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Abstract
This is a supplementary note on M. X. Goemans, S. Iwata, and R. Zenklusen’s pa-

per that proposes a flow model based on polylinking systems. Their flow model is a
series (or tandem) connection of polylinking systems. We can consider an apparently
more general model of a polylinking flow network which consists of an ordinary arc-
capacitated network endowed with polylinking systems on the vertex set, one for each
vertex of the network. This is a natural, apparent generalization of polymatroidal flow
model of E. L. Lawler and C. U. Martel and of generalized-polymatroidal flow model
of R. Hassin. We give a max-flow min-cut formula for the polylinking network flow
problem and discuss some acyclic flow property of polylinking flows.
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1. Introduction
M. X. Goemans, S. Iwata, and R. Zenklusen [6] proposed a flow model based on polylinking
systems of A. Schrijver [9]. The present note is supplementary to their paper and points
out an apparent generalization of their model, which is also a natural, apparent generaliza-
tion of polymatroidal flow model of E. L. Lawler and C. U. Martel [8] and of generalized-
polymatroidal flow model of R. Hassin [7]. We give a max-flow min-cut formula for the
polylinking network flow problem and discuss some acyclic flow property of polylinking
flows. The results are easy consequences of those in the theory of submodular functions but
it may be worth noting and useful for wireless information networks [1], which motivated
the work of [6]
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2. Preliminaries: Base polyhedra and polylinking systems
Let W be a nonempty set and f : 2W → R be a submodular function, i.e., f satisfies

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (∀X, Y ⊆ W ). (2.1)

We assume f(∅) = 0. The base polyhedron associated with f is defined by

B(f) = {x ∈ RW | ∀X ⊆ W : x(X) ≤ f(X), x(W ) = f(W )}. (2.2)

Here for simplicity we consider submodular functions on power sets (or Boolean lattices)
but we can easily adapt the arguments in this note to submodular functions on ring families
(or distributive lattices). A vector x ∈ B(f) is called a base. For any base x ∈ B(f) and
u ∈ W we define dep(x, u) by

dep(x, u) = {v ∈ W | ∃α > 0 : x + α(χu − χv) ∈ B(f)}, (2.3)

where for any w ∈ W χw is the unit vector such that χw(w) = 1 and χw(s) = 0 for all
s ∈ W \ {w}. In other words, when v ∈ dep(x, u) \ {u}, we can increase x(u) and at
the same time decrease x(v) by some positive amount without leaving the base polyhedron
B(f). The function dep : B(f) × W → 2W is called the dependence function. Moreover,
for any v ∈ dep(x, u) \ {u} define

c̃(x, u, v) = max{α ∈ R | x + α(χu − χv) ∈ B(f)}, (2.4)

which is called the exchange capacity from v to u associated with base x. Dependence
functions and exchange capacities will appear only in Section 4.3. For more details about
the theory of submodular functions see [5].

For any vector x ∈ RW and any subset U of W define xU to be the vector in RU such that
xU(u) = x(u) for all u ∈ U , which is the restriction of x to U . For any disjoint nonempty
subsets U1, U2 ⊂ W and any vectors x ∈ RU1 and y ∈ RU2 denote by x ⊕ y the vector in
RU1∪U2 such that (x ⊕ y)(u) = x(u) for all u ∈ U1 and (x ⊕ y)(u) = y(u) for all u ∈ U2.

Suppose that f(W ) = 0 and f(X) ≥ 0 for all X ⊆ W , which implies 0 ∈ B(f). We
assume this property for all submodular functions appearing in the sequel. Let (U1, U2) be
an ordered pair of nonempty subsets of W such that U1 ∩ U2 = ∅ and U1 ∪ U2 = W . We
call it an ordered proper bisection of W . Consider a reflection by U1 of the base polyhedron
given by

B(U1,U2)(f) = {y | x ∈ B(f), yU1 = −xU1 , yU2 = xU2}. (2.5)

Then the triple (U1, U2, B(U1,U2)(f)) is a polylinking system and B(U1,U2)(f) is the associated
polylinking polyhedron. We call f the submodular function associated with the polylinking
system. Here we define a polylinking system by means of a submodular function (cf. [5,
Sec. 3.5(b)]). (The original polylinking system introduced by Schrijver [9] considers the
restriction of B(U1,U2)(f) to the nonnegative orthant RW

+ .) For any y ∈ B(U1,U2)(f) we say
yU1 is linked to yU2 , and (yU1 , yU2) is called a pair of linked vectors. Note that y(U1) = y(U2)
since f(W ) = 0 by definition.
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3. The Polylinking Flow Model of Goemans, Iwata, and
Zenklusen

Now let us give a description of the polylinking flow model of Goemans, Iwata, and Zen-
klusen [6] for completeness of the presentation. Consider nonempty disjoint sets Vi (i =
1, · · · , r) with an integer r ≥ 2 and polylinking systems (V1, Vi+1, Li) (i = 1, · · · , r − 1).
The pair (V, L), where V = (V1, · · · , Vr) and L = (L1, · · · , Lr−1), is called a polylinking
flow model in [6]. It is a series (or tandem) connection of polylinking systems. A flow in
the polylinking flow model (V, L) is a tuple x = (x1, · · · , xr) such that (xi, xi+1) is a pair of
linked vectors in Li for all i = 1, · · · , r − 1 and xi is nonnegative for all i = 1, · · · , r. Note
that we always have a feasible flow consisting of zero linked vectors. We have a common
value x1(V1) = · · · = xr(Vr), which is called the value of flow x = (x1, · · · , xr).

Goemans, Iwata, and Zenklusen [6] considered a problem of finding a flow of maximum
value in the polylinking flow model, showed a min-max formula, and gave an efficient algo-
rithm for finding a maximum flow in the polylinking flow model by reducing the problem to
a submodular flow problem of J. Edmonds and R. Giles [2] and by employing an efficient
algorithm for submodular flows such as L. Fleischer and Iwata’s [3] together with the fast
Fourier transformation on finite fields.

4. Polylinking Flow Networks
Goemans, Iwata, and Zenklusen [6] considered a series (or tandem) connection of polylink-
ing systems. We can consider an apparently more general model which consists of an ordi-
nary arc-capacitated network endowed with polylinking systems, one for each vertex of the
network. This is a natural, apparent generalization of a polymatroidal flow model of Lawler
and Martel [8] and that of a generalized-polymatroidal flow of Hassin [7].

4.1. Definition of a (general) polylinking flow network
Let G = (V,A) be a directed graph with a vertex set V and an arc set A, and let c : A →
R ∪ {−∞} and c̄ : A → R ∪ {+∞} be lower and upper capacity functions on arc set A
such that c(a) ≤ c̄(a) for all a ∈ A. For each vertex v ∈ V we are given a linking system
(δ−v, δ+v, Lv), where let fv : 2δ−v∪δ+v → R be the submodular function associated with
the linking polyhedron Lv. (For any vertex v ∈ V , δ−v denotes the set of arcs in G whose
terminal vertices are v, and δ+v the set of arcs in G whose initial vertices are v.) We call
N = (G, c, L) a polylinking flow network, where L = (Lv | v ∈ V ).

A feasible flow (or a polylinking flow) in the polylinking network N = (G, c, L) is a
function ϕ : A → R that satisfies the following.

c(a) ≤ ϕ(a) ≤ c̄(a) (∀a ∈ A), (4.1)
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ϕδ−v∪δ+v ∈ Lv (∀v ∈ V ), (4.2)

where recall that ϕF for F ⊆ A is the restriction of ϕ to F .

Remark 1: A polymatroidal flow network of Lawler and Martel [8] is a special case of a
linking flow network where each linking polyhedron Lv for v ∈ V is a composition of poly-
matroids on δ−v and on δ+v, which is defined as follows. For two polymatroid polyhedra
P1 ⊂ RS1 and P2 ⊂ RS2 with S1 ∩ S2 = ∅ define a polytope L(P1, P2) ⊂ RS1∪S2 by

L(P1, P2) = {x1 ⊕ x2 | x1 ∈ P1, x2 ∈ P2, x1(S1) = x2(S2)}. (4.3)

We can see that the reflection of L(P1, P2) by S1 is a base polyhedron, and hence L(P1, P2)
gives a polylinking polyhedron. Also Hassin [7] considered a linking flow network when
each linking polyhedron Lv is a composition of generalized polymatroids [4] on δ−v and on
δ+v for v ∈ V , which is defined similarly as above by replacing polymatroids by generalized
polymatroids.

These facts can be understood as follows. Let P1 ⊂ RS1 and P2 ⊂ RS2 be generalized
polymatroids. We embed P1 (resp. P2) in RS1∪S2 by taking the direct sum of P1 (resp. P2)
with the zero vector in RS2 (resp. RS1). Then consider a new element e0 commonly used for
P1 and P2, put T = S1∪S2∪{e0}, and let B1 ⊂ RT and B2 ⊂ RT be, respectively, the base
polyhedra lying in the hyperplane x(T ) = 0 such that the projection along the axis e0 into
the hyperplane x(e0) = 0 are P1 and P2 (after being restricted on S1 and S2) [5, Sec. 3.5(a)].
Then, the Minkowski sum of −B1 and B2 is a base polyhedron, denoted by B1,2, in RT ,
where −B1 = {−x | x ∈ B1} is also a base polyhedron. Taking a section of B1,2 by the
hyperplane x(e0) = 0 and restricting it to T \ {e0} = S1 ∪ S2, we get a base polyhedron B̂
in RS1∪S2 . Finally, by the reflection of B̂ by S1 we obtain the linking polyhedron L(P1, P2)
defined by (4.3) for generalized polymatroids P1 ⊂ RS1 and P2 ⊂ RS2 . 2

4.2. Equivalence between polylinking flows and submodular flows
Now we show that any polylinking flow network can be reduced to a submodular flow net-
work. The reduction technique given below is the same as the one shown in [5, Sec. 5.2(c)]
though polymatroids are considered instead of polylinking systems.

Given a graph G = (V,A), lower and upper capacity functions c : A → R and c̄ :
A → R with c(a) ≤ c̄(a) for all a ∈ A, and a submodular function f : 2V → R with
f(∅) = f(V ) = 0, a submodular flow is a function ϕ : A → R that satisfies

c(a) ≤ ϕ(a) ≤ c̄(a) (∀a ∈ A), (4.4)
∂ϕ ∈ B(f), (4.5)

where ∂ϕ is the boundary of flow ϕ defined by ∂ϕ(v) =
∑

a∈δ+v ϕ(a)− ∑
a∈δ−v ϕ(a) for all

v ∈ V .
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For any polylinking flow network N = (G = (V,A), c, c̄, L = (Lv | v ∈ V )) with
associated submodular functions fv : 2δ−v∪δ+v → R for all v ∈ V , construct a submodular
flow network N0 = (G0 = (V0, A), c, c̄, f0) as follows.

V0 =
∪

v∈V

(W−
v ∪ W+

v ), (4.6)

W−
v = {u−

a | a ∈ δ−v}, W+
v = {u+

a | a ∈ δ+v} (∀v ∈ V ), (4.7)
f(U) =

∑
v∈V

f̄v((W
−
v ∪ W+

v ) ∩ U) (∀U ⊆ V0), (4.8)

where f̄v is the submodular function on 2W−
v ∪W+

v that is identified with fv by the natural
correspondence between δ−v ∪ δ+v and W−

v ∪ W+
v . It is easy to see that ϕ : A → R is a

polylinking flow in N if and only if ϕ is a submodular flow in N0.

Remark 2: Similarly as in [5, Sec. 5.2] we can show that any submodular flow network can
be reduced to a polylinking flow network. Hence these two models are equivalent. That is,
the polylinking flow problem is what is called a neoflow problem in [5, Sec. 5]. From now
on we consider both networks N and N0 and identify a polylinking flow ϕ in N with its
corresponding submodular flow ϕ in N0. Note that the two flows are the same function on
A. 2

Suppose that we are given a reference arc a0 ∈ A. Then we have a max-flow min-cut
theorem as follows (see [5, Theorem 5.11]).

Theorem 4.1: Suppose that there exists a feasible linking flow in N (or equivalently a fea-
sible submodular flow in N0). Then we have

max{ϕ(a0) | ϕ : a feasible linking flow in N}
= min{c̄(a0), min{c̄(∆+X) − c(∆−X \ {a0}) + f(V \ X) | X ⊆ V0, a0 ∈ ∆−X}},

(4.9)

where operators ∆± appearing in the right-hand side are defined with respect to graph
G0 = (V0, A) for network N0 (∆+X is the set of arcs leaving X and ∆−X the set of
arcs entering X). Moreover, if c, c̄, and f are integer-valued, then there exists an integral
maximum linking flow in N (with respect to reference arc a0). 2

4.3. Existence of acyclic polylinking flows of given flow value
It is well-known that for any two-terminal flow ϕ in a classical flow network there exists
a two-terminal flow ψ such that the two flow values are the same, flow ψ is ϕ-equisignum
(i.e. ψ(a) > 0 implies ϕ(a) > 0 and ψ(a) < 0 implies ϕ(a) < 0), and the network restricted
on the support of ψ is acyclic. We consider such a property for polylinking flows.
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For simplicity let us assume c(a) = 0 for all a ∈ A. Let ϕ be a feasible flow in network
N0. Define an auxilliary graph Gϕ = (V0, Aϕ) as follows.

Aϕ = A+
ϕ ∪

∪
v∈V

Dv
ϕ, (4.10)

A+
ϕ = {a | a ∈ A, ϕ(a) > 0}, (4.11)

Dv
ϕ = {(u−

a , u+
b ) | a ∈ δ−v, b ∈ δ+v, b ∈ depv((−ϕδ−v) ⊕ ϕδ+v, a)}

(∀v ∈ V ), (4.12)

where δ± are those defined with respect to graph G = (V,A) for network N and depv for
v ∈ V is the dependence function associated with fv and a base (−ϕδ−v) ⊕ ϕδ+v ∈ B(fv).
(Recall that b ∈ depv((−ϕδ−v)⊕ϕδ+v, a) means that we can decrease ϕ(a) and ϕ(b) by some
(and the same) amount α > 0 while keeping ϕδ−v∪δ+v ∈ Lv. The maximum of such values
α is called the exchange capacity from b to a with respect to base (−ϕδ−v) ⊕ ϕδ+v ∈ B(fv)
and is denoted by c̃v((−ϕδ−v) ⊕ ϕδ+v, a, b).)

The following algorithmic property is well-known [5, Sec. 5.5].

• If there exists a directed cycle in the auxiliary graph Gϕ, let Q be one of such directed
cycles, regarded as a subset of Aϕ, that do not have any short-cuts. Then we can obtain
a new feasible flow ϕ′ by

ϕ′(a) =

{
ϕ(a) − α (a ∈ Q)
ϕ(a) (a ∈ A \ Q),

(4.13)

where α is a positive number less than or equal to

min{min{ϕ(a) | a ∈ Q ∩ A+
ϕ},

min{c̃v((−ϕδ−v) ⊕ ϕδ+v, u−
a , u+

b ) | (u−
a , u+

b ) ∈ Q ∩ Dv
ϕ, v ∈ V }}.

Hence, given a feasible flow ϕ in N0, reducing flows along directed cycles not containing
reference arc a0, we can obtain a feasible flow ψ of the same flow value as ϕ such that ψ is
ϕ-equisignum and the auxiliary graph Gψ has no directed cycle Q with a0 6∈ Q.

We have the following acyclic reduction property of polylinking flows in general polylink-
ing networks.

Theorem 4.2: Given a feasible flow ϕ in polylinking network N with a reference arc a0 and
c = 0, there exists a feasible flow ψ that has the same flow value as ϕ and is ϕ-equisignum
and there exists no directed cycle Q with a0 6∈ Q in the auxiliary graph Gψ.

(Proof) Re-define

c̄(a) = ϕ(a) (∀a ∈ A), (4.14)
c(a0) = ϕ(a0). (4.15)
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Moreover, consider a cost function γ : A → R such that γ(a) = 1 for all a ∈ A. Then let
ψ be the minimum-cost submodular flow in N0 with the upper and lower capacity functions
and the cost function defined as above. The optimality of ψ [5, Sec. 5.4] implies that there
does not exist any directed cycle in the auxiliary graph Gψ for the re-defined network N0. It
follows that the flow ψ satisfies the condition of the statement in the present theorem. 2

Remark 3: The wireless information network model (ADT-network) considered in [1] is
a two-terminal acyclic network with a source-sink pair. Practical wireless networks usu-
ally contain directed cycles and source-sink pairs may change from time to time. Theorem
4.1 shows a max-flow min-cut theorem for ADT-networks with possible directed cycles.
Theorem 4.2 further shows that for a given source-sink pair (s, t) there exists a maximum
information flow ψ from s to t such that Gψ is acyclic, so that the flow can be realized as
a flow in an ADT-network. Here it should be noted that arcs in {a | ψ(a) > 0} may form
a directed cycle in G of the polylinking network N but the information flow is not rejoined
at any vertex (in Gψ) which it left before, since Gψ is acyclic. Such an acyclic flow can be
obtained by the use of any existing algorithms for (minimum-cost) submodular flows. 2
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