Skip to main content
Log in

Strong lift-and-project cutting planes for the stable set problem

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

A great deal of research has been focusing, since the early seventies, on finding strong relaxations for the stable set problem. Polyhedral combinatorics techniques have been at first developed to strengthen the natural linear formulation. Afterward, strong semidefinite programming relaxations have been deeply investigated. Nevertheless, the resulting integer programming (IP) algorithms cannot be regarded as being quite successful in practice, as most of the relaxations give rise to one out of two extreme situations: either provide weak bounds at low computational cost or give good bounds (sometimes excellent) but too demanding to compute. In this paper we present a method to bridge such a gap. In particular, a new lift-and-project relaxation is obtained by a problem-specific variant of the lifting operator M(K, K) by Lovász and Schrijver, combined with Benders decomposition. This yields strong cutting planes, generated by solving a cut generating linear program. An extensive computational experience shows that embedding these cuts in a branch-and-cut framework significantly reduces the size of the enumeration trees as well as the CPU times with respect to state-of-the-art IP algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applegate D.L., Bixby R.E., Chvà àtal V., Cook W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2007)

    Google Scholar 

  2. Balas E., Ceria S., Cornuéjols G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 112, 295–324 (1993)

    Article  Google Scholar 

  3. Balas, E., Ceria S., Cornuéjols, G.E., Pataki, G.: Polyhedral methods for the maximum clique problem. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, October 11–13, 1993, Providence (1996)

  4. Benders J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–252 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burer S., Vandenbussche D.: Solving lift-and-project relaxations of binary integer programs. SIAM J. Opt. 16, 726–750 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng E., Cunningham S.: Wheel inequalities for stable set polytopes. Math. Program. 77, 348–421 (1997)

    MathSciNet  Google Scholar 

  7. Cheng E., De Vries S.: Antiweb-wheel inequalities and their separation problems over the stable set polytopes. Math. Program. 92, 153–175 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cornuéjols G.: Valid inequalities for mixed integer linear programs. Math. Program. Ser. B 112, 3–44 (2008)

    Article  MATH  Google Scholar 

  9. Dukanovic I., Rendl F.: Semidefinite programming relaxations for graph coloring and maximal clique problems. Math. Program. 109, 345–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fischetti M., Salvagnin D., Zanette A.: On the Selection of Benders’ cuts. Math. Program. Ser. B 124, 175–182 (2008)

    Article  MathSciNet  Google Scholar 

  11. Giandomenico M., Letchford A.N.: Exploring the relationship between max-cut and stable set relaxations. Math. Program. 106, 159–175 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giandomenico M., Letchford A.N., Rossi F., Smriglio S.: An application of the Lovász-Schrijver M(K, K) operator to the stable set problem. Math. Program. Ser. A 120/2, 381–401 (2009)

    Article  MathSciNet  Google Scholar 

  13. Giandomenico, M., Letchford, A.N., Rossi, F., Smriglio, S.: A new approach to the stable set problem based on ellipsoids. Accepted for presentation at IPCO XV (2011)

  14. Giandomenico, M., Rossi, F., Smriglio, S.: Implementing separation heuristics for clique inequalities, working paper

  15. Grötschel M., Lovász L., Schrijver A.J.: Geometric Algorithms and Combinatorial Optimization. Springer, New York (1988)

    Book  MATH  Google Scholar 

  16. Gruber G., Rendl F.: Computational experience with stable set relaxations. SIAM J. Opt. 13, 1014–1028 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Håstad J.: Clique is hard to approximate within \({n^{1-\epsilon}}\) . Acta Math. 182, 105–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoffman K.L., Padberg M.: Solving airline crew scheduling problems by branch-and-cut. Manage. Sci. 39(6), 657–682 (1993)

    Article  MATH  Google Scholar 

  19. Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring and Satisfiability: The 2nd DIMACS Implementation Challenge. American Mathematical Society, Providence (1996)

    Google Scholar 

  20. Juhász F.: The asymptotic behaviour of Lovász’ θ function for random graphs. Combinatorica 2, 153–155 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lovász L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theor. 25, 1–7 (1979)

    Article  MATH  Google Scholar 

  22. Lovász L., Schrijver A.J.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Opt. 1, 166–190 (1991)

    Article  MATH  Google Scholar 

  23. Malik, J., Pohv, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Opt. 20/1 (2009)

    Google Scholar 

  24. Mannino C., Sassano A.: An exact algorithm for the maximum stable set problem. Comput. Optim. Appl. 3, 243–258 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mannino, C., Sassano, A.: Edge projection and the maximum cardinality stable set problem. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, October 11—13, 1993, Providence (1996)

  26. Nemhauser G.L., Sigismondi G.: A strong cutting plane/branch-and-bound algorithm for node packing. J. Oper. Res. Soc. 43, 443–457 (1992)

    MATH  Google Scholar 

  27. Padberg M.W.: On the facial structure of set packing polyhedra. Math. Program. 5, 199–215 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pohv J., Rendl F., Wiegele A.: A boundary point method to solve semidefinite programs. Computing 78, 277–286 (2006)

    Article  MathSciNet  Google Scholar 

  29. Rebennack, S., Oswald, M., Theis, D.O., Seitz, H., Reinelt, G., Pardalos, P.M.: A Branch and cut solver for the maximum stable set problem. J. Comb. Optim. doi:10.1007/s10878-008-9175-8

  30. Repository. ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique

  31. Rossi F., Smriglio S.: A branch-and-cut algorithm for the maximum cardinality stable set problem. Oper. Res. Lett. 28(2), 63–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sewell E.C.: A branch and bound algorithm for the stability number of a sparse graph. INFORMS J. Comput. 10(4), 438–447 (1998)

    Article  MathSciNet  Google Scholar 

  33. Sherali H.D., Adams W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discret. Math. 3, 411–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tomita E., Kameda T.: An efficient branch-and-bound algorithm for finding a maximum clique, with computational experiments. J. Glob. Opt. 37, 95–111 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Trotter L.E.: A class of facet-producing graphs for vertex packing polyhedra. Discret. Math. 12, 373–388 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  36. Website. http://www.math.uni-klu.ac.at/or/Software/software.html

  37. Wilson, A.T.: Applying the boundary point method to an SDP relaxation of the maximum independent set problem for a branch and bound algorithm, Master thesis, New Mexico Institute of mining and technology (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Smriglio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giandomenico, M., Rossi, F. & Smriglio, S. Strong lift-and-project cutting planes for the stable set problem. Math. Program. 141, 165–192 (2013). https://doi.org/10.1007/s10107-012-0513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0513-3

Keywords

Mathematics Subject Classification (2000)

Navigation