Skip to main content
Log in

The GUS-property of second-order cone linear complementarity problems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The globally uniquely solvable (GUS) property of the linear transformation of the linear complementarity problems over symmetric cones has been studied recently by Gowda et al. via the approach of Euclidean Jordan algebra. In this paper, we contribute a new approach to characterizing the GUS property of the linear transformation of the second-order cone linear complementarity problems (SOCLCP) via some basic linear algebra properties of the involved matrix of SOCLCP. Some more concrete and checkable sufficient and necessary conditions for the GUS property are thus derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslender A.: Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone. Optim. Methods Softw. 18, 359–376 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  3. Bonnans J.-F., Shapiro A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    MATH  Google Scholar 

  4. Chen X.D., Sun D.F., Sun J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl. 25, 39–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen J.-S., Tseng P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. Series B, 104, 293–327 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conn A.R., Gould N.I.M., Toint P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  7. Cottle R.W., Pang J.-S., Stone R.E.: The Linear Complementarity Problem, Computer Science and Scientific Computing. Academic Press, Boston (1992)

    Google Scholar 

  8. Fukushima M., Luo Z.-Q., Tseng P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12, 436–460 (2002)

    Article  MathSciNet  Google Scholar 

  9. Facchinei F., Pang J.-S.: Finite Dimensional Variational Inequality and Complementarity problems, vol. I and II. Springer, Berlin (2003)

    Google Scholar 

  10. Gowda M.S., Sznajder R.: Automorphism invariance of P- and GUS-properties of linear transformations on Euclidean Jordan algebras. Math. Oper. Res. 31, 109–123 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gowda M.S., Sznajder R.: Some global uniqueness and solvability results for linear complementarity problems over symmetric cones. SIAM J. Optim. 18, 461–481 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gowda M.S., Sznajder R., Tao J.: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393, 203–232 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gowda M.S., Tao J.: \({\mathbf{Z}}\) -transformations on proper and symmetric cones. Math. Program. Series B, 117, 195–221 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hayashi S., Yamashita N., Fukushima M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15, 593–615 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hayashi S., Yamaguchi T., Yamashita N., Fukushima M.: A matrix-splitting method for symmetric affine second-order cone complementarity problems. J. Comput. Appl. Math. 175, 335–353 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iusem A., Seeger A.: Pointedness, connectedness, and convergence results in the space of closed convex cones. J. Convex Anal. 11, 267–284 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Kong L.C., Sun J., Xiu N.H.: A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM J. Optim. 19, 1028–1047 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  19. Tao, J.: Some P-properties for linear transformations on the Lorentz Cone. Ph.D. Thesis, University of Maryland Baltimore County (2004)

  20. Tao J., Gowda M.S.: Some P-properties for nonlinear transformations on Euclidean Jordan algebras. Math. Oper. Res. 30, 985–1004 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Walkup D.W., Wets R.J.B.: Continuity of some convex-cone-valued mappings. Proc. Am. Math. Soc. 18, 229–235 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yoshise A.: Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones. SIAM J. Optim. 17, 1129–1153 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, L., Yang, W.H.: An efficient algorithm for second-order cone linear complementarity problems (2011) (preprint)

  24. Zhao X.-Y., Sun D., Toh K.-C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20(4), 1737–1765 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W.H., Yuan, X. The GUS-property of second-order cone linear complementarity problems. Math. Program. 141, 295–317 (2013). https://doi.org/10.1007/s10107-012-0523-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0523-1

Keywords

Mathematics Subject Classification

Navigation