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Abstract The quasi-Newton strategy presented in this paper preserves one of the
most important features of the stabilized Sequential Quadratic Programming method,
the local convergence without constraint qualifications assumptions. It is known that
the primal-dual sequence converges quadratically assuming only the second-order suf-
ficient condition. In this work, we show that if the matrices are updated by performing
a minimization of a Bregman distance (which includes the classic updates), the quasi-
Newton version of the method converges superlinearly without introducing further
assumptions. Also, we show that even for an unbounded Lagrange multipliers set, the
generated matrices satisfies a bounded deterioration property and the Dennis-Moré
condition.
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1 Introduction

Given smooth mappings F : Rn → Rn and g : Rn → Rm , we consider the following
variational problem:

find x ∈ D such that 〈F(x), y − x〉 ≥ 0 ∀ y ∈ x + TD(x), (1)
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200 D. Fernández

where

D = {
x ∈ Rn | gi (x) ≤ 0, i = 1, . . . , m

}
,

and TD(x) is the (standard) tangent cone to the set D at the point x ∈ D, i.e., d ∈ TD(x)

if there is a sequence of vectors dk → d along with a sequence of scalars tk → 0+
such that x + tkdk ∈ D. Throughout the paper, we assume that at least F is once and
g is twice continuously differentiable at a solution x̄ of (1).

To simplify formulas, we consider only inequality constraints. For equality con-
straints or mixed constraints the extension is the obvious.

When for some smooth function f : Rn → R it holds that

F(x) = f ′(x), x ∈ Rn, (2)

then (1) describes (primal) first-order necessary optimality conditions for the optimi-
zation problem

min f (x) subject to x ∈ D. (3)

When the feasible set D is convex, the variational problem (1) is equivalent to the
classical variational inequality:

find x ∈ D such that 〈F(x), y − x〉 ≥ 0 ∀ y ∈ D.

See [7] for more details.
The main topic of this work is the study of a quasi-Newton version of the method

introduced in [8] to solve problem (1). This method is an adaptation of the stabilized
Sequential Quadratic Programming (sSQP) method, introduced by Wright in [22].

The sSQP method was created to obtain fast convergence in presence of degenerate
constraints in optimization problems. The local analysis of this method, and its good
behavior, has been studied in [14,19,22–25]. In [9], the method was studied as a partic-
ular case of a more general iterative framework. In [8], the sSQP method was adapted
to solve (1), and it was shown that without any constraint qualification assumption, the
method generates a primal-dual sequence that converges superlinearly/quadratically
for initial points near a solution satisfying the second-order sufficient condition.

In order to complete the local analysis of the sSQP method, we study a quasi-
Newton strategy for this method, showing that under perturbations the method still
guarantee a good local behavior without introducing additional hypotheses. In many
aspects of this paper we take as a guide the work of Bonnans [3], devoted to the
study of the Josephy-Newton method [17,18]. In [3], Bonnans improved the classi-
cal result of [2] for optimization problems, showing consistency and convergence of
this kind of methods under the weakest set of assumptions in the literature.

One of the most important differences with our approach, is the fact that the
stabilization procedure allows us to work with degenerate solutions, and hence, with
a possible unbounded Lagrange multipliers set. The existence of an isolated pri-
mal-dual solution and the existence of solutions under small perturbations (called
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A quasi-Newton strategy for the sSQP method 201

“semistability” and “hemistability” in [3]), have been replaced by a calmness condi-
tion (introduced in [21]) of the solution set. This calmness condition is automatically
fulfilled under the usual second-order sufficient condition (see [15]).

The quasi-Newton update proposed in this work must be a matrix satisfying the
secant equation and with a minimal change respect to the previous one, measured
using a Bregman distance. This kind of update contains as a particular case the BFGS,
PSB and Broyden update, among others. We show that with this kind of update, the
calmness of the solution set is sufficient to show that the method is well-defined and
that a bounded deterioration condition holds. Also, we show that a Dennis–Moré type
condition is satisfied and that the generated primal-dual sequence converges super-
linealy.

The rest of the paper is organized as follows. In Sect. 2, we introduce the quasi-
Newton algorithm and define concepts that will be used. We prove in Sect. 3 that the
second-order sufficient condition is sufficient to guarantee solvability of the subprob-
lems under small perturbations of the data. In Sect. 4 we describe how to perform the
matrix update, we show the consistency of the algorithm and we state the superlinear
convergence of the generated primal-dual sequence. In Sect. 5, we comment some
facts about the primal convergence of the method. We give a numerical example in
Sect. 6 and some conclusions and lines for future research are stated in Sect. 7.

Some words about our notation. We use 〈·, ·〉 to denote the Euclidean inner product,
‖ · ‖ the associated norm, and B the closed unit ball (the space is always clear from
the context). We use 〈〈·, ·〉〉 to denote an inner product in the space of matrices and ‖ · ‖
to denote the associated norm. We use I to denote the identity matrix (the dimension
is always clear from the context). For any matrix M, MI denotes the submatrix of
M with rows indexed by the set I. When in matrix notation, vectors are considered
columns, and for a vector x we denote by xI the subvector of x with coordinates
indexed by I. For simplicity, we use (x, μ) for the column vector (x�, μ�)�. We use
the notation ξ(t) = o(t) for any function ξ : R+ → Rq such that limt→0 t−1ξ(t) = 0.
For a function � : Rn × Rm → Rq , we denote by � ′(x̄, μ̄) the full derivative of �

at the point (x̄, μ̄), and by � ′
x (x̄, μ̄) the partial derivative of � with respect to x at

(x̄, μ̄). For a set S ⊂ Rl and a point z ∈ Rl , the distance from z to S is defined as
dist(z, S) = infs∈S ‖z − s‖. Then �S(z) = {s ∈ S | dist(z, S) = ‖z − s‖} is the set
of all points in S that have minimal distance to z.

2 Quasi-Newton strategy

In order to solve (1) we will use the method introduced in [8], replacing the higher
order derivatives by a matrix that can be computed easily.

To this end let c ∈ [1,∞) be an arbitrary but fixed constant and consider a sequence
{(xk, μk)} generated by the following process:

Given (xk, μk) ∈ Rn × Rm, Mk ∈ Rn×n and σk > 0, compute (xk+1, μk+1) ∈
Rn × Rm solution of the affine variational inequality

find (y, ν) ∈ �k s.t. 〈�k(y, ν), (z, λ) − (y, ν)〉 ≥ 0 ∀ (z, λ) ∈ �k, (4)
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satisfying

∥
∥
∥
∥

[
y − xk

ν − μk

]∥∥
∥
∥ ≤ c σk, (5)

where

�k : Rn × Rm → Rn × Rm, �k(y, ν) =
[

F(xk) + Mk(y − xk)

σkν

]
,

and

�k =
{
(y, ν) ∈ Rn × Rm | g(xk) + g′(xk)(y − xk) − σk(ν − μk) ≤ 0

}
.

As can be seen,
(

xk, max
{

0, μk + 1
σk

g(xk)
})

∈ �k . Thus, subproblems (4) are

always feasible independent of any constraint qualification assumption. In Theorem 1,
we show the existence of a solution of (4) satisfying (5) for a suitable parameter σk .
Hence, for optimization problems (3), if the matrix Mk is symmetric and positive
definite, then (xk+1, μk+1) will be the unique solution of the quadratic problem

min
(y,ν)∈Rn×Rm

〈
f ′(xk), y − xk

〉+ 1
2

〈
Mk(y − xk), y − xk

〉+ σk
2 ‖ν‖2

s.t. g(xk) + g′(xk)(y − xk) − σk(ν − μk) ≤ 0.
(6)

By the affine structure of the subproblem, we know that (y, ν) is a solution of (4)
if and only if there exists λ ∈ Rm such that

0 = F(xk) + Mk(y − xk) + g′(xk)�λ,

0 = σkν − σkλ,

0 ≤ λ ⊥
[
g(xk) + g′(xk)(y − xk) − σk(ν − μk)

]
≤ 0,

where ν ⊥ u means that 〈ν, u〉 = 0. Hence, since σk > 0, we conclude that (y, ν) is
a solution of (4) if and only if (y, ν) satisfies

0 = F(xk) + Mk(y − xk) + g′(xk)�ν,

0 ≤ ν ⊥
[
g(xk) + g′(xk)(y − xk) − σk(ν − μk)

]
≤ 0.

(7)

The matrix Mk ∈ Rn×n will be updated in the classical form, as in most quasi-
Newton algorithm (see details in Sect. 4).

The parameter σk > 0 is some computable quantity measuring the error produced
by (xk, μk) with respect to the solution set of the Karush–Kuhn–Tucker (KKT) system
for (1), which is

0 = �(x, μ),

0 ≤ μ ⊥ g(x) ≤ 0,
(8)
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where

� : Rn × Rm → Rn, �(x, μ) = F(x) + g′(x)�μ.

To be more specific, let 
 be a set-valued map from Rn × Rm to Rn × Rm such that


(p) =
{
w ∈ Rn × Rm | 0 ∈ G(w) + NRn×Rm+(w) + p

}
, (9)

where for w = (x, μ),

G(x, μ) =
[

�(x, μ)

−g(x)

]
, NRn×Rm+(x, μ) =

[
0

NRm+(μ)

]
, (10)

and

NRm+(μ) =
{ {ν ∈ Rm | ν ≤ 0, 〈ν, μ〉 = 0} if μ ≥ 0,

∅, otherwise,

is the normal cone to Rm+ at μ ∈ Rm . Hence, 
(0) is the solution set of the KKT
system (8) and we have that the Lagrange multipliers set associated to x̄ is defined as

M(x̄) = {μ | (x̄, μ) ∈ 
(0)}.

Also, we will say that a function σ : Rn × Rm → Rn × Rm provides a local error
bound for the solution set of (8) at a point w̄ = (x̄, μ̄) if there exist a neighborhood V
of w̄ and constants β2 ≥ β1 > 0 such that

β1 dist(w,
(0)) ≤ σ(w) ≤ β2 dist(w,
(0)), ∀w ∈ V. (11)

An example of a computable parameter σk satisfying (11) is given by the natural
residual of (8) at (xk, μk), that is,

σk = σ(xk, μk), with σ(x, μ) =
∥
∥
∥
∥

[
�(x, μ)

min{−g(x), μ}
]∥∥
∥
∥ .

By [9, Theorem 2], we know that the natural residual provides an error bound for the
solution set of (8) at a point w̄ = (x̄, μ̄) if w̄ satisfy the following calmness condition:
there exist ε̄, γ, τ > 0 such that


(p) ∩ (w̄ + ε̄B) ⊆ 
(0) + τ‖p‖B ∀p ∈ γ B. (12)

As can be seen in the literature (see [15, Lemma 2] or [8, Lemma 2]), the calmness
condition (12) holds at a point w̄ = (x̄, μ̄) if w̄ satisfies the second-order condition
(13). Furthermore, the property (12) is also equivalent to the assumption that the mul-
tiplier μ̄ in w̄ is noncritical [16]. We shall not introduce the latter notion here, as for
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the purposes of this paper it is enough to mention that μ̄ is noncritical if the following
second-order condition holds at w̄.

We say that (x̄, μ̄), with μ̄ ∈ M(x̄), satisfies the second-order condition (SOC) for
the KKT system (8) if

〈
� ′

x (x̄, μ̄)u, u
〉
> 0 ∀ u ∈ C(x̄; D, F)\{0}, (13)

where

C(x̄; D, F) = {u ∈ Rn | 〈F(x̄), u〉 = 0, 〈g′
i (x̄), u〉 ≤ 0 ∀ i ∈ I(x̄)}

=
{

u ∈ Rn
∣
∣
∣
∣
〈g′

i (x̄), u〉 = 0 ∀ i ∈ I+(x̄, μ)

〈g′
i (x̄), u〉 ≤ 0 ∀ i ∈ I0(x̄, μ)

}
, μ ∈ M(x̄), (14)

with

I = I(x̄) = {i = 1, . . . , m | gi (x̄) = 0}

being the set of constraints active at x̄ , and

I+(x̄, μ) = {i ∈ I(x̄) | μi > 0}, I0(x̄, μ) = I(x̄)\I+(x̄, μ),

being the set of strongly and weakly active constraints, respectively. As is well known,
the second expression for C(x̄; D, F) does not depend on the choice of μ ∈ M(x̄).
In the case of the optimization problem (3), C(x̄; D, F) is the standard critical cone at
x̄ , and (13) is the standard second-order condition, which is sufficient for optimality
of the point x̄ .

Also, since SOC (13) implies that the primal part x̄ of the solution is locally unique,
we can guarantee that there exists a neighborhood U of (x̄, μ̄) such that


(0) ∩ U = ({x̄} × M(x̄)) ∩ U .

Hence, we have that for (x, μ) near enough to (x̄, μ̄), (11) can be written as

β1

(
‖x − x̄‖ + dist(μ,M(x̄))

)
≤ σ(x, μ) ≤ β2

(
‖x − x̄‖ + dist(μ,M(x̄))

)
.

3 Solvability of subproblems

In this section we show that locally, the SOC (13) at (x̄, μ̄) is sufficient to guar-
antee the solvability of the subproblems (4) when Mk is taken in a neighborhood of
� ′

x (x̄, μ̄). The proof of the existence of solutions follows extending the results showed
in [8] for exact derivatives to the quasi-Newton scheme. We include those results for
completeness.

First, let us show that under small perturbations, the SOC (13) implies some copo-
sitivity property in the primal-dual space.
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Proposition 1 Suppose that SOC (13) holds at (x̄, μ̄). Then there exist constants
γ1, ε1, δ1, ζ1 > 0 such that if ‖x − x̄‖ < ε1, ‖M − � ′

x (x̄, μ̄)‖ < δ1 and 0 < σ < ζ1,
it holds that

〈Mu, u〉 + σ‖v‖2 ≥ γ1

(
‖u‖2 + σ‖v‖2

)
∀(u, v) ∈ K (x, σ ), (15)

where

K (x, σ ) =
{
(u, v) ∈ Rn × R|I|

∣
∣
∣
∣
〈g′

i (x), u〉 = σvi , i ∈ I+(x̄, μ̄)

〈g′
i (x), u〉 ≤ σvi , i ∈ I0(x̄, μ̄)

}
. (16)

Proof Suppose the contrary, i.e., that there exist

{(
xk, Mk, σk

)}
→ (

x̄, � ′
x (x̄, μ̄), 0

)

and (uk, vk) ∈ K (xk, σk) such that

〈
Mkuk, uk

〉
+ σk

∥
∥
∥vk

∥
∥
∥

2
<

1

k

(∥
∥
∥uk

∥
∥
∥

2 + σk

∥
∥
∥vk

∥
∥
∥

2
)

. (17)

Evidently, (17) subsumes that (uk, vk) �= 0. Let ηk = ∥
∥(uk,

√
σkv

k
)∥∥ > 0. Passing

onto a subsequence, if necessary, we can assume that

1

ηk

[
uk

√
σkv

k

]
→
[

ū
w̄

]
�= 0. (18)

Observe that since σk → 0 and
√

σkv
k/ηk is bounded, it holds that

σk
vk

ηk
= √

σk

√
σkv

k

ηk
→ 0. (19)

Since (uk, vk) ∈ K (xk, σk), dividing now relations in (16) by ηk , passing onto the
limit and taking into account (19) we obtain that

〈
g′

i (x̄), ū
〉 = 0 ∀ i ∈ I+(x̄, μ̄),

〈
g′

i (x̄), ū
〉 ≤ 0 ∀ i ∈ I0(x̄, μ̄),

i.e., ū ∈ C(x̄; D, F).
On the other hand, dividing (17) by η2

k and taking limits, we have that

〈
� ′

x (x̄, μ̄)ū, ū
〉+ ‖w̄‖2 ≤ 0. (20)

This shows that
〈
� ′

x (x̄, μ̄)ū, ū
〉 ≤ 0 for ū ∈ C(x̄; D, F). Hence, ū = 0. Now from

(20) we have that w̄ = 0 also, in contradiction with (18). ��
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Corollary 1 Suppose that SOC (13) holds at (x̄, μ̄). Then there exist constants
ε1, δ1, ζ1 > 0 such that if ‖x − x̄‖ < ε1, ‖M − � ′

x (x̄, μ̄)‖ < δ1 and 0 < σ < ζ1, the
matrix

[
M g′

I(x)�
−g′

I(x) σ I

]
(21)

is nonsingular.

Proof By Proposition 1, there exist constants γ1, ε1, δ1, ζ1 > 0 such that (15) holds.
Let ‖x − x̄‖ < ε1, ‖M − � ′

x (x̄, μ̄)‖ < δ1, 0 < σ < ζ1 and suppose that (u, v) is a
vector in the kernel of the matrix given in (21), i.e.,

0 = Mu + g′
I(x)�v, (22)

0 = −g′
I(x)u + σv. (23)

By (23) we have that 〈g′
i (x), u〉 = σvi for all i ∈ I. This shows that (u, v) ∈ K (x, σ )

defined in (16). Also, multiplying (23) by v� we have

〈
g′
I(x)u, v

〉 = σ‖v‖2.

Multiplying by u� both sides in (22), we then obtain that

0 = 〈Mu, u〉 +
〈
g′
I(x)�v, u

〉
= 〈Mu, u〉 + σ‖v‖2.

Then, by (15), we have that 0 ≥ γ1
(‖u‖2 + σ‖v‖2

)
. Hence, u = 0 and v = 0,

implying that the matrix in (21) is nonsingular. ��

The previous partial results, allow us to show the existence of solutions for a prob-
lem involving only the active constraints in (7) and satisfying (5).

Proposition 2 Suppose that SOC (13) holds at (x̄, μ̄). Then there exist constants
ε1, δ1, ζ1 > 0 such that if ‖x − x̄‖ < ε1, ‖M − � ′

x (x̄, μ̄)‖ < δ1 and 0 < σ < ζ1, the
mixed complementarity problem of finding (y, νI) ∈ Rn × R|I| such that

0 = F(x) + M(y − x) + g′
I(x)�νI ,

0 = gi (x) + 〈g′
i (x), y − x〉 − σ(νi − μi ), i ∈ I+(x̄, μ̄), (24)

0 ≤ λi ⊥ gi (x) + 〈g′
i (x), y − x〉 − σ(νi − μi ) ≤ 0, i ∈ I0(x̄, μ̄),

has a nonempty compact solution set.

Proof The same proof of [8, Proposition 2], changing � ′
x (x, μ) by M, σ (x, μ) by σ

and K (x, μ) by K (x, σ ). ��
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Proposition 3 Suppose that SOC (13) holds at (x̄, μ̄) and σ is a function satisfying
(11). Then there exist constants γ2, ε1, δ1 > 0 such that if ‖M − � ′

x (x̄, μ̄)‖ < δ1 and
(x, μ) ∈ ((x̄, μ̄) + ε1 B) ∩ (Rn × Rm+) with σ(x, μ) > 0, it holds that

∥
∥
∥
∥

[
y − x

νI − μI

]∥∥
∥
∥ ≤ γ2σ(x, μ),

where (y, νI) is any solution of (24).

Proof The same proof of [8, Proposition 3], changing � ′
x (xk, μk) by Mk with Mk →

� ′
x (x̄, μ̄). ��
Now, the existence of solutions under small perturbations, can be written as follows.

Theorem 1 Suppose that SOC (13) holds at (x̄, μ̄) and σ is a function satisfying
(11). Then there exist constants c, ε1, δ1 > 0 such that if ‖M − � ′

x (x̄, μ̄)‖ < δ1 and
(x, μ) ∈ ((x̄, μ̄) + ε1 B)∩(Rn ×Rm+) with σ(x, μ) > 0, there exists (ȳ, ν̄), a solution
of the mixed complementarity problem of finding (y, ν) ∈ Rn × Rm such that

0 = F(x) + M(y − x) + g′(x)�ν,

0 ≤ ν ⊥ [
g(x) + g′(x)(y − x) − σ(x, μ)(ν − μ)

] ≤ 0,
(25)

satisfying

∥
∥
∥
∥

[
ȳ − x
ν̄ − μ

]∥∥
∥
∥ ≤ c σ(x, μ). (26)

Proof The same as [8, Theorem 3]. ��

4 Convergence of the primal-dual sequence

The convergence will be proved adapting the ideas presented in [3] and [9]. To this
end, along this section we will write the main problem and subproblems as generalized
equations. Is important to remark that, as has been said in Sect. 2, the SOC (13) implies
the calmness condition (12).

Let us define w = (x, μ) ∈ Rn × Rm = Rq and

Hσ (w, M) =
[

M g′(x)�
−g′(x) σ (w)I

]
. (27)

Then, any point z̄ = (ȳ, ν̄) satisfying (25) and (26) must belong into the set

Sc,σ (w, M) =
{

z ∈ Rq
∣
∣
∣
∣
0 ∈ G(w) + Hσ (w, M)(z − w) + NRn×Rm+(z)

and ‖z − w‖ ≤ c σ(w)

}
, (28)

where G was defined in (10).
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In order to prove the following partial result, and hence our convergence result, we
strength the smoothness of the involved functions. This degree of smoothness is the
standard for the quasi-Newton methods presented in the literature.

Proposition 4 Let F ′ and g′′ be Lipschitz-continuous at x̄ . Suppose that SOC (13)
holds at w̄ = (x̄, μ̄) and σ is a function satisfying (11). Then there exist constants
ε2, δ2 > 0 such that if ‖w − w̄‖ < ε2, ‖M − � ′

x (w̄)‖ < δ2 and z ∈ Sc,σ (w, M), it
holds that

dist(z, 
(0)) ≤ 1

2
dist(w,
(0)).

Proof Since σ satisfies (11) and w̄ ∈ 
(0), then

σ(w) ≤ β2dist(w,
(0)) ≤ β2‖w − w̄‖. (29)

For any matrix

H =
[

M11 M�
12−M12 0

]
,

define ‖ · ‖� so that ‖H‖� = ‖M11‖ + ‖M12‖ and let c1 > 0 satisfies ‖ · ‖ ≤ c1‖ · ‖�.
Hence, using that ‖g′(x) − g′(x̄)‖ ≤ c2‖x − x̄‖ for some c2 > 0, we have

‖Hσ (w, M) − G ′(w̄)‖ ≤ c1‖M − � ′
x (x̄, μ̄)‖ + c1c2‖x − x̄‖ + σ(w)

≤ c1‖M − � ′
x (x̄, μ̄)‖ + (c1c2 + β2)‖w − w̄‖. (30)

Using that z ∈ Sc,σ (w, M), we obtain

‖z − w̄‖ ≤ ‖z − w‖ + ‖w − w̄‖
≤ c σ(w) + ‖w − w̄‖ ≤ (cβ2 + 1)‖w − w̄‖. (31)

Now, by the Lipschitz-continuity of G ′ at w̄, there exist c3 > 0 such that for any
t ∈ [0, 1],

‖G ′(w + t (z − w)) − G ′(w̄)‖ ≤ c3(‖z − w‖ + ‖w − w̄‖)
≤ c3(cβ2 + 1)‖w − w̄‖. (32)

Let p = G(w)+ Hσ (w, M)(z −w)− G(z), hence from (28) and (9), we conclude
that z ∈ 
(p). Also, we have

‖p‖ ≤
⎡

⎣
1∫

0

‖G ′(w + t (z − w)) − G ′(w̄)‖ + ‖G ′(w̄) − Hσ (w, M)‖
⎤

⎦ ‖z − w‖.
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Take

ε2 ≤ min

{
1

(1 + cβ2)6τc3cβ2
,

1

(β2 + c1c2)6τcβ2
,

ε̄

1 + cβ2
, 2τγ

}
,

δ2 ≤ 1

6τc1cβ2
,

with ε̄, τ, γ satisfying (12). Thus, using (30, 32) and the fact that ‖w − w̄‖ < ε2 and
‖M − � ′

x (x̄, μ̄)‖ < δ2, we obtain

‖p‖ <
1

2τcβ2
‖z − w‖ ≤ 1

2τ
dist(w,
(0)) (33)

≤ 1

2τ
‖w − w̄‖ ≤ γ.

Using the definition of ε2 in (31), we have

‖z − w̄‖ < ε̄

Hence, since z ∈ 
(p) ∩ (w̄ + ε̄B) and p ∈ γ B, using (12) and (33) it follows that

dist(z, 
(0)) ≤ τ‖p‖ ≤ 1

2
dist(w,
(0)).

��

4.1 Updating the matrices

Before proving the consistency and convergence of the method, we must specify how
to generate the sequence of matrices {Mk}. To this end, let us consider a subspace
X ⊆ Rn×n such that

� ′
x (x, μ) ∈ X .

Let us provided X with the topology induced by the inner product 〈〈·, ·〉〉. Given a
function ϕ : X → [−∞,+∞], strictly convex and differentiable on the interior of
dom ϕ = {X ∈ X | ϕ(X) < ∞}, we define the Bregman “distance” between matrices
as

Dϕ : X × int(dom ϕ) → [0,∞],

such that

Dϕ(X, Y ) = ϕ(X) − ϕ(Y ) − 〈〈ϕ′(Y ), X − Y 〉〉 .
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The function Dϕ is not a distance in the sense of metric topology, because it is neither
symmetric (unless ϕ is quadratic) nor satisfies the triangle inequality. Nonetheless,
Dϕ satisfies the following generalized Pythagorean inequality: for any X, Y, Z ∈
int(dom ϕ),

Dϕ(X, Z) = Dϕ(X, Y ) + Dϕ(Y, Z) − 〈〈ϕ′(Z) − ϕ′(Y ), X − Y 〉〉 . (34)

Given a linear subspace L ⊂ X such that L ∩ int(dom ϕ) �= ∅, the proposed
quasi-Newton update will be defined as the unique solution �ϕ,L(M) of the problem

min
N∈L

Dϕ(N , M). (35)

Since L is a subspace, by the optimality conditions of this problem and (34), it can be
seen that

Dϕ(N , M) = Dϕ(N ,�ϕ,L(M)) + Dϕ(�ϕ,L(M), M), (36)

for any N ∈ L.
In order to guarantee that (35) has a unique solution we assume that the function ϕ is

a Bregman/Legendre function (see [1]). For completeness, we introduce the following
technical definitions. If dom ϕ �= ∅ and ϕ never takes the value −∞, then we say that
ϕ is proper. A proper convex function ϕ is called essentially smooth if it is differentia-
ble on int(dom ϕ) �= ∅ and ‖ϕ′(Xk)‖ → +∞ for every sequence {Xk} ⊂ int(dom ϕ)

that approaches a boundary point of dom ϕ. A proper convex function ϕ is a Legendre
function if it is essentially smooth and strictly convex on every convex subset of
int(dom ϕ). The conjugate of ϕ is the function ϕ∗ : X → (−∞,+∞] defined by
ϕ∗(Y ) = supX∈X {〈〈 X, Y 〉〉 − ϕ(X)}.

Hence, by [1, Definition 5.2], ϕ is a Bregman/Legendre function if ϕ is a Legendre
function and the following properties hold:

BL0. dom ϕ∗ is open.
BL1. Dϕ(X, ·) is coercive for all X ∈ dom ϕ\int(dom ϕ).
BL2. X ∈ dom ϕ\int(dom ϕ), {Yk} ⊂ int(dom ϕ), Yk → Y ∈ bd(dom ϕ) and

{Dϕ(X, Yk)} bounded imply that Dϕ(Y, Yk) → 0 (and hence Y ∈ dom ϕ).
BL3. {Xk}, {Yk} ⊂ int(dom ϕ), Xk → X ∈ dom ϕ\int(dom ϕ), Yk → Y ∈

dom ϕ\int(dom ϕ) and Dϕ(Xk, Yk) → 0 imply that X = Y .

Hence, if ϕ is a Bregman/Legendre function, we will define

Mk+1 = �ϕ,Lk (Mk),

where

Lk =
{

M ∈ X | M
(

xk+1 − xk
)

= �
(

xk+1, μk+1
)

− �
(

xk, μk+1
)}

.

Example 1 If L = {M ∈ X | Ms = y}, we obtain the following quasi-Newton
updates:
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1. Let X = Rn×n, 〈〈N , M 〉〉 = tr(M�N ) and ϕ(X) = 1
2‖X‖2.

By definition, it can be seen that ϕ is a Legendre function. Since dom ϕ =
dom ϕ∗ = Rn×n is open, by [1, Theorem 5.6] we have that ϕ is a Breg-
man/Legendre function. Hence, (35) can be written as

min
N∈L

1

2
‖N − M‖2.

From [6], we have that

�ϕ,L(M) = M + (y − Ms)s�

s�s
.

Hence, we obtain the Broyden update [4].
2. Let X = S

n be the space of symmetric matrices with the induced inner product
〈〈N , M 〉〉 = tr(M N ) and ϕ as before.
We have again that ϕ is a Bregman/Legendre function. From [6],

�ϕ,L(M) = M + (y − Ms)s� + s(y − Ms)�

s�s
− 〈s, y − Ms〉

(s�s)2 ss�.

That is, the Powell symmetric Broyden update [20].
3. Let X = S

n, 〈〈N , M 〉〉 = tr(M N ) and ϕ(X) = − log(det(X)) if X ∈ {Y ∈ S
n |

Y is positive definite}, ϕ(X) = +∞ otherwise. In [1, Example 7.17] was proven
that this function is Bregman/Legendre. Since ϕ′(X) = −X−1 for X ∈ dom ϕ,
problem (35) can be written as

min
N∈L∩dom ϕ

tr(M−1 N ) − log(det(N )) + const

From [10] we have that

�ϕ,L(M) = M − Mss�M

s�Ms
+ yy�

y�s
.

Then, the Broyden–Fletcher–Goldfarb–Shanno update can also be used with this
approach. For a short proof of this formula (and related) see [13].

4.2 Convergence result

Since we are dealing with problems where the multiplier associated to the primal solu-
tion may not be unique, a priori, the dual sequence {μk} can converge to a multiplier
that violates the second-order condition, cornerstone of the analysis of the previous
section. To avoid this behavior, note that when (x̄, μ̄) satisfies the SOC (13), we have
that there exists a constant εμ̄ > 0 such that

(x̄, μ̂) satisfies SOC (13) for all μ̂ ∈ μ̄ + εμ̄B. (37)

With this safeguard, we can state the following result.
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Lemma 1 Let F ′ and g′′ be Lipschitz-continuous at x̄ and letϕ be a Bregman/Legendre
function. Suppose that SOC (13) holds at w̄ = (x̄, μ̄),� ′

x (x̄, μ̄) ∈ int(dom ϕ) and σ

is a function satisfying (11). Then there exist constants η, ζ > 0 such that if

w0 ∈ (w̄ + ηB) ∩ (Rn × Rm+
)

and M0 ∈ X ,
∥
∥M0 − � ′

x (x̄, μ̄)
∥
∥ < ζ, (38)

then:

(i) The sequence generated by wk+1 ∈ Sc,σ (wk, Mk), Mk+1 = �ϕ,Lk (Mk) is well-
defined.

(ii) {wk} converges to some point ŵ = (x̄, μ̂) satisfying SOC (13).
(iii)

{
Dϕ(� ′

x (x̄, μ̂), Mk)
}

converges.

Proof Let c, ε1, δ1 > 0 be the constants given by Theorem 1, ε2, δ2 > 0 given in
Proposition 4 and εμ̄ > 0 given in (37).

By the Lipschitz-continuity of F ′ and g′′ at x̄ we have that there exists l1 > 1 such
that

∥
∥� ′

x (y, ν) − � ′
x (x̄, μ)

∥
∥ ≤ l1

2
(‖y − x̄‖ + ‖ν − μ‖), (39)

for any (y, ν), (x, μ) ∈ (x̄, μ̄) + εμ̄ B.
Let us fixγ0 > 0 and define�(N ) = {M ∈ X | Dϕ(N , M) ≤ γ0} if N ∈ dom ϕ and

�(N ) = ∅ otherwise. Since ϕ is Bregman/Legendre and � ′
x (x̄, μ̄) ∈ int(dom ϕ), by

[1, Theorem 3.7(vi)] we have that Dϕ(� ′
x (x̄, μ̄), ·) is coercive and then �(� ′

x (x̄, μ̄)) is
compact. By [1, Theorem 3.8(i)] we have that �(� ′

x (x̄, μ̄)) ⊂ int(dom ϕ). Then, using
the convexity of dom ϕ, there exists a convex compact set � such that �(� ′

x (x̄, μ̄))+
δB ⊂ � ⊂ int(dom ϕ), for some δ > 0. As in [21, Example 5.8], we obtain that the
set-valued map � is outer semicontinuous at � ′

x (x̄, μ̄). Then, there exists δ3 > 0 such
that

�(N ) ⊂ � if
∥
∥N − � ′

x (x̄, μ̄)
∥
∥ < δ3. (40)

The compactness of � implies that c0 = supM,N∈� ‖M − N‖ < +∞, and guarantee
the existence of L > 0 such that

∥
∥ϕ′(M) − ϕ′(N )

∥
∥ ≤ L‖M − N‖ for all M, N ∈ �. (41)

Hence, by definition of Dϕ , the convexity of � and (41) we have that

Dϕ(N , M) =
1∫

0

〈〈ϕ′(M + t (N − M)) − ϕ′(M), N − M 〉〉 dt

≤ L

2
‖N − M‖2 for all M, N ∈ �. (42)
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Thus, by (34) we conclude that for any N , M, M̃ ∈ �,

Dϕ(N , M) ≤ Dϕ(N , M̃) + Dϕ(M̃, M) + L
∥
∥
∥M − M̃

∥
∥
∥
∥
∥
∥N − M̃

∥
∥
∥

≤ Dϕ(M̃, M) + 3

2
Lc0

∥
∥
∥N − M̃

∥
∥
∥ , (43)

where in the first inequality we use (41) and in the second we use (42).

Let us define ε̃ = min

{
ε1, δ1, ε2, δ2, ε3,

δ3
l1

, εμ̄,
√

γ0

L
(
l2
1+1

)

}
.

Using [1, Theorem 3.9(iii)] we obtain the existence of δ4 > 0 such that

∥
∥M − � ′

x (x̄, μ̄)
∥
∥ < ε̃ if Dϕ(� ′

x (x̄, μ̄), M) < δ4. (44)

Taking into account the constant β2 > 0 given in (11), define

l2 = 3

2
Lc0, l3 = l1l2(cβ2 + 2), l4 = l1l2(cβ2 + 1) + 2l3 (45)

and take

η = min

{
ε̃

1 + 2cβ2
,

δ4

2l4

}
, ζ = min

{

ε̃,

√
δ4

L

}

.

If
∥
∥
∥w0 − w̄

∥
∥
∥ < η,

∥
∥M0 − � ′

x (x̄, μ̄)
∥
∥ < ζ,

by Theorem 1 we have that there exists w1 ∈ Sc,σ
(
w0, M0

)
.

In order to use an induction argument, suppose that for j = 1, . . . , k we have

∥
∥
∥w j − w̄

∥
∥
∥ < ε̃,

∥
∥M j − � ′

x (x̄, μ̄)
∥
∥ < ε̃, w j+1 ∈ Sc,σ

(
w j , M j

)
. (46)

This holds trivially for j = 0 by the definition of η and ζ .
Hence, for any j ∈ {0, . . . , k} we have that ‖w j+1 − w j‖ ≤ cσ(w j ) ≤

cβ2dist(w j , 
(0)) and dist(w j+1, 
(0)) ≤ 1
2 dist(w j , 
(0)), by Proposition 4. Thus

∥
∥
∥wk+1 − w0

∥
∥
∥ ≤

k∑

i=0

∥
∥
∥wi+1 − wi

∥
∥
∥ ≤ cβ2

k∑

i=0

dist(wi , 
(0))

≤ cβ2

k∑

i=0

1

2i
dist(w0, 
(0)) ≤ 2cβ2dist(w0, 
(0))

≤ 2cβ2

∥
∥
∥w0 − w̄

∥
∥
∥ , (47)
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which implies that

∥
∥
∥wk+1 − w̄

∥
∥
∥ ≤

∥
∥
∥wk+1 − w0

∥
∥
∥+

∥
∥
∥w0 − w̄

∥
∥
∥ ≤ (2cβ2 + 1)

∥
∥
∥w0 − w̄

∥
∥
∥ < ε̃. (48)

Note that, for any j ∈ {0, . . . , k} and t ∈ [0, 1] we have

∥
∥
∥x j + t

(
x j+1 − x j

)
− x̄

∥
∥
∥ ≤ max

{∥∥
∥x j+1 − x̄

∥
∥
∥ ,

∥
∥
∥x j − x̄

∥
∥
∥
}

< ε̃.

Let μ̂ j = �M(x̄)(μ
j ), then

max
{∥∥
∥μ̂ j+1 − μ̄

∥
∥
∥ ,

∥
∥
∥μ̂ j − μ̄

∥
∥
∥
}

≤ max
{∥∥
∥μ j+1 − μ̄

∥
∥
∥ ,

∥
∥
∥μ j − μ̄

∥
∥
∥
}

< ε̃.

Define

N j =
1∫

0

� ′
x

(
x j + t

(
x j+1 − x j

)
, μ j+1

)
dt. (49)

By (39)

∥
∥N j − � ′

x (x̄, μ̄)
∥
∥ < l1ε̃ ≤ δ3,

which implies that �(N j ) ⊂ � by (40). Hence, N j ∈ �(N j ) ⊂ � ⊂ int(dom ϕ).
Using (39) we also obtain

∥
∥
∥N j − � ′

x

(
x̄, μ̂ j

)∥∥
∥ ≤ l1

(∥∥
∥w j+1 − w j

∥
∥
∥+ dist(w j , 
(0))

)

≤ l1(cβ2 + 1)dist(w j , 
(0)), (50)

and

∥
∥
∥N j − � ′

x

(
x̄, μ̂ j+1

)∥∥
∥ ≤ l1

(
dist(w j+1, 
(0)) + 1

2
dist(w j , 
(0))

)

≤ l1dist(w j , 
(0)). (51)

Since ‖M j − � ′
x (x̄, μ̄)‖ < ε̃ < δ3, from (40) we have that M j ∈ �(M j ) ⊂ � ⊂

int(dom ϕ). Then by (42),

Dϕ(N j , M j ) ≤ L

2

∥
∥N j − M j

∥
∥2

≤ L
(∥
∥N j − � ′

x (x̄, μ̄)
∥
∥2 + ∥

∥M j − � ′
x (x̄, μ̄)

∥
∥2
)

≤ L(l2
1 + 1)ε̃2 ≤ γ0.
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From the fact that M j+1 = �ϕ,L j (M j ) and N j ∈ L j , by (36) we have that
Dϕ(N j , M j+1) ≤ Dϕ(N j , M j ) ≤ γ0. Thus, M j+1 ∈ �(N j ) ⊂ �.

As before, using (40) we have that � ′
x (x̄, μ̂ j+1),� ′

x (x̄, μ̂ j ) ∈ �. Hence, by (43)
and (45) we obtain that

Dϕ(� ′
x (x̄, μ̂ j+1), M j+1) ≤ Dϕ(N j , M j+1) + l2

∥
∥
∥N j − � ′

x (x̄, μ̂ j+1)

∥
∥
∥ ,

and

Dϕ(N j , M j ) ≤ Dϕ(� ′
x (x̄, μ̂ j ), M j ) + l2

∥
∥
∥N j − � ′

x (x̄, μ̂ j )

∥
∥
∥ .

Then, since Dϕ(N j , M j+1) ≤ Dϕ(N j , M j ), by (50, 51) and (45) we obtain the
following bounded deterioration condition

Dϕ(� ′
x (x̄, μ̂ j+1), M j+1) ≤ Dϕ(� ′

x (x̄, μ̂ j ), M j ) + l3dist(w j , 
(0)), (52)

for any j ∈ {0, . . . , k}.
Hence, it holds that

Dϕ(� ′
x (x̄, μ̂k+1), Mk+1) ≤ Dϕ(� ′

x (x̄, μ̂0), M0) + l3

k∑

j=0

dist(w j , 
(0))

≤ Dϕ(� ′
x (x̄, μ̂0), M0) + 2l3dist(w0, 
(0)). (53)

Using (39, 43) and (45) we have

Dϕ(� ′
x (x̄, μ̂0), M0) ≤ Dϕ(� ′

x (x̄, μ̄), M0) + l1
2

l2
∥
∥
∥μ̂0 − μ̄

∥
∥
∥ , (54)

and

Dϕ(� ′
x (x̄, μ̄), Mk+1) ≤ Dϕ(� ′

x (x̄, μ̂k+1), Mk+1) + l1
2

l2
∥
∥
∥μ̂k+1 − μ̄

∥
∥
∥ . (55)

Since ‖μ̂k+1−μ̄‖ ≤ (2cβ2+1)‖w0−w̄‖ (by (48)) and dist(w0, 
(0)) ≤ ‖w0−w̄‖,
combining (53, 54, 55) and using (42, 45) we then have

Dϕ(� ′
x (x̄, μ̄), Mk+1) ≤ Dϕ(� ′

x (x̄, μ̄), M0) + l4
∥
∥
∥w0 − w̄

∥
∥
∥

<
L

2
ζ 2 + l4η ≤ δ4. (56)

Hence, by (44) we obtain that
∥
∥Mk+1 − � ′

x (x̄, μ̄)
∥
∥ < ε̃. Now, since

∥
∥wk+1 − w̄

∥
∥ < ε̃

(by (48)), Theorem 1 guarantee the existence of wk+2 ∈ Sc,σ (wk+1, Mk+1). Then (46)
holds for all j , proving (i).
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Since (46) holds for all j , we have that {wk} is bounded, and hence, it has at least
one accumulation point ŵ. Using that dist(wk, 
(0)) ≤ 2−kdist(w0, 
(0)) for all k
we obtain that any accumulation point belongs to 
(0).

Let us show that the entire sequence converges to ŵ. With an argument similar to
that used in (47), it can be seen that for any k0 < k1 we have

∥
∥
∥wk1 − wk0

∥
∥
∥ ≤ 2cβ2dist(wk0 , 
(0)). (57)

By contradiction, suppose that {wk} has another accumulation point w∗, and let ε̂ =
‖ŵ − w∗‖. Choose k0, k1 large enough so that

∥
∥
∥wk0 − ŵ

∥
∥
∥ ≤ ε̂

4
,

∥
∥
∥wk1 − w∗

∥
∥
∥ ≤ ε̂

4
, dist(wk0 , 
(0)) ≤ ε̂

8cβ2
.

Then

∥
∥
∥wk1 − wk0

∥
∥
∥ ≤ 2cβ2dist(wk0 , 
(0)) ≤ ε̂

4
,

and

∥
∥
∥wk1 − wk0

∥
∥
∥ ≥ ∥

∥ŵ − w∗∥∥−
∥
∥
∥wk0 − ŵ

∥
∥
∥−

∥
∥
∥wk1 − w∗

∥
∥
∥ ≥ ε̂

2
.

Hence {wk} converges to ŵ = (x̄, μ̂) and ‖μ̂ − μ̄‖ ≤ ‖ŵ − w̄‖ < ε̃ ≤ εμ̄, which
proves (ii).

To show (iii), from (52) we deduce that for any k > j

Dϕ(� ′
x (x̄, μ̂k), Mk) ≤ Dϕ(� ′

x (x̄, μ̂ j ), M j ) + l3

k− j−1∑

i=0

dist(w j+i , 
(0))

≤ Dϕ(� ′
x (x̄, μ̂ j ), M j ) + l4dist(w j , 
(0)),

where we use that 2l3 ≤ l4. Since � ′
x (x̄, μ̂) ∈ �, by an argument similar to that used

in (54) and (55), we obtain

Dϕ(� ′
x (x̄, μ̂ j ), M j ) ≤ Dϕ(� ′

x (x̄, μ̂), M j ) + l4
∥
∥
∥μ̂ j − μ̂

∥
∥
∥ ,

and

Dϕ(� ′
x (x̄, μ̂), Mk) ≤ Dϕ(� ′

x (x̄, μ̂k), Mk) + l4
∥
∥
∥μ̂k − μ̂

∥
∥
∥ ,

where we use that l1l2 ≤ l4. Thus

Dϕ(� ′
x (x̄, μ̂), Mk) ≤ Dϕ(� ′

x (x̄, μ̂), M j )

+l4
(∥∥
∥μ̂ j − μ̂

∥
∥
∥+

∥
∥
∥μ̂k − μ̂

∥
∥
∥+ dist(w j , 
(0))

)
.
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Since μ̂k = �M(x̄)(μ
k) → �M(x̄)(μ̂) = μ̂, then

lim sup
k→∞

Dϕ(� ′
x (x̄, μ̂), Mk)≤ Dϕ(� ′

x (x̄, μ̂), M j )+l4
(∥∥
∥μ̂ j −μ̂

∥
∥
∥+dist(w j , 
(0))

)
.

Taking limit in the right-hand side, we deduce

lim sup
k→∞

Dϕ(� ′
x (x̄, μ̂), Mk) ≤ lim inf

k→∞ Dϕ(� ′
x (x̄, μ̂), Mk).

��
Remark 1 In the proof, we show that the sequence of matrices satisfies a kind of
bounded deterioration principle (52), similar to that introduced in [5].

Remark 2 The Bregman/Legendre functions in Example 1 are essentially locally
strongly convex (see [11]). In such case, we have that Dϕ(N , M) ≥ γ̄ ‖M − N‖2

for some γ̄ > 0 and any M, N near � ′
x (x̄, μ̄). Then, the compactness of �, the fact

that �(� ′
x (x̄, μ̄)) ⊂ int(dom ϕ) and (44) follows inmediatly, without use the tools

given by [1].

Using the ideas of the analysis developed in [12], we obtain the following.

Corollary 2 The sequences {wk} and {Mk} generated according Lemma 1 satisfy

lim
k→∞ ‖Mk − Mk+1‖ = 0, (58)

and

(� ′
x (x̄, μ̂) − Mk)(xk+1 − xk) = o

(∥∥
∥xk+1 − xk

∥
∥
∥
)

. (59)

Proof Let Nk be defined as in (49). By (34) we have that for any M ∈ �

|Dϕ(Nk, M) − Dϕ(� ′
x (x̄, μ̂), M)| ≤ Dϕ(Nk, �

′
x (x̄, μ̂)) + Lc0‖Nk − � ′

x (x̄, μ̂)‖.

Since Nk → � ′
x (x̄, μ̂), using (iii) in Lemma 1 we conclude that Dϕ(Nk, Mk+1) and

Dϕ(Nk, Mk) converge to the same limit. Then by (36),

Dϕ(Mk+1, Mk) = Dϕ(Nk, Mk) − Dϕ(Nk, Mk+1) → 0. (60)

By contradiction, suppose that there exist ε > 0 and an index set K such that

‖Mk − Mk+1‖ > ε for all k ∈ K. (61)

Since {Mk} ⊂ �, we have accumulation points M̄, M̂ ∈ � and an index set K1 ⊂ K
such that

Mk −→
k∈K1

M̄, Mk+1 −→
k∈K1

M̂ .
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Using (60) we have that Dϕ(M̂, M̄) = 0 with M̄, M̂ ∈ � ⊂ int(dom ϕ). Then, the
strict convexity of ϕ on � implies that M̄ = M̂ .

Hence

‖Mk − Mk+1‖ −→
k∈K1

0,

in contradiction with (61). Thus, (58) holds.
By the definition of Lk we obtain that

Mk+1

(
xk+1 − xk

)
= �

(
xk+1, μk+1

)
− �

(
xk, μk+1

)

=�
(

xk+1, μ̂
)
−�

(
xk, μ̂

)
+
(

g′ (xk+1
)
−g′ (xk

))� (
μk+1−μ̂

)

= � ′
x (x̄, μ̂)

(
xk+1 − xk

)
+ o

(∥∥
∥xk+1 − xk

∥
∥
∥
)

.

Hence,

(
� ′

x (x̄, μ̂) − Mk
) (

xk+1 − xk
)

= (Mk+1 − Mk)
(

xk+1 − xk
)

+ o
(∥∥
∥xk+1 − xk

∥
∥
∥
)

= o
(∥∥
∥xk+1 − xk

∥
∥
∥
)

.

��
Without introduce further assumptions, we can show that the convergence in (ii)

Lemma 1 occur with superlinear rate.

Theorem 2 Let F ′ and g′′ be Lipschitz-continuous at x̄ and let ϕ be a Breg-
man/Legendre function. Suppose that SOC (13) holds at w̄ = (x̄, μ̄),� ′

x (x̄, μ̄) ∈
int(dom ϕ), σ is a function satisfying (11) and the sequences {Mk} and {wk} were
generated by

wk+1 ∈ Sc,σ (wk, Mk) and Mk+1 = �ϕ,Lk (Mk),

with w0 and M0 satisfying (38) for constants η, ζ > 0 given by Lemma 1. Then{
dist(wk, 
(0))

}
converges superlinearly to 0 and {wk} converges superlinearly to ŵ.

Proof By Lemma 1, we have that {wk} converges to ŵ. Using (59), it can be seen that

(
G ′(ŵ) − Hσ (wk, Mk)

) (
wk+1 − wk

)
= o

(∥∥
∥wk+1 − wk

∥
∥
∥
)

,

where G was defined in (10) and Hσ in (27). Since F ′ and g′′ are Lipschitz-continuous,
then

G
(
wk+1

)
− G

(
wk
)

− G ′ (ŵ
) (

wk+1 − wk
)

= o
(∥∥
∥wk+1 − wk

∥
∥
∥
)

.
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Hence,

pk = G
(
wk
)

+ Hσ

(
wk, Mk

) (
wk+1 − wk

)
− G

(
wk+1

)

= o
(∥∥
∥wk+1 − wk

∥
∥
∥
)

.

By the definition of the sequence we have that

0 ∈ G(wk+1) + NRn×Rm+(wk+1) + pk .

Using SOC (13) we obtain that the multifunction 
 defined in (9) satisfies the condition
(12). Thus, there exists τ > 0 such that for k large enough

wk+1 ∈ 
(pk) ⊆ 
(0) + τ‖pk‖,

which implies

dist(wk+1, 
(0)) = o
(∥∥
∥wk+1 − wk

∥
∥
∥
)

. (62)

From (57), taking k0 = k + 1 and letting k1 goes to infinity, he have

∥
∥
∥wk+1 − ŵ

∥
∥
∥ ≤ 2cβ2dist(wk+1, 
(0)).

Hence, ‖wk+1 − ŵ‖ = o(‖wk+1 − wk‖), implying that

∥
∥
∥wk+1 − ŵ

∥
∥
∥ = o

(∥∥
∥wk − ŵ

∥
∥
∥
)

.

From (57), taking k1 = k + 1 and k0 = k, we have

‖wk+1 − wk‖ ≤ 2cβ2dist(wk, 
(0)).

Hence, using (62),

dist(wk+1, 
(0)) = o
(

dist(wk, 
(0))
)

. (63)

��

5 Comments about primal convergence

To be coherent with the previous analysis, we will say some words about the primal
convergence of the method without introduce any constraint qualification assumption
nor other additional hypothesis. As has been commented in Sect. 2, the SOC (13) at
(x̄, μ̄) implies that the natural residual provides a local error bound at this point and
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also the isolatedness of the primal solution x̄ . Hence, there exists a neighborhood V
of (x̄, μ̄) such that for all (x, μ) ∈ V ,

(
‖x − x̄‖2 + dist(μ,M(x̄))2

) 1
2 = dist((x, μ),
(0)) (64)

and

β0 dist((x, μ),
(0)) ≤
∥
∥
∥
∥

[
�(x, μ)

min{−g(x), μ}
]∥∥
∥
∥ , (65)

for some β0 > 0.
Using this property, we conclude that the convergence rate of the primal sequence

is at least two-step superlinear.

Proposition 5 Under the hypotheses of Theorem 2, the sequence {xk}, primal part of
{wk}, satisfies

lim
k→∞

∥
∥xk+1 − x̄

∥
∥

max
{∥∥xk − x̄

∥
∥ ,
∥
∥xk−1 − x̄

∥
∥} = 0.

Proof By Theorem 2, we have that (xk, μk) → (x̄, μ̂) and (63) holds. Note that
shrinking εμ̄ in (37), we can obtain (x̄, μ̂) in a neighborhood V of (x̄, μ̄) where (64)
and (65) are valid.

Let ηk = max
{∥∥xk − x̄

∥
∥ ,
∥
∥xk−1 − x̄

∥
∥}.

Since 0 = F(xk−1) + Mk−1(xk − xk−1) + g′(xk−1)�μk and Mk ∈ Lk−1, we have

Mk

(
xk − xk−1

)
= �

(
xk, μk

)
− �

(
xk−1, μk

)

= �
(

xk, μk
)

+ Mk−1

(
xk − xk−1

)
.

Hence, using (58), we conclude that

∥
∥
∥�

(
xk, μk

)∥∥
∥ =

∥
∥
∥(Mk − Mk−1)

(
xk − xk−1

)∥∥
∥ = o(ηk).

For i /∈ I and k large enough, by continuity, we have gi (xk) < 0 and

gi

(
xk−1

)
+
〈
g′

i

(
xk−1

)
, xk − xk−1

〉
− σk−1

(
μk − μk−1

)
≤ 1

2
gi (x̄) < 0.

Hence, μk
i = 0 by complementarity. Obtaining that min

{−gi (xk), μk
i

} = 0 for i /∈ I.
Thus, there exists L > 0 independent of k such that
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∥
∥
∥min

{
−g(xk), μk

}∥∥
∥ =

∥
∥
∥min

{
−gI(xk), μk

I
}∥∥
∥

=
∥
∥
∥μk

I − �
R

|I|
+

(
μk

I + gI(xk)
)∥∥
∥

≤
∥
∥
∥gI(x̄) − gI(xk)

∥
∥
∥

≤ Lηk,

where we use that μk
I ∈ R

|I|
+ and gI(x̄) = 0.

By the SOC (13), we have the existence of L0 > 0 such that

dist(wk, 
(0)) ≤ 1

β0

∥
∥
∥
∥

[
�(xk, μk)

min
{−g(xk), μk

}
]∥∥
∥
∥ ≤ L0ηk,

for k large enough. Hence,

∥
∥xk+1 − x̄

∥
∥

ηk
≤ dist(wk+1, 
(0))

ηk
= dist(wk+1, 
(0))

dist(wk, 
(0))

dist(wk, 
(0))

ηk
→ 0,

where we use (63). ��
As can be seen, in the previous result we only use the equality part in (7), without

using the complementarity part, where the stabilization is done. The addition of this
dual information creates a strong dependency between primal and dual iteration, given
some difficulties in the study of the rate of convergence of the primal sequence.

6 Numerical example

We illustrate our convergence result with the following example.

min 8(x1 + 2)2 + x2
2

s.t. x3
1 − x2

1 − x2
2 + 2 ≤ 0,

−x1 − 3x2 − 1 ≤ 0,

−x1 + 3x2 − 1 ≤ 0.

This problem has a unique solution x̄ = (−1, 0) (the unique feasible point) with
an associated Lagrange multipliers set given by

M(x̄) =
{(

α, 5
2α + 8, 5

2α + 8
)

| α ≥ 0
}

.

It can be seen that MFCQ does not hold and that � ′
x (x̄, μ̄) is a symmetric and

positive definite matrix for any μ̄ ∈
{(

α, 5
2α + 8, 5

2α + 8
)

| 2 > α ≥ 0
}

.

Also, after some algebraics, it can be proved that if

xk ∈ B :=
{

x ∈ R2 | x1 ≤ 0, − ( 9
2 x2

1 − 3x1
) ≤ x2 ≤ 9

2 x2
1 − 3x1

}
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Table 1 Error on last 5
iterations σ

(
xk , μk

) ∥
∥
∥xk − x̄

∥
∥
∥

1.6854e−01 2.6551e−02

3.1049e−02 4.1603e−03

2.0858e−03 2.2209e−04

3.2931e−05 2.0981e−06

2.4906e−08 1.7831e−09

with xk �= x̄ , then

{
y ∈ R2 | g(xk) + g′(xk)(y − xk) ≤ 0

}
= ∅.

Since x̄ is an interior point of B, we have that the standard SQP method fails to solve
this problem (unless xk = x̄ for some k).

We have written an Octave implementation of a quasi-Newton stabilized SQP
method with BFGS update, using the built-in subroutine qp for solving subprob-
lems (6). Experiments were performed choosing 100 random starting points x0

1 ∈
[−2, 0], x0

2 ∈ [−1, 1], μ0
1 ∈ [0, 2] and μ0

j ∈ [8, 13], j = 2, 3. The stopping criteria

was σ(xk, μk) < 10−7.
The convergence of the primal-dual sequence was superlinear in all the cases. Sur-

prisingly, the convergence of the primal sequence was also superlinear.
Table 1 shows the average values of σ(xk, μk) and ‖xk − x̄‖ for the last 5 iterations.

7 Final remarks

In this paper we have demonstrated that the sSQP method preserves their good con-
vergence properties even when the exact higher order derivatives are replaced by
quasi-Newton approximations. Note that as in the exact case, the method converges
without any constraint qualification assumptions. To the best of our knowledge, no
bounded deterioration property for degenerate constraints is available in the literature,
thus, (52) seems to be the first of this kind. We also provided a unified framework to
study quasi-Newton updates through its associated Bregman/Legendre function. The
condition � ′

x (x̄, μ̄) ∈ int(dom ϕ) in Lemma 1 say that, for optimization problems,
the Hessian of the Lagrangian function must be positive definite in order to guaran-
tee the convergence of the method with the BFGS update. This is a strong condition
usually not fulfilled in practice. To avoid this condition we have to change dom ϕ and
therefore, its associated quasi-Newton update. It remains to investigate what are the
quasi-Newton updates associated to those Bregman/Legendre functions present in the
literature and to see which one provides a computationally plausible updating formula.
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