Skip to main content

Advertisement

Log in

The piecewise linear optimization polytope: new inequalities and intersection with semi-continuous constraints

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We give new facets and valid inequalities for the separable piecewise linear optimization (SPLO) knapsack polytope. We also extend the inequalities to the case in which some of the variables are semi-continuous. Finally, we give computational results that demonstrate their efficiency in solving difficult instances of SPLO and SPLO with semi-continuous constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazaraa M.S., Sherali H.D., Shetty C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley, London (2006)

    Book  Google Scholar 

  2. Beale, E.M.L.:Two transportation problems. In: Kreweras, G., Morlat, G. (eds.) Proceedings of the Third International Conference on Operational Research, pp. 780–788. Dunod, Paris (1963)

  3. Beale E.M.L.: Mathematical Programming in Practice. Pitmans, London (1968)

    Google Scholar 

  4. Beale, E.M.L.: Branch-and-bound methods in mathematical programming systems. In: Hammer, P.L., Johnson, E.L., Korte, B.H. (eds.) Annals of Discrete Mathematics 5: Discrete Optimization, pp. 201–219. North Holland (1979)

  5. Beale, E.M.L.: Branch and bound methods for numerical optimization. In:Barrit, M.M., Wishart, D. (eds.) COMPSTAT 80: Proceedings in Computational Statistics, pp. 11–20. Physica Verlag, Vienna (1980)

  6. Beale, E.M.L.:Integer programming. In: Sciitkowski, K. (ed.) Computational Mathematical Programming, NATO ASI Series, vol. f15, pp. 1–24. Springer, Berlin (1985)

  7. Beale, E.M.L., Tomlin, J.A.:Special facilities in a general mathematical programming system for nonconvex problems using ordered sets of variables. In: Lawrence, J. (ed.) Proceedings of the Fifth International Conference on Operations Research, pp. 447–454. Tavistock Publications (1970)

  8. Biegler L.T., Grossmann I.E., Westerberg A.W.: Systematic Methods of Chemical Process Design. Prentice Hall, Englewood Cliffs (1997)

    Google Scholar 

  9. Bienstock D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74, 121–140 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Bradley S.P., Hax A.C., Magnanti T.L.: Applied Mathematical Programming. Addison-Wesley, Reading (1977)

    Google Scholar 

  11. Chien M.J., Kuh E.S.: Solving nonlinear resistive networks using piecewise linear analysis and simplicial subdivision. IEEE Trans. Circuits Syst. 24, 305–317 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crowder H., Johnson E.L., Padberg M.: Solving large-scale zero-one linear programming problems. Oper. Res. 31, 803–834 (1983)

    Article  MATH  Google Scholar 

  13. Croxton K.L., Gendron B., Magnanti T.L.: A comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems. Manag. Sci. 49, 1268–1273 (2003)

    Article  MATH  Google Scholar 

  14. Croxton K.L., Gendron B., Magnanti T.L.: Models and methods for merge-in-transit operations. Transp. Sci. 37, 1–22 (2003)

    Article  Google Scholar 

  15. Croxton, K.L., Gendron, B., Magnanti, T.L.: Variable Disaggregation in Network Flow Problems with Piecewise Linear Costs. Operations Research Center, Massachusetts Institute of Technology (2003)

  16. D’Ambrosio C., Lodi A., Martello S.: Piecewise linear approximation of functions of two variables in MILP models. Oper. Res. Lett. 38, 39–46 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dantzig G.B.: On the significance of solving linear programming problems with some integer variables. Econometrica 28, 30–44 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Farias, I.R. Jr.: Semi-continuous cuts for mixed-integer programming. In: Bienstock, D., Nemhauser, G.L. (eds.) Integer Programming and Combinatorial Optimization (IPCO), Lecture Notes in Computer Science, vol. 3064, pp. 163–177. Springer, Berlin (2004)

  19. de Farias, I.R. Jr., Gupta, R., Kozyreff, E., Zhao, M.: Branch-and-Cut for Separable Piecewise Linear Optimization and Intersection with Semi-Continuous Constraints. Texas Tech University (2011)

  20. de Farias I.R., Johnson E.L., Nemhauser G.L.: A generalized assignment problem with special ordered sets: a polyhedral approach. Math. Program. 89, 187–203 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. de Farias I.R., Johnson E.L., Nemhauser G.L.: Branch-and-cut for combinatorial optimization problems without auxiliary binary variables. Knowl. Eng. Rev. 16, 25–39 (2001)

    Article  MATH  Google Scholar 

  22. de Farias I.R., Nemhauser G.L.: A family of inequalities for the generalized assignment problem. Oper. Res. Lett. 29, 49–51 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. de Farias I.R., Nemhauser G.L.: A polyhedral study of the cardinality constrained knapsack problem. Math. Program. 96, 439–467 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. de Farias, I.R. Jr., Zhao, M.: A Polyhedral Study of the Semi-Continuous Knapsack Problem. Texas Tech University (2011)

  25. de Farias I.R., Zhao M., Zhao H.: A special ordered set approach for optimizing a discontinuous separable piecewise linear function. Oper. Res. Lett. 36, 234–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Eaves B.C.: Homotopies for computation of fixed points. Math. Program. 3, 1–22 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fourer R., Gay D.M., Kerninghan B.W.: AMPL—a modeling language for mathematical programming. The Scientific Press, Redwood City (1993)

    Google Scholar 

  28. Fügenschuh A., Göttlich S., Martin A.: A discrete optimization approach to large scale supply networks based on partial differential equations. SIAM J. Sci. Comput. 30, 1490–1507 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Graf T., van Hentenryck P., Lasserre C., Zimmer L.: Simulation of hybrid circuits in constraint logic programming. Comput. Math. Appl. 20, 45–56 (1990)

    Article  MATH  Google Scholar 

  30. http://www.hpcc.ttu.edu/index.php

  31. Keha A.B., de Farias I.R., Nemhauser G.L.: Models for representing piecewise linear cost functions. Oper. Res. Lett. 32, 44–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Keha A.B., de Farias I.R., Nemhauser G.L.: A branch-and-cut algorithm without binary variables for nonconvex piecewise linear optimization. Oper. Res. 54, 847–858 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Konno H., Wijayanayake A.: Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints. Math. Program. 89, 233–250 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Markowitz H.M., Manne A.S.: On the solution of discrete programming problems. Econometrica 25, 84–110 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  35. Martin A., Möller M., Moritz S.: Mixed-integer models for the stationary case of gas network optimization. Math. Program. 105, 563–582 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Meyer R.R.: Integer and mixed-integer programming models: general properties. J. Optim. Theory Appl. 16, 191–206 (1975)

    Article  MATH  Google Scholar 

  37. Meyer R.R.: Mixed- integer minimization models for piecewise-linear functions of a single variable. Discret. Math. 16, 163–171 (1976)

    Article  MATH  Google Scholar 

  38. Nocedal J., Wright S.J.: Numerical Optimization. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  39. Perold A.F.: Large-scale portfolio optimization. Manag. Sci. 30, 1143–1160 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sioshansi R., O’Neill R.O., Oren S.S.: Economic consequences of alternative solution methods for centralized unit commitment in day-ahead electricity markets. IEEE Trans. Power Syst. 23, 344–352 (2008)

    Article  Google Scholar 

  41. Takriti S., Birge J.R., Long E.: A stochastic model for the unit commitment problem. IEEE Trans. Power Syst. 11, 1497–1508 (1996)

    Article  Google Scholar 

  42. Takriti S., Krasenbrink B., Wu L.S.Y.: Incorporating fuel constraints and electricity spot prices into the stochastic unit commitment problem. Oper. Res. 48, 268–280 (2000)

    Article  Google Scholar 

  43. Todd M.J.: On triangulations for computing fixed points. Math. Program. 10, 322–346 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tomlin J.A.: Special ordered sets and an application to gas supply operations planning. Math. Program. 42, 69–84 (1988)

    Article  MathSciNet  Google Scholar 

  45. Vielma J.P., Ahmed S., Nemhauser G.L.: Mixed-integer models for nonseparable piecewise linear optimization: unifying framework and extensions. Oper. Res. 58, 303–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Vielma J.P., Keha A.B., Nemhauser G.L.: Nonconvex, lower semicontinuous piecewise linear optimization. Discret. Optim. 5, 467–488 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Vielma J.P., Nemhauser G.L.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. 128, 49–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang M., Guan Y.: Two-Stage Robust Unit Commitment Problem. University of Florida, Gainesville (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Regis de Farias Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, M., de Farias, I.R. The piecewise linear optimization polytope: new inequalities and intersection with semi-continuous constraints. Math. Program. 141, 217–255 (2013). https://doi.org/10.1007/s10107-012-0517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0517-z

Keywords

Mathematics Subject Classification (2000)

Navigation