk},
except that once xk enters the level set Lγ , the process terminates with x̂k = yγ . We
will now argue that for any fixed γ, {x̂k} (and hence also {xk}) will eventually enter
Lγ , which will prove both parts (a) and (b).
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Using Eq. (50) with y = yγ , we have

E
{
‖x̂k+1 − yγ ‖2 | Fk

}
≤ ‖x̂k − yγ ‖2 − 2α

m

(
F(x̂k) − F(yγ )

) + βα2c2,

from which

E
{
‖x̂k+1 − yγ ‖2 | Fk

}
≤ ‖x̂k − yγ ‖2 − vk, (53)

where

vk =
{ 2α

m

(
F(x̂k) − F(yγ )

) − βα2c2 if x̂k /∈ Lγ ,

0 if x̂k = yγ ,

The idea of the subsequent argument is to show that as long as x̂k /∈ Lγ , the scalar vk

(which is a measure of progress) is strictly positive and bounded away from 0.

(a) Let F∗ = −∞. Then if x̂k /∈ Lγ , we have

vk = 2α

m

(
F(x̂k) − F(yγ )

) − βα2c2

≥ 2α

m

(

−γ + 1 + αβmc2

2
+ γ

)

− βα2c2

= 2α

m
.

Since vk = 0 for x̂k ∈ Lγ , we have vk ≥ 0 for all k, and by Eq. (53) and the Su-
permartingale Convergence Theorem (cf. Proposition 2), we obtain

∑∞
k=0 vk < ∞

implying that x̂k ∈ Lγ for sufficiently large k, with probability 1. Therefore, in the
original process we have with probability 1

inf
k≥0

F(xk) ≤ −γ + 1 + αβmc2

2
.

Letting γ → ∞, we obtain infk≥0 F(xk) = −∞ with probability 1.
(b) Let F∗ > −∞. Then if x̂k /∈ Lγ , we have

vk = 2α

m

(
F(x̂k) − F(yγ )

) − βα2c2

≥ 2α

m

(

F∗ + 2

γ
+ αβmc2

2
− F∗ − 1

γ

)

− βα2c2

= 2α

mγ
.

Hence, vk ≥ 0 for all k, and by the Supermartingale Convergence Theorem, we have∑∞
k=0 vk < ∞ implying that x̂k ∈ Lγ for sufficiently large k, so that in the original
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process,

inf
k≥0

F(xk) ≤ F∗ + 2

γ
+ αβmc2

2

with probability 1. Letting γ → ∞, we obtain infk≥0 F(xk) ≤ F∗ + αβmc2/2. ��

4.1 Error bound for a constant stepsize

By comparing Proposition 7(b) with Proposition 4(b), we see that when F∗ > −∞
and the stepsize α is constant, the randomized methods (42), (43), and (44), have a bet-
ter error bound (by a factor m) than their nonrandomized counterparts. It is important
to note that the bound of Proposition 4(b) is tight in the sense that for a bad prob-
lem/cyclic order we have lim infk→∞ F(xk) − F∗ = O(αm2c2) (an example where
fi ≡ 0 is given in p. 514 of [5]). By contrast the randomized method will get to within
O(αmc2) with probability 1 for any problem, according to Proposition 7(b). Thus the
randomized order provides a worst-case performance advantage over the cyclic order:
we do not run the risk of choosing by accident a bad cyclic order. Note, however,
that this assessment is relevant to asymptotic convergence; the cyclic and randomized
order algorithms appear to perform comparably when far from convergence for the
same stepsize α.

A related convergence rate result is provided by the following proposition, which
should be compared with Proposition 5 for the nonrandomized methods.

Proposition 8 Assume that X∗ is nonempty. Let {xk} be a sequence generated as in
Proposition 7. Then for any positive scalar ε, we have with probability 1

min
0≤k≤N

F(xk) ≤ F∗ + αβmc2 + ε

2
, (54)

where N is a random variable with

E {N } ≤ m
dist(x0; X∗)2

αε
. (55)

Proof Let ŷ be some fixed vector in X∗. Define a new process {x̂k} which is identical
to {xk} except that once xk enters the level set

L =
{

x ∈ X
∣
∣
∣ F(x) < F∗ + αβmc2 + ε

2

}

,

123



Incremental proximal methods 185

the process {x̂k} terminates at ŷ. Similar to the proof of Proposition 7 [cf. Eq. (50)
with y being the closest point of x̂k in X∗], for the process {x̂k} we obtain for all k,

E
{

dist(x̂k+1; X∗)2 | Fk

}
≤ E

{
‖x̂k+1 − y‖2 | Fk

}

≤ dist(x̂k; X∗)2 − 2α

m

(
F(x̂k) − F∗) + βα2c2

= dist(x̂k; X∗)2 − vk, (56)

where Fk = {xk, zk−1, . . . , z0, x0} and

vk =
{ 2α

m

(
F(x̂k) − F∗) − βα2c2 if x̂k �∈ L ,

0 otherwise.

In the case where x̂k �∈ L , we have

vk ≥ 2α

m

(

F∗ + αβmc2 + ε

2
− F∗

)

− βα2c2 = αε

m
. (57)

By the Supermartingale Convergence Theorem (cf. Proposition 2), from Eq. (56) we
have

∞∑

k=0

vk < ∞

with probability 1, so that vk = 0 for all k ≥ N , where N is a random variable. Hence
x̂N ∈ L with probability 1, implying that in the original process we have

min
0≤k≤N

F(xk) ≤ F∗ + αβmc2 + ε

2

with probability 1. Furthermore, by taking the total expectation in Eq. (56), we obtain
for all k,

E
{

dist(x̂k+1; X∗)2
}

≤ E
{

dist(x̂k; X∗)2
}

− E{vk} ≤ dist(x̂0; X∗)2 − E

⎧
⎨

⎩

k∑

j=0

v j

⎫
⎬

⎭
,

where in the last inequality we use the facts x̂0 = x0 and E
{
dist(x̂0; X∗)2

} =
dist(x̂0; X∗)2. Therefore, letting k → ∞, and using the definition of vk and
Eq. (57),

dist(x̂0; X∗)2 ≥ E

{ ∞∑

k=0

vk

}

= E

{
N−1∑

k=0

vk

}

≥ E

{
Nαε

m

}

= αε

m
E {N } .

��
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A comparison of Propositions 5 and 8 again suggests an advantage for the
randomized order: compared to the cyclic order, it achieves a much smaller error tol-
erance (a factor of m), in the same expected number of iterations. Note, however, that
the preceding assessment is based on upper bound estimates, which may not be sharp
on a given problem [although the bound of Proposition 4(b) is tight with a worst-case
problem selection as mentioned earlier; see [5], p. 514]. Moreover, the comparison
based on worst-case values versus expected values may not be strictly valid. In par-
ticular, while Proposition 5 provides an upper bound estimate on N , Proposition 8
provides an upper bound estimate on E{N }, which is not quite the same.

4.2 Exact convergence for a diminishing stepsize rule

We finally consider the case of a diminishing stepsize rule and obtain an exact con-
vergence result similar to Proposition 6 for the case of a randomized order selection.

Proposition 9 Let {xk} be the sequence generated by one of the randomized incre-
mental methods (42)–(44), and let the stepsize αk satisfy

lim
k→∞ αk = 0,

∞∑

k=0

αk = ∞.

Then, with probability 1,

lim inf
k→∞ F(xk) = F ∗.

Furthermore, if X∗ is nonempty and
∑∞

k=0 α2
k < ∞, then {xk} converges to some

x∗ ∈ X∗ with probability 1.

Proof The proof of the first part is nearly identical to the corresponding part of Prop-
osition 6. To prove the second part, similar to the proof of Proposition 7, we obtain
for all k and all x∗ ∈ X∗,

E
{
‖xk+1 − x∗‖2 | Fk

}
≤ ‖xk − x∗‖2 − 2αk

m

(
F(xk) − F∗) + βα2

k c2 (58)

[cf. Eq. (50) with α and y replaced with αk and x∗, respectively], where Fk =
{xk, zk−1, . . . , z0, x0}. By the Supermartingale Convergence Theorem (Proposition 2),
for each x∗ ∈ X∗, we have for all sample paths in a set 	x∗ of probability 1

∞∑

k=0

2αk

m

(
F(xk) − F∗) < ∞, (59)

and the sequence {‖xk − x∗‖} converges.
Let {vi } be a countable subset of the relative interior ri(X∗) that is dense in X∗ [such

a set exists since ri(X∗) is a relatively open subset of the affine hull of X∗; an example
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of such a set is the intersection of X∗ with the set of vectors of the form x∗+∑p
i=1 riξi ,

where ξ1, . . . , ξp are basis vectors for the affine hull of X∗ and ri are rational num-
bers]. The intersection 	̄ = ∩∞

i=1	vi has probability 1, since its complement 	̄c is
equal to ∪∞

i=1	
c
vi

and

Prob
(∪∞

i=1	
c
vi

) ≤
∞∑

i=1

Prob
(
	c

vi

) = 0.

For each sample path in 	̄, all the sequences {‖xk − vi‖} converge so that {xk}
is bounded, while by the first part of the proposition [or Eq. (59)] lim infk→∞
F(xk) = F∗. Therefore, {xk} has a limit point x̄ in X∗. Since {vi } is dense in X∗,
for every ε > 0 there exists vi(ε) such that

∥
∥x̄ − vi(ε)

∥
∥ < ε. Since the sequence{‖xk − vi(ε)‖

}
converges and x̄ is a limit point of {xk}, we have limk→∞

∥
∥xk −vi(ε)

∥
∥ <

ε, so that

lim sup
k→∞

‖xk − x̄‖ ≤ lim
k→∞

∥
∥xk − vi(ε)

∥
∥ + ∥

∥vi(ε) − x̄
∥
∥ < 2ε.

By taking ε → 0, it follows that xk → x̄ . ��

5 Applications

In this section we illustrate our methods in the context of two types of practical appli-
cations, and discuss relations with known algorithms.

5.1 Regularized least squares

Many problems in statistical inference, machine learning, and signal processing
involve minimization of a sum of component functions fi (x) that correspond to errors
between data and the output of a model that is parameterized by a vector x . A classical
example is least squares problems, where fi is quadratic. Often a convex regularization
function R(x) is added to the least squares objective, to induce desirable properties of
the solution. This gives rise to problems of the form

minimize R(x) + 1
2

m∑

i=1

(c′
i x − di )

2

subject to x ∈ �n, (60)

where ci and di are given vectors and scalars, respectively. When R is differentiable,
and either m is very large or the data (ci , di ) become available sequentially over time,
it makes sense to consider incremental gradient methods, which have a long history of
applications over the last 50 years, starting with the Widrow–Hoff least mean squares
(LMS) method [58].
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The classical type of regularization involves a quadratic function R (as in classical
regression and the LMS method), but nondifferentiable regularization functions have
become increasingly important recently. On the other hand, to apply our incremental
methods, a quadratic R is not essential. What is important is that R has a simple form
that facilitates the use of proximal algorithms, such as for example a separable form, so
that the proximal iteration on R is simplified through decomposition. As an example,
consider the �1-regularization problem, where

R(x) = γ ‖x‖1 = γ

n∑

j=1

|x j |, (61)

γ is a positive scalar, and x j is the j th coordinate of x . Then the proximal iteration

zk = arg min
x∈�n

{

γ ‖x‖1 + 1

2αk
‖x − xk‖2

}

decomposes into the n scalar minimizations

z j
k = arg min

x j ∈�

{

γ |x j | + 1

2αk
|x j − x j

k |2
}

, j = 1, . . . , n,

and can be done in closed form

z j
k =

⎧
⎪⎨

⎪⎩

x j
k − γαk if γαk ≤ x j

k ,

x j
k if − γαk < x j

k < γαk, j = 1, . . . , n.

x j
k + γαk if x j

k ≤ −γαk,

(62)

We refer to Figueiredo et al. [24,57], Beck and Teboulle [10], and the references given
there, for a discussion of a broad variety of applications in estimation and signal pro-
cessing problems, where nondifferentiable regularization functions play an important
role.

We now note that the incremental algorithms of this paper are well-suited for
solution of �1-regularization problems of the form (60)–(61). For example, the kth
incremental iteration may consist of selecting a data pair (cik , dik ) and performing a
proximal iteration of the form (62) to obtain zk , followed by a gradient iteration on

the component 1
2

(
c′

ik
x − dik

)2
, starting at zk :

xk+1 = zk − αkcik

(
c′

ik
zk − dik

)
.

This algorithm is the special case of the algorithms (19)–(21) (here X = �n , and all
three algorithms coincide), with fi (x) being γ ‖x‖1 (we use m copies of this function)
and hi (x) = 1

2

(
c′

i x − di
)2. It can be viewed as an incremental version of a popu-

lar class of algorithms in signal processing, known as iterative shrinkage/thresholding
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(see Chambolle et al. [18], Figueiredo and Nowak [23], Daubechies, et al. [21], Comb-
ettes and Wajs [20], Elad et al. [22], Bioucas-Dias and Figueiredo [17], Vonesch and
Unser [56], Beck and Teboulle [9,10]). Our methods bear the same relation to this
class of algorithms as the LMS method bears to gradient algorithms for the classical
linear least squares problem with quadratic regularization function.

Finally, let us note that as an alternative, the proximal iteration (62) could be replaced
by a proximal iteration on γ |x j | for some selected index j , with all indexes selected
cyclically in incremental iterations. Randomized selection of the data pair

(
cik , dik

)

would also be interesting, particularly in contexts where the data has a natural sto-
chastic interpretation.

5.2 Iterated projection algorithms

A feasibility problem that arises in many contexts involves finding a point with certain
properties within a set intersection ∩m

i=1 Xi , where each Xi is a closed convex set. For
the case where m is large and each of the sets Xi has a simple form, incremental meth-
ods that make successive projections on the component sets Xi have a long history
(see e.g., Gubin et al. [25], and recent papers such as Bauschke [6], Bauschke et al.
[2,3], and Cegielski and Suchocka [19], and their bibliographies). We may consider
the following generalized version of the classical feasibility problem,

minimize f (x)

subject to x ∈ ∩m
i=1 Xi , (63)

where f : �n �→ � is a convex cost function, and the method

xk+1 = PXik

(
xk − αk∇̃ f (xk)

)
, (64)

where the index ik is chosen from {1, . . . , m} according to a randomized rule. The
incremental approach is particularly well-suited for problems of the form (63) where
the sets Xi are not known in advance, but are revealed as the algorithm progresses. We
note that incremental algorithms for problem (63), which bear some relation with ours
have been recently proposed by Nedić [42]. Actually, the algorithm of [42] involves
an additional projection on a special set X0 at each iteration, but for simplicity we take
X0 = �n .

While the problem (63) does not involve a sum of component functions, it may be
converted into one that does by using an exact penalty function. In particular, consider
the problem

minimize f (x) + γ

m∑

i=1

dist(x; Xi )

subject to x ∈ �n, (65)
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where γ is a positive penalty parameter. Then for f Lipschitz continuous and γ suffi-
ciently large, problems (63) and (65) are equivalent. We show this for the case where
m = 1 and then we generalize.

Proposition 10 Let f : Y �→ � be a function defined on a subset Y of �n, and let X
be a nonempty closed subset of Y . Assume that f is Lipschitz continuous over Y with
constant L, i.e.,

∣
∣ f (x) − f (y)

∣
∣ ≤ L‖x − y‖, ∀ x, y ∈ Y,

and let γ be a scalar with γ > L. Then the set of minima of f over X coincides with
the set of minima of

f (x) + γ dist(x; X)

over Y .

Proof Denote F(x) = f (x) + γ dist(x; X). For a vector x ∈ Y , let x̂ denote a vector
of X that is at minimum distance from X . If γ > L , we have using the Lipschitz
property of f ,

F(x) = f (x) + γ ‖x − x̂‖ = f (x̂) + (
f (x) − f (x̂)

) + γ ‖x − x̂‖
≥ f (x̂) = F(x̂), ∀ x ∈ Y,

with strict inequality if x �= x̂ . Hence the minima of F over Y can only lie within X ,
while F = f within X . This shows that if γ > L , then x∗ minimizes f over X if and
only if x∗ minimizes F over Y . ��

We now provide a generalization for m > 1.

Proposition 11 Let f : Y �→ � be a function defined on a subset Y of �n, and let
Xi , i = 1, . . . , m, be closed subsets of Y with nonempty intersection. Assume that f
is Lipschitz continuous over Y . Then there is a scalar γ̄ > 0 such that for all γ ≥ γ̄ ,
the set of minima of f over ∩m

i=1 Xi coincides with the set of minima of

f (x) + γ

m∑

i=1

dist(x; Xi )

over Y .

Proof For positive scalars γ1, . . . , γm , and k = 1, . . . , m, define

Fk(x) = f (x) + γ1 dist(x; X1) + · · · + γk dist(x; Xk),

and for k = 0, denote F0(x) = f (x), γ0 = 0. Let L denote the Lipschitz constant
for f . By applying Proposition 10, the set of minima of Fm over Y coincides with the
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set of minima of Fm−1 over Xm provided γm is greater than L + γ1 + · · · + γm−1, the
Lipschitz constant for Fm−1. Similarly, we obtain that for all k = 1, . . . , m, the set of
minima of Fk over ∩m

i=k+1 Xi coincides with the set of minima of Fk−1 over ∩m
i=k Xi ,

provided γk > L + γ1 + · · · + γk−1. Thus, the set of minima of Fm over Y coincides
with the set of minima of f over ∩m

i=1 Xi , provided the scalars γ1, . . . , γm satisfy

γk > L + γ1 + · · · + γk−1, ∀ k = 1, . . . , m,

where γ0 = 0. For such γ1, . . . , γm , the set of minima of f + γ
∑m

i=1 dist(·; Xi ) over
Y coincides with the set of minima of Fm over Y if γ ≥ γm , and hence also with the
set of minima of f over ∩m

i=1 Xi . ��

Note that while the penalty parameter thresholds derived in the preceding proof
are quite large, lower thresholds may hold under additional assumptions, such as for
convex f and polyhedral Xi . Regarding algorithmic solution, from Proposition 11,
it follows that we may consider in place of the original problem (63) the additive
cost problem (65) for which our algorithms apply. In particular, let us consider the
algorithms (19)–(21), with X = �n , which involve a proximal iteration on one of the
functions γ dist(x; Xi ) followed by a subgradient iteration on f . A key fact here is
that the proximal iteration

zk = arg min
x∈�n

{

γ dist(x; Xik ) + 1

2αk
‖x − xk‖2

}

(66)

involves a projection on Xik of xk , followed by an interpolation. This is shown in the
following proposition.

Proposition 12 Let zk be the vector produced by the proximal iteration (66). If xk ∈
Xik then zk = xk , while if xk /∈ Xik ,

zk =
{

(1 − βk)xk + βk PXik
(xk) if βk < 1,

PXik
(xk) if βk ≥ 1,

(67)

where

βk = αkγ

dist(xk; Xik )
.

Proof The case xk ∈ Xik is evident, so assume that xk /∈ Xik . From the nature of the
cost function in Eq. (66) we see that zk is a vector that lies in the line segment between
xk and PXik

(xk). Hence there are two possibilities: either

zk = PXik
(xk), (68)
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or zk /∈ Xik in which case by setting to 0 the gradient at zk of the cost function in Eq.
(66) yields

γ
zk − PXik

(zk)
∥
∥
∥zk − PXik

(zk)

∥
∥
∥

= 1

αk
(xk − zk).

Hence xk, zk , and PXik
(zk) lie on the same line, so PXik

(zk) = PXik
(xk) and

zk = xk − αkγ

dist(xk; Xik )

(
xk − PXik

(xk)
)

= (1 − βk)xk + βk PXik
(xk). (69)

By calculating and comparing the value of the cost function in Eqs. (66) for each of
the possibilities (68) and (69), we can verify that (69) gives a lower cost if and only if
βk < 1. ��

Let us finally note that our incremental methods also apply to the problem

minimize
m∑

i=1

fi (x)

subject to x ∈ ∩m
i=1 Xi .

In this case the interpolated projection iterations (67) on the sets Xi are followed by
subgradient or proximal iterations on the components fi . A related problem is

minimize f (x) + c
r∑

j=1

max
{
0, g j (x)

}

subject to x ∈ ∩m
i=1 Xi ,

which is obtained by replacing convex inequality constraints of the form g j (x) ≤ 0
with the nondifferentiable penalty terms c max

{
0, g j (x)

}
, where c > 0 is a penalty

parameter. Then a possible incremental method at each iteration, would either do a
subgradient iteration on f , or select one of the violated constraints (if any) and perform
a subgradient iteration on the corresponding function g j , or select one of the sets Xi

and do an interpolated projection on it. Except for the projections on Xi , variants of
this algorithm are well-known.

6 Conclusions

The incremental proximal algorithms of this paper provide new possibilities for mini-
mization of many-term sums of convex component functions. It is generally believed
that proximal iterations are more stable than gradient and subgradient iterations. It may
thus be important to have flexibility to separate the cost function into the parts that are
conveniently handled by proximal iterations (e.g., in essentially closed form), and the
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remaining parts to be handled by subgradient iterations. We provided a convergence
analysis and showed that our algorithms are well-suited for some problems that have
been the focus of recent research.

Much work remains to be done to apply and evaluate our methods within the broad
context of potential applications. Let us mention some possibilities that may extend the
range of applications of our approach, and are interesting subjects for further investiga-
tion: alternative proximal and projected subgradient iterations, involving nonquadratic
proximal terms and/or subgradient projections, alternative stepsize rules, distributed
asynchronous implementations along the lines of [38], polyhedral approximation (bun-
dle) variants of the proximal iterations in the spirit of [11], and variants for methods
with errors in the calculation of the subgradients along the lines of [41].
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40. Nedić, A., Bertsekas, D.P.: Incremental subgradient methods for nondifferentiable optimization. SIAM
J. Optim. 12, 109–138 (2001)
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