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Abstract

In this short paper, we give an upper bound for the number of
different basic feasible solutions generated by the simplex method for
linear programming problems having optimal solutions. The bound is
polynomial of the number of constraints, the number of variables, and
the ratio between the minimum and the maximum values of all the
positive elements of primal basic feasible solutions. When the primal
problem is nondegenerate, it becomes a bound for the number of iter-
ations. We show some basic results when it is applied to special linear
programming problems. The results include strongly polynomiality of
the simplex method for Markov Decision Problem by Ye [3] and utilize
its analysis.

Keywords Simplex method, Linear programming, Iteration bound,
Strong polynomiality, Basic feasible solutions.

1 Introduction

The simplex method for solving linear programming problems (LP) was orig-
inally developed by Dantzig [1]. The simplex method works very efficiently
in practice and it has been widely used for years. In spite of the practical effi-
ciency of the simplex method, we do not have any good bound for the number
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of iterations. Klee and Minty [2] showed that the simplex method needs an
exponential number of iterations for an elaborately designed problem.

We analyze the primal simplex method with the most negative pivoting
rule (Dantzig’s rule) or the best improvement pivoting rule under the con-
dition that the primal problem has an optimal solution. We give an upper
bound for the number of different basic feasible solutions (BFSs) generated
by the simplex method. The bound is

n⌈m
γ

δ
log(m

γ

δ
)⌉,

wherem is the number of constraints, n is the number of variables, δ and γ are
the minimum and the maximum values of all the positive elements of primal
BFSs, respectively, and ⌈a⌉ is the smallest integer bigger than a ∈ ℜ. When
the primal problem is nondegenerate, it becomes a bound for the number of
iterations. Note that the bound depends only on the constraints of LP, but
not the objective function.

Our work is motivated by a recent research by Ye [3]. He shows that the
simplex method is strongly polynomial for the Markov Decision Problem.
We apply the analysis in [3] to general LPs and obtain the upper bound.
Our results include his strong polynomiality.

When we apply our result to an LP where a constraint matrix is totally
unimodular and a constant vector b of constraints is integral, the number of
different solutions generated by the simplex method is at most

n⌈m‖b‖1 log(m‖b‖1)⌉.

The paper is organized as follows. In section 2, we explain basic notions of
an LP and we briefly review the simplex method. In section 3, analyses of the
simplex method are conducted to show our results. In section 4, applications
of our results to special LPs are discussed.

2 The Simplex Method for LP

In this paper, we consider the linear programming problem of the standard
form

min cTx,

subject to Ax = b, x ≥ 0,
(1)

where A ∈ ℜm×n, b ∈ ℜm and c ∈ ℜn are given data, and x ∈ ℜn is a variable
vector. The dual problem of (1) is

max bT y,

subject to ATy + s = c, s ≥ 0,
(2)
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where y ∈ ℜm and s ∈ ℜn are variable vectors.

We assume that rank(A) = m, the primal problem (1) has an optimal so-
lution and an initial BFS x0 is available. Let x∗ be an optimal basic feasible
solution of (1), (y∗, s∗) be an optimal solution of (2), and z∗ be the optimal
value of (1) and (2).

Given a set of indices B ⊂ {1, 2, . . . , n}, we split the constraint matrix
A, the objective vector c, and the variable vector x according to B and
N = {1, 2, . . . , n} −B like

A = [AB, AN ], c =

[

cB
cN

]

, x =

[

xB

xN

]

.

Define the set of bases

B = {B ⊂ {1, 2, . . . , n}| |B| = m, det(AB) 6= 0}.

Then a primal basic feasible solution for B ∈ B and N = {1, 2, . . . , n} − B

is written as
xB = A−1

B b ≥ 0, xN = 0.

Let δ and γ be the minimum and the maximum values of all the positive
elements of BFSs. Hence for any BFS x̂ and any j ∈ {1, 2, . . . , n}, if x̂j 6= 0,
we have

δ ≤ x̂j ≤ γ. (3)

Note that these values depend only on A and b, but not on c.

Let Bt ∈ B be the basis of the t-th iteration of the simplex method and
set N t = {1, 2, . . . , n} −Bt. Problem (1) can be written as

min cTBtA
−1

Bt b+ (cNt − AT
Nt(A

−1

Bt )T cBt)TxNt ,

subject to xBt = A−1

Bt b− A−1

BtANtxNt ,

xBt ≥ 0, xNt ≥ 0.

The coefficient vector c̄Nt = cNt − AT
Nt(A

−1

Bt )T cBt is called a reduced cost
vector. When c̄Nt ≥ 0, the current solution is optimal. Otherwise we conduct
a pivot. That is, we choose one nonbasic variable (entering variable) and
increase the variable until one basic variable (leaving variable) becomes zero.
Then we exchange the two variables. Several rules for choosing the entering
variable have been proposed. For example, the most negative rule, the best
improvement rule, and the minimum index rule are well known. Under the
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Table 1: Notations

x∗ : an optimal basic feasible solution of (1)
(y∗, s∗) : an optimal solution of (2)

z∗ : the optimal value of (1)
xt : the t-th iterate of the simplex method
Bt : the basis of xt

N t : the nonbasis of xt

c̄Nt : the reduced cost vector at t-th iteration
∆t : −minj∈Nt

c̄j
jtMN : an index chosen by the most negative rule at t-th iteration

most negative rule, we choose a nonbasic variable whose reduced cost is
minimum. To put it precisely, we choose an index

jtMN = argmin
j∈Nt

c̄j .

We set ∆t = −c̄jt
MN

.
In the case of the best improvement rule, we choose an entering variable

so that the objective value at the next iterate is minimum. We summarize
the notations in Table 1.

3 Analysis of the Simplex Method

Our analysis is motivated by a recent work by Ye [3], where he shows a
strongly polynomial result of the simplex method for the Markov Decision
Problem, a special class of LP. We apply his analysis to general LPs and
obtain an upper bound for the number of different basic feasible solutions
generated by the simplex method. Later we confirm that our results include
his strongly polynomiality.

In the next lemma, we get a lower bound of the optimal value at each
iteration of the simplex method.

Lemma 3.1 Let z∗ be the optimal value of Problem (1) and xt be the t-th
iterate generated by the simplex method with the most negative rule. Then
we have

z∗ ≥ cTxt −∆tmγ. (4)
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Proof. Let x∗ be a basic optimal solution of Problem (1). Then we have

z∗ = cTx∗

= cTBtA
−1

Bt b+ c̄TNtx
∗

Nt

≥ cTxt −∆teTx∗

Nt

≥ cTxt −∆tmγ,

where the second inequality follows since x∗ has at most m positive elements
and each element is bounded above by γ. Thus we get the inequality (4). �

Next we show a constant reduction of the gap between the objective
function value and the optimal value at each iteration when an iterate is
updated. The result is interesting becasuse the reduction rate (1− δ

mγ
) does

not depend on the objective vector c.

Theorem 3.1 Let xt and xt+1 be the t-th and (t+1)-th iterates generated by
the simplex method with the most negative rule. If xt+1 6= xt, then we have

cTxt+1 − z∗ ≤ (1−
δ

mγ
)(cTxt − z∗). (5)

Proof. Let xt
jt
MN

be the entering variable chosen at the t-th iteration. If

xt+1

jt
MN

= 0, then we have xt+1 = xt, a contradiction occurs. Thus xt+1

jt
MN

6= 0,

and we have xt+1

jt
MN

≥ δ from (3). Then we have

cTxt − cTxt+1 = ∆txt+1

jt
MN

≥ ∆tδ

≥ δ
mγ

(cTxt − z∗),

where the last inequality comes from (4). The desired inequality readily
follows from the above inequality. �

Note that under the best improvement pivoting rule, the objective func-
tion reduces at least as much as that with the most negative rule. Thus the
next corollary easily follows.

Corollary 3.1 Let xt and xt+1 be the t-th and (t + 1)-th iterates generated
by the simplex method with the best improvement rule. If xt+1 6= xt, then we
also have (5).

From Theorem 3.1 and Corollary 3.1, we can easily get an upper bound
for the number of different BFSs generated by the simplex method.
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Corollary 3.2 Let x̄ be a second optimal BFS of LP (1), that is, a minimal
BFS except for optimal BFSs. When we apply the simplex method with the
most negative rule or the best improvement rule for LP (1) from an initial
BFS x0, we encounter at most

⌈m
γ

δ
log(

cTx0 − z∗

cT x̄− z∗
)⌉

different BFSs.

Proof. Let xt be the t-th iterates generated by the simplex method and let t̃
be the number of different BFSs appearing up to this iterate. Then we have

cTxt − z∗ ≤ (1−
δ

mγ
)t̃(cTx0 − z∗)

from (5). If t̃ is bigger than or equal to the number in the corollary, we easily
get

cTxt − z∗ < cT x̄− z∗.

Since x̄ is a second optimal BFS of LP (1), xt must be an optimal BFS from
the inequality above. �

Note that the bound in the corollary above depends on the objective
function. In the succeeding discussion, we will have another bound which is
independent of the objective function.

The next Lemma states that if the current solution is not optimal, there
is a basic variable which has an upper bound proportional to the gap between
the objective value and the optimal value.

Lemma 3.2 Let xt be the t-th iterate generated by the simplex method. If
xt is not optimal, there exists j̄ ∈ Bt such that xt

j̄
> 0 and

s∗j̄ ≥
1

mxt
j̄

(cTxt − z∗),

where s∗ is an optimal slack vector of (2). Then for any k, the k-th iterate
xk satisfies

xk
j̄ ≤

m(cTxk − z∗)

cTxt − z∗
xt
j̄ .

Proof. Since
cTxt − z∗ = (xt)T s∗ =

∑

j∈Bt

xt
js

∗

j ,
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there exists j̄ ∈ Bt which satisfies

s∗j̄x
t
j̄ ≥

1

m
(cTxt − z∗),

or equivalently, xt
j̄
> 0 and

s∗j̄ ≥
1

mxt
j̄

(cTxt − z∗).

Moreover, for any k, the k-th iterate xk satisfies

cTxk − z∗ = (xk)T s∗ =

n
∑

j=1

xk
j s

∗

j ≥ xk
j̄ s

∗

j̄ ,

which implies

xk
j̄ ≤

cTxk − z∗

s∗
j̄

≤
m(cTxk − z∗)

cTxt − z∗
xt
j̄ .

�

Lemma 3.3 Let xt be the t-th iterate generated by the simplex method with
the most negative rule or the best improvement rule. Assume that xt is not
an optimal solution. Then there exists j̄ ∈ Bt satisfying the following two
conditions.

1. xt
j̄
> 0.

2. If the simplex method generates ⌈mγ

δ
log(mγ

δ
)⌉ different basic feasible

solutions after t-th iterate, then xj̄ becomes zero and stays zero.

Proof. For k ≥ t+1, let k̃ be the number of different basic feasible solutions
appearing between the t-th and k-th iterations. Then from Theorem 3.1 and
Lemma 3.2, there exists j̄ ∈ Bt which satisfies

xk
j̄ ≤ m(1−

δ

mγ
)k̃xt

j̄ ≤ mγ(1−
δ

mγ
)k̃.

The second inequality follows from (3). Therefore, if k̃ > mγ

δ
log(mγ

δ
), we

have xk
j̄
< δ, which implies xk

j̄
= 0 from the definition of δ. �

The event described in Lemma 3.3 can occur at most once for each vari-
able. Thus we get the following result.
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Theorem 3.2 When we apply the simplex method with the most negative
rule or the best improvement rule for LP (1) having optimal solutions, we
encounter at most n⌈mγ

δ
log(mγ

δ
)⌉ different basic feasible solutions.

Note that the result is valid even if the simplex method fails to find an opti-
mal solution because of a cycling.

If the primal problem is nondegenerate, we have xt+1 6= xt for all t. This
observation leads to a bound for the number of iterations of the simplex
method.

Corollary 3.3 If the primal problem is nondegenerate, the simplex method
finds an optimal solution in at most n⌈mγ

δ
log(mγ

δ
)⌉ iterations.

4 Applications to Special LPs

4.1 LP with a Totally Unimodular Matrix

In this subsection, we consider an LP (1) whose constraint matrix A is totally
unimodular and all the elements of b are integers. Recall that the matrix A is
totally unimodular if the determinant of every nonsingular square submatrix
of A is 1 or -1. Then all the elements of any BFS are integers, so δ ≥ 1. Let
us bound γ. Let (xB, 0) ∈ ℜm × ℜn−m be a basic feasible solution of (1).
Then we have xB = A−1

B b. Since A is totally unimodular, all the elements of
A−1

B are ±1 or 0. Thus for any j ∈ B we have xj ≤ ‖b‖1, which implies that
γ ≤ ‖b‖1. By Theorem 3.3, we obtain the following result.

Corollary 4.1 Assume that the constraint matrix A of (1) is totally uni-
modular and the constraint vector b is integral. When we apply the simplex
method with the most negative rule or the best improvement rule for (1), we
encounter at most n⌈m‖b‖1 log(m‖b‖1)⌉ different basic feasible solutions.

4.2 Markov Decision Problem

The Markov Decision Problem (MDP), where the number of possible actions
is two, is formulated as

min cT1 x1 + cT2 x2,

subject to (I − θP1)x1 + (I − θP2)x2 = e,

x1, x2 ≥ 0,
(6)

where I is the m×m identity matrix, P1 and P2 are m×m Markov matrices,
θ is a discount rate, and e is the vector of all ones. MDP(6) has the following
properties.
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1. MDP(6) is nondegenerate.

2. The minimum value of all the positive elements of BFSs is greater than
or equal to 1, or equivalently, δ ≥ 1.

3. The maximum value of all the positive elements of BFSs is less than or
equal to m

1−θ
, or equivalnetly, γ ≤ m

1−θ
.

Therefore we can apply Corollary 3.3 and obtain a similar result to Ye [3].

Corollary 4.2 The simplex method for solving MDP (6) finds an optimal
solution in at most n⌈ m2

1−θ
log m2

1−θ
⌉ iterations, where n = 2m.
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