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We consider totally unimodular (TU) stochastic programs, that is, two-stage stochastic programs
whose extensive-form constraint matrix is TU. We generalize the notion of total unimodularity to
apply to sets of matrices and provide properties of such sets. We provide several sufficient conditions
on stochastic programs to be TU. When solving TU stochastic problems using the L-shaped method,
it is not clear whether the integrality restrictions should be imposed on the master problem. Such
restrictions will make each master problem more difficult to solve. On the other hand, solving the
linear relaxation of the master typically means sending fractional (and unlikely optimal) solutions
to the subproblems, perhaps leading to more iterations. Our computational results investigate this
trade-off and provide insight into which strategy is preferable.
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1 Introduction

Consider the extensive form of a two-stage stochastic mixed-integer program

min cT x +
K
∑

k=1

pk(dk)T yk (1)

subject to
T kx + W kyk ≥ hk, 1 ≤ k ≤ K, (2)

x ∈ IR
l1
+ × ZZ

n1−l1
+ , yk ∈ IR

l2
+ × ZZ

n2−l2
+ , 1 ≤ k ≤ K. (3)

We assume that the underlying uncertainty is modeled with a finite number of scenarios K, and
each scenario k, k = 1, . . . ,K, occurs with probability pk. The vector c is a known vector in IR

n1 ,
and for every scenario k, 1 ≤ k ≤ K, dk is a vector in IR

n2, hk is a vector in IR
m, T k, the technology

matrix, is a matrix in IR
m×n1 , and W k, the recourse matrix, is a matrix in IR

m×n2 . Without loss
of generality, we assume that first-stage constraints have been incorporated into each T k matrices,
where the corresponding rows are 0 in the W k matrices.

The deterministic equivalent of this stochastic program is given by

min cT x + Q(x) (4)

subject to
x ∈ IR

l1
+ × ZZ

n1−l1
+ , (5)
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where the expected recourse function, Q(x) =
∑K

k=1 pkQ(x, k), and

Q(x, k) = min(dk)T y (6)

subject to
W ky ≥ hk − T kx, 1 ≤ k ≤ K, (7)

y ∈ IR
l2
+ × ZZ

n2−l2
+ . (8)

While Q(x) is convex if l2 = n2, i.e., a continuous recourse, with mixed-integer recourse, Q is
in general nonconvex and discontinuous [19], and therefore difficult to solve. Recent exact solution
approaches to such problems include Ahmed et al. [1], Kong et al. [9], Ntaimo [12], Sen and Higle
[16], Sen and Sherali [17]; and approximation algorithms include Dhamdhere et al. [4], Kong and
Schaefer [8], and Shmoys and Swamy [18]. Klein Haneveld and van der Vlerk [7], Schultz [15], and
Stougie and van der Vlerk [20] give comprehensive surveys on stochastic integer programming.

Define B to be the constraint matrix of the extensive form of the stochastic program described
in (1) - (3),

B =













T 1 W 1

T 2 W 2

...
. . .

TK W K













. (9)

Let M = m ×K and N = n1 + n2 ×K, so that B is an M ×N matrix. This paper deals with the
cases when such stochastic program can be solved as a stochastic linear program for any integer
right-hand side h. It is well known that this is true if and only if B is totally unimodular (TU). We
call a stochastic program TU if its extensive-form constraint matrix B is TU.

The literature on total unimodularity in deterministic optimization is vast. Nemhauser and
Wolsey [11], Padberg [13], and Schrijver [14], provide surveys. Several authors have considered
total unimodularity within stochastic programming. Birge and Louveaux [3] describe one suffi-
cient condition for TU stochastic programs and conclude that stochastic programs are unlikely to
meet this condition. van der Vlerk [21] provides a class of convex approximations for complete
integer recourse models, and shows that when the recourse matrix is TU these approximations are
exact. However, there has been no systematic study of total unimodularity in stochastic integer
programming.

In this paper, we extend the notion of total unimodularity to a set of matrices, with which
we further characterize TU stochastic programs. We also compare two computational options in
applying the L-shaped method [22] to solve TU stochastic programs.

The remainder of this paper is organized as follows. In Section 2, we extend the notion of
total unimodularity so that it applies to a set of TU matrices. In Section 3, we characterize TU
stochastic programs by applying the extended notion of TU to the technology and recourse matrices.
We further provide sufficient conditions in two special classes of TU stochastic programs. Section 4
shows the validity of two L-shaped solution strategies in optimizing TU stochastic programs. These
two strategies differ in whether the integrality restrictions are imposed on the master problem. We
provide computational results in Section 5 that investigate the trade-off between the two strategies,
and give conclusions in Section 6.

2 An Extension of Total Unimodularity

Definition 1 An m×n matrix A is TU if and only if every square submatrix of A has determinant
either 0, 1 or -1.

2



Theorem 1 [5] A {0,±1} m × n matrix A is TU if and only if for every J ⊆ {1, . . . , n}, there
exists a partition (J1, J2) of J such that

∣

∣

∣

∣

∣

∣

∑

j∈J1

aij −
∑

j∈J2

aij

∣

∣

∣

∣

∣

∣

≤ 1 for i = 1, . . . ,m. (10)

We extend the definition of TU to consider a group of matrices.

Definition 2 Let T = {A1, . . . , AT } be a set of matrices, where At ∈ IR
m×nt, t = 1, . . . , T , and

let v ∈ {0,±1}m. The set T is TU with respect to v, denoted by TU(v), if for any column subset
Jt ⊆ At, 1 ≤ t ≤ T , there exist partitions (J1

t , J2
t ) such that

∑

j∈J1

t

at
ij −

∑

j∈J2

t

at
ij ∈ {0, 1} for vi = −1, 1 ≤ t ≤ T, (11)

∑

j∈J1

t

at
ij −

∑

j∈J2

t

at
ij ∈ {0,±1} for vi = 0, 1 ≤ t ≤ T, (12)

and
∑

j∈J1

t

at
ij −

∑

j∈J2

t

at
ij ∈ {0,−1} for vi = 1, 1 ≤ t ≤ T. (13)

Definition 2 synchronizes the rows of the matrices in T by the vector v. This extension of total
unimodularity will be used in Section 3 to characterize TU stochastic programs. Due to the block-
angular structure presented in B, the key to the characterization is to identify the relationship
between the technology and recourse matrices.

We next provide several properties of a set of TU(v) matrices.

Proposition 1 A matrix A is TU if and only if {A} is TU(v) for some v ∈ {0,±1}m.

The following proposition shows that two matrices in a set of TU(v) matrices, where v ∈ {±1}m,
can be combined into a larger TU matrix.

Proposition 2 If {A1, . . . , AT } is TU(v) for some v ∈ {±1}m, then the matrix (As|At) is TU for
all 1 ≤ s, t ≤ T .

Proof: Consider any column subset J = (Js, Jt) of (As|At). Since {As, At} is TU(v), there exist
a partition (J1

s , J2
s ) of Js and a partition (J1

t , J2
t ) of Jt that satisfy the definition of TU(v). The

partitions J1 = {J1
s , J2

t } and J2 = {J2
s , J1

t } satisfy Theorem 1. 2

Proposition 3 A set of matrices T = {A1, . . . , AT } is TU(v) for all v ∈ {0,±1}m if and only if
in each matrix Ai, i = 1, . . . , T , there is at most one nonzero entry in each column.

Proof: It suffices to check if any {Ai} is TU(v) for all v ∈ {0,±1}m. The proof of the sufficient
condition is trivial. We prove the necessary condition by contradiction. Suppose a column j in a
matrix Ai has at least two nonzero entries. We arbitrarily select two of the nonzero entries in j
and label their rows s and t. Let vs = −asj and vt = atj . If we select column j to be J , there does
not exist a partition (J1, J2) that satisfies Theorem 1. 2

Remark 1 For any m × n (0,±1) matrix A, {A} is TU(v) for all v ∈ {0,±1}m if and only if A
(with duplicate columns removed) is a submatrix of (Im,−Im,0).

Proposition 4 If A1 is TU and contains a column with more than one nonzero entry, then there
exists a TU matrix A2 such that (A1|A2) is not TU.
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3 Characterizing Totally Unimodular Stochastic Programs

Consider the two-stage stochastic programming polyhedron defined by

P =
{

x ∈ IR
n1

+ , y ∈ IR
n2×K
+

∣

∣

∣ T kx + W kyk ≥ hk, 1 ≤ k ≤ K
}

. (14)

We denote h = ((h1)T , (h2)T , . . . , (hK)T )T .

Theorem 2 [6] The extensive-form constraint matrix B of a two-stage stochastic program is TU
if and only if the corresponding polyhedron P is integral for all right-hand sides h ∈ ZZ

M for which
it is nonempty.

If the extensive-form constraint matrix B is TU, obviously each matrix T 1, . . . , TK ,W 1, . . . ,WK

must be as well, and B must be a (0,±1) matrix. When Theorem 1 is applied to B, we obtain the
following.

Corollary 1 The extensive-form constraint matrix B of a two-stage stochastic program is TU if
and only if for every column subset J = {J0, J1, . . . , JK} ⊆ {1, . . . , N} there exists a partition
(J1, J2) = {(J1

0 , J1
1 , . . . , J1

K), (J2
0 , J2

1 , . . . , J2
K)} such that

∣

∣

∣

∣

∣

∣

∣

∑

j∈J1

0

tkij +
∑

j∈J1

k

wk
ij −

∑

j∈J2

0

tkij −
∑

j∈J2

k

wk
ij

∣

∣

∣

∣

∣

∣

∣

≤ 1 for i = 1, . . . ,m, k = 1, . . . ,K. (15)

Remark 2 B is not necessarily TU even if T k and W k matrices for all k = 1, . . . ,K are TU.

Theorem 3 A two-stage stochastic program is TU if ((T 1)T | . . . |(TK)T )T is TU, and each matrix
W k, 1 ≤ k ≤ K, is such that {W k} is TU(v) for all v ∈ {0,±1}m.

Proof: Since ((T 1)T | . . . |(TK)T )T is TU, for every subset J ⊆ {1, . . . , n1}, there must exist a
partition (J1, J2) of J and a vector vk ∈ {0,±1}m such that

∑

j∈J1

tkij −
∑

j∈J2

tkij = vk
i , (16)

for all 1 ≤ i ≤ m and every 1 ≤ k ≤ K. Since each set {W k} is TU(vk), for each subset of columns
of W k there exists a partition such that Corollary 1 is satisfied. 2

A two-stage stochastic program has simple recourse, if the only recourse action is to incur a linear
penalty for shortages or surpluses, that is, the recourse matrix W k = (I,−I) for all 1 ≤ k ≤ K.

Corollary 2 A two-stage stochastic program with simple recourse is TU if the matrix ((T 1)T | . . . |(TK)T )T

is TU.

Remark 3 Simple recourse is the only recourse matrix that admits a TU stochastic program for
every TU technology matrix ((T 1)T | . . . |(TK)T )T .

Remarks 1 and 3 illustrate the importance of simple recourse in construction of TU stochastic
programs.
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Theorem 4 A two-stage stochastic program with fixed technology matrix T is TU if there exists a
v ∈ {±1}m such that {T,W 1, . . . ,WK} is TU(v).

Proof: Consider any subset J = {J0, J1, . . . , JK}. Since {T,W 1, . . . ,WK} is TU(v), there exists
a partition (J1

k , J2
k ) for each Jk, k = 0, . . . ,K, such that for each i = 1, . . . ,m,

∑

j∈J1

k

wk
ij −

∑

j∈J2

k

wk
ij ∈ {0, 1} for vi = −1, 1 ≤ k ≤ K, (17)

∑

j∈J1

k

wk
ij −

∑

j∈J2

k

wk
ij ∈ {0,−1} for vi = 1, 1 ≤ k ≤ K, (18)

∑

j∈J1

0

tij −
∑

j∈J2

0

tij ∈ {0, 1} for vi = −1, (19)

and
∑

j∈J1

0

tij −
∑

j∈J2

0

tij ∈ {0,−1} for vi = 1. (20)

The partition of J given by J1 = {J2
0 , J1

1 , . . . , J1
K} and J2 = {J1

0 , J2
1 ,

. . . , J2
K} satisfies Corollary 1. 2

We next consider those two-stage stochastic problems where the technology matrix is the iden-
tity matrix and the recourse matrix is a special type of interval matrix under each scenario.

Definition 3 [11] An m × n (0,1) matrix A is called an interval matrix if in each column the 1’s
appear consecutively; that is, if aij = akj = 1 and k > i + 1, then alj = 1 for all l with i < l < k.

In each column j = 1, . . . , n, let αj and βj index the row of a (0,1) matrix A where the first
and last 1 appears, respectively.

Definition 4 An m × n interval matrix is a nested interval matrix if there exists an ordering of
the columns such that αj′ ≤ αj′′ and βj′ ≥ βj′′, for any 1 ≤ j′ < j′′ ≤ n.

Corollary 3 A two-stage stochastic program is TU if for each 1 ≤ k ≤ K, Tk is the identity matrix
and Wk is a nested interval matrix.

Proof: Consider any column subset J = {J0, J1, . . . , JK}. For each k = 1, . . . ,K, we assign the
jth column in Jk to J1

k if j is an odd number and assign the column to J2
k otherwise. Hence, by

the definition of a nested interval matrix, we have

∑

j∈J1

k

wk
ij −

∑

j∈J2

k

wk
ij ∈ {0,+1}, (21)

for all k = 1, . . . ,K. Then the result follows from Corollary 1 by setting J1
0 = ∅ and J2

0 = J0. 2
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4 Optimizing Totally Unimodular Stochastic Programs

The L-shaped method [22] applies to TU stochastic programs even with mixed-integer recourse.
In this section, we discuss two solution strategies with the L-shaped method. We will first introduce
mathematical preliminaries for the two solution strategies. We will then show how to guarantee
the two stategies converge to the same optimal solution for TU stochastic programs with some
restriction on the solution of the master problem.

Consider the linear relaxation of the recourse problem in the stochastic program described in
(1) - (3). Define QLP (x, k) to be the optimal objective value to the LP relaxation of the recourse
problem under scenario k given first-stage solution x. Let QLP (x) =

∑K
k=1 pkQLP (x, k). Clearly,

for any x ∈ X and all scenarios k, QLP (x, k) ≤ Q(x, k) and thus QLP (x) ≤ Q(x).

Example 1 Suppose K = 1 and T 1 = W 1 = Im, and Y = ZZ
m
+ . Clearly, the matrix B is TU.

Note that for any x, y∗i = ⌈hi −xi⌉
+ for 1 ≤ i ≤ m. Therefore, Q(x, k) = (dk)T (⌈h−x⌉+), and so

Q(x) is nonconvex and discontinuous. Note that QLP (x) = (dk)T (h− x)+ < Q(x) for h− x /∈ ZZ
m
+ .

Example 1 shows that even if B is TU, the expected recourse function Q(x) is in general
nonconvex and discontinuous. Furthermore, there may exist x ∈ IR

n1

+ such that QLP (x) < Q(x).
Given x ∈ ZZ

n1

+ , let yLP (x, k) be an extreme point optimal solution to QLP (x, k) for 1 ≤ k ≤ K,

and let yLP (x) = ((yLP (x, 1))T , . . ., (yLP (x,K))T )T ∈ IR
n2×K
+ . For a TU stochastic program with

h ∈ ZZ
M and P in (14) is nonempty, let (xIP , yLP (xIP )) ∈ ZZ

n1

+ × IR
n2×K
+ be an extreme point

optimal solution to the TU stochastic program where integrality is relaxed in the second stage. Let
(xLP , yLP ) ∈ IR

n1

+ × IR
n2×K
+ be an extreme point optimal solution to the TU stochastic program

where integrality is relaxed in both stages. With the above definitions, we have the following
results: 1) for any x ∈ ZZ

n1

+ , Q(x) = QLP (x); and 2) both (xIP , yLP (xIP )) and (xLP , yLP ) are
optimal solutions.

The L-shaped method [22], a variant of the Benders’ decomposition [2], adds linear cutting
planes to build outer approximations of the recourse function, and solves an iterative master prob-
lem that is the first-stage problem plus this approximation. In this section, we consider two solution
strategies that differ in the way of solving each master problem. One is to solve the master problem
as a linear program and the other is to solve it as an integer program. Additionally, both strate-
gies require that an extreme point optimal solution must be obtained in solving each subproblem.
From the above exposition, it is clear that the two solution strategies terminate to the same integer
optimal solution if the solution is unique. However, if there are multiple optima, solving the master
as a linear program may result in a non-integral solution, as the following example shows.

Example 2 Suppose K = 2 and T 1 = T 2 = 1 and W 1 = W 2 = [1 − 1]. Clearly, the matrix B is
TU by Proposition 2. Let c = 0 and d1 = d2 = [1 1]T . Hence,

QLP (x, k) =

{

hk − x if x < hk,
x − hk if x ≥ hk.

Suppose h1 = 1 and h2 = 2, each with probability 1
2 . Assume also 0 ≤ x ≤ 10.

Because the first-stage objective cT x = 0, Q(x) is also the function z(x) to be minimized (see
Figure 1). Suppose we start the L-shaped method at x1 = 0 and solve the master problem as a
linear program. We show the sequence of iterations for the L-shaped method as follows.

1. Iteration 1: x1 is not optimal, generate the cut θ ≥ 1.5 − x.

2. Iteration 2: x2 = 10, θ2 = −8.5 is not optimal, generate the cut θ ≥ x − 1.5.
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3. Iteration 3: x3 = 1.5, θ3 = 0 is not optimal, generate the cut θ ≥ 0.5.

4. Iteration 4: x4 = 1.5, θ4 = 0.5, which is optimal, but not integral.

It should be noted that with adding the last L-shaped optimality cut θ ≥ 0.5 to the master
problem, the optimal solution x is not unique. As a result, solving the master problem as a
linear program may not guarantee that the L-shaped method terminates with a feasible optimal
solution to the TU stochastic program. However, as Theorem 5 shows, if an extreme point solution
is obtained when solving the master problem at the last iteration of the L-shaped method, the
first-stage decision must be integral.

Let PM denote the polyhedral set of the feasible solutions (x, θ) of the master problem when
the L-shaped method terminates.

Theorem 5 Suppose the L-shaped method terminates with an optimal solution (x, θ) that is an
extreme point of PM . Then if B is TU, x ∈ ZZ

n1

+ .

Proof: We will prove that the solution (x, y), with y = yLP (x), is an extreme point of P , which
defines the two-stage stochastic programming polyhedron (14). The result then follows from the
total unimodularity of B.

Clearly (x, y) ∈ P . Suppose that (x, y) is not an extreme point of P . Then there exists (x1, y1)
and (x2, y2) in P with (x1, y1) 6= (x2, y2) such that x = 1

2x1 + 1
2x2 and y = 1

2y1 + 1
2y2.

First, consider the case x1 = x2 = x. Then y1 and y2 (with y1 6= y2) are feasible solutions to
the linear program defining QLP (x) whereas y is an extreme point of the linear program defining
QLP (x). However, y = 1

2y1 + 1
2y2, and we have a contradiction.

Now, consider the case x1 6= x2. Define θ1 =
∑K

k=1 pk(dk)T (yk)1 and θ2 =
∑K

k=1 pk(dk)T (yk)2.
Note that (yi)T = ((y1i)T , . . . , (yKi)T ) for i = 1, 2. Then θ1 ≥ QLP (x1) and θ2 ≥ QLP (x2), and
from the validity of the optimality cuts it follows that (x1, θ1) ∈ PM and (x2, θ2) ∈ PM . Moreover,
1
2θ1 + 1

2θ2 =
∑K

k=1 pk(dk)T (1
2 (yk)1 + 1

2(yk)2) =
∑K

k=1 pk(dk)T yk = θ, where the last equality follows

from the fact that at termination of the L-shaped method θ = QLP (x) =
∑K

k=1 pk(dk)T yk. We have
(x1, θ1) and (x2, θ2) in PM , with x1 6= x2 such that 1

2(x1, θ1) + 1
2(x2, θ2) = (x, θ). This contradicts

the hypothesis that (x, θ) is an extreme point of PM . 2

Theorem 5 shows that one only needs to obtain an extreme point solution to each subproblem
and obtain an extreme point solution of the last iterative master problem as the L-shaped method
terminates. This is normally ensured by using the simplex method for the master problem. The
two solution strategies indicate a potential trade-off. When integrality restrictions on the first stage
are relaxed, the master problem is easier to solve. However, in this case, fractional solutions x may
be generated. Now that there exists an optimal solution with x being integral, solving the original
master problem may be advantageous, since every solution to the master problem is potentially
an optimal solution. In the next section, we further discuss this tradeoff with our computational
experiments.

5 Computational Experiments Comparing the Two L-shaped Strate-

gies

While certain specialized versions of the L-shaped method may apply to special classes of TU
stochastic programs, e.g., those with simple integer recourse [10], the purpose of our experiments
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Table 1: Parameters for generating Classes 1 and 2 instances
network matrix SIP

# of # of # of # of Total 2nd-stage 2nd-stage
Class nodes arcs sources sinks supply obj rhs

1 40 65 2 2 30 ∼ U(5, 10) ∼ U(0.9h0, 1.1h0)∗

2 70 100 35 35 35 ∼ U(1, 10) 1
∗h0: average first-stage node-wise supply/demand.

Table 2: Parameters for generating Classes 3 and 4 instances
nested interval matrix SIP
# of # of 1st-stage 2nd-stage

Class rows columns obj obj
3 50 90 ∼ U(1, 20) ∼ U(0.5d0, 1.5d0)∗

4 80 300 ∼ U(1, 5) ∼ U(0.5d0, 1.5d0)∗
∗d0: average first-stage objective function coefficient

is to explore the potential trade-off between the two aforementioned solution strategies. In this
section, we call the two strategies, the LP-master strategy and the IP-master strategy, respectively.

We solved two types of TU stochastic programs corresponding to the two sufficient conditions
presented in Section 3. The first two problem classes comprise instances in which T is a fixed
network matrix and W is [I,−I] for all scenarios. Corollary 2 establishes that these instances are
TU. The next two classes comprise instances in which T is identity matrix and W is a fixed nested
interval matrix defined in Definition 4. Corollary 3 establishes that these instances are TU.

In each of the 4 classes, we generated 100 TU stochastic programming instances. Tables 1 and
2 report the parameter settings used for the instance generation. In Class 2, we specified that the
second-stage objective function coefficients are the only stochastic component for simplicity in the
generation. For each instance, we varied the number of scenarios, i.e., K = 1000, 2000, . . . , 10000
and tested the two solution strategies.

All the instances were solved on a Pentium IV PC with a 2.40 GHz CPU and their computational
results are reported in Tables 3 – 5. In Table 3, we present the average ratio of the number of
cuts required by the IP-master strategy to the number of cuts required by LP-master strategy.
In Classes 1 and 2, only optimality cuts are needed since the stochastic integer programs have
complete recourse. Regardless of the number of scenarios, solving the IP-master strategy requires
fewer cuts on average than the LP master strategy. In Table 4, we present the number of integer
incumbent solutions obtained in the L-shaped method with the LP-master strategy, for 10 instances
randomly selected from Classes 3 and 4. These results show that the LP-master strategy converges
along a much different path than the IP-master strategy. For some instances with given numbers of
scenarios, e.g. Instance 1 from Class 3 with 1000 scenarios, it generates only one integer solution,
which is in fact the optimal solution. Since the generated fractional solutions are unlikely to be
optimal, these results also indicate that the LP-master strategy tends to require more iterations
than the IP-master strategy.

Table 5 reports the percentage of instances in which the IP-master strategy takes less time than
the LP-master strategy. In all four classes, the IP-master strategy is more likely to be superior as
the number of scenarios increases. This observation can be interpreted as follows. When imposing
the integrality restrictions on the master problem, the L-shaped method tends to require fewer
iterations, which compensates the extra computational burden caused by solving the IP master.
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Table 3: Average ratio for the number of cuts (LP master vs. IP master)
Number of Scenarios

Class Cuts 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1 opt. 1.311 1.304 1.323 1.335 1.312 1.321 1.332 1.300 1.304 1.271
2 opt. 1.701 1.695 1.675 1.647 1.681 1.718 1.689 1.653 1.709 1.715
3 fea. 1.163 1.151 1.135 1.158 1.133 1.125 1.104 1.149 1.117 1.157

opt. 1.068 1.149 1.099 1.082 1.067 1.079 1.111 1.122 1.082 1.112
total 1.159 1.164 1.133 1.143 1.125 1.120 1.119 1.153 1.120 1.151

4 fea. 1.058 1.083 1.057 1.049 1.063 1.049 1.052 1.049 1.064 1.072
opt. 1.541 1.543 1.517 1.495 1.387 1.529 1.506 1.515 1.508 1.536
total 1.333 1.347 1.326 1.299 1.227 1.326 1.314 1.323 1.321 1.340

Table 4: Integer incumbent solution in the LP-master strategy (# of integer incumbent solutions
/ # of iterations)

Number of Scenarios
Class Inst. 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

3 1 1/61 4/64 5/57 2/47 2/63 1/55 1/68 1/68 1/59 2/61
3 2 5/52 3/65 1/62 2/70 1/56 6/60 1/47 2/54 7/67 2/60
3 3 1/56 1/53 1/47 1/62 1/58 5/55 2/51 2/51 1/52 2/57
3 4 1/43 1/55 1/47 1/31 2/36 1/31 6/49 1/33 4/47 1/36
3 5 1/41 1/57 2/42 1/56 1/55 3/51 1/51 2/56 2/54 4/59
4 1 3/185 5/165 4/178 7/175 2/152 4/159 4/177 5/163 5/164 6/163
4 2 3/154 4/155 3/162 1/160 2/140 2/163 7/169 2/160 3/153 12/165
4 3 2/164 5/147 8/156 7/155 6/162 6/147 3/153 5/160 3/152 6/154
4 4 1/144 6/143 3/141 5/136 5/128 2/138 1/131 2/136 5/138 1/128
4 5 7/119 1/121 6/117 5/121 3/120 7/127 7/114 9/132 7/115 11/132

6 Conclusions

This paper considers two-stage stochastic programs with totally unimodular extensive-form
constraint matrices. Such stochastic programs enjoy the integrality property in the sense that
every extreme point solution is integral for any integer right-hand sides.

We provide sufficient conditions for a stochastic program to be totally unimodular. Our com-
putational experiments explore under which conditions such stochastic programs should be solved
with an integer master or a linear master. Our computational results indicate that when there
are relatively few scenarios, solving an integer master is not worth the extra effort. However, as
the number of scenarios grows solving fewer master problems becomes more important, and the IP
master strategy appears to be more effective.

References

[1] S. Ahmed, M. Tawarmalani, and N. V. Sahinidis. A finite branch-and-bound algorithm for
two-stage stochastic integer programs. Mathematical Programming, 100(2):355–377, 2004.

[2] J. F. Benders. Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4(1):238–252, 1962.

[3] J. R. Birge and F. V. Louveaux. Introduction to Stochastic Programming. Springer, New York,
New York, 1997.

[4] K. Dhamdhere, R. Ravi, and M. Singh. On stochastic minimum spanning trees. In Proceedings
of the 11th International Conference on Integer Programming and Combinatorial Optimization
(IPCO), pages 321–334, 2005.

9



Table 5: Percentage of instances where solving IP masters is faster than solving LP masters
Number of Scenarios

Class 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1 29 51 59 69 69 73 78 73 75 78

2 0 10 17 20 28 33 37 39 47 43

3 39 56 58 60 56 58 58 64 62 68

4 11 33 45 58 61 72 71 75 79 80

[5] A. Ghouila-Houri. Caracterisation des matrices totalement unimodulaires. C. R. Academy of
Sciences of Paris, 254:1192–1194, 1962.

[6] A. J. Hoffman and J. B. Kruskal. Integral boundary points of convex polyhedra. In H. W.
Kuhn and A. W. Tucker, editors, Linear Inequalities and Related Systems, pages 223–246.
Princeton University Press, Princeton, New Jersey, 1956.

[7] W. K. Klein Haneveld and M. H. van der Vlerk. Stochastic integer programming: General
models and algorithms. Annals of Operations Research, 85:39–57, 1999.

[8] N. Kong and A. J. Schaefer. A factor 1
2 approximation algorithm for two-stage stochastic

matching problems. European Journal of Operations Research, 172(3):740–746, 2006.

[9] N. Kong, A. J. Schaefer, and B. Hunsaker. Two-stage integer programs with stochastic right-
hand sides: A superadditive dual approach. Mathematical Programming, 108(2):275–296, 2006.

[10] F. V. Louveaux and M.H. van der Vlerk. Stochastic programming with simple integer recourse.
Mathematical Programming, 61(3):301–325, 1993.

[11] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley, Hoboken,
New Jersey, 1988.

[12] L. Ntaimo. Disjunctive decomposition for two-stage stochastic mixed-binary programs with
random recourse, To appear.

[13] M. W. Padberg. Characterizations of totally unimodular, balanced and perfect matrices. In
B. Roy, editor, Combinatorial Programming: Methods and Applications, pages 275–284. Reidel,
1975.

[14] A. Schrijver. Theory of Linear and Integer Programming. Wiley, Hoboken, New Jersey, 1986.

[15] R. Schultz. Stochastic programming with integer variables. Mathematical Programming, 97(1-
2):285–309, 2003.

[16] S. Sen and J. L. Higle. The C3 theorem and a D2 algorithm for large scale stochastic integer
programming: Set convexification. Mathematical Programming, 104(1):1–20, 2005.

[17] S. Sen and H. D. Sherali. Decomposition with branch-and-cut approaches for two-stage stochas-
tic mixed-integer programming. Mathematical Programming, 106(2):203–223, 2006.

[18] D. B. Shmoys and C. Swamy. An approximation scheme for stochastic linear programming
and its application to stochastic integer programs. Journal of the ACM, 53(6):978–1012, 2006.

[19] L. Stougie. Design and analysis of methods for stochastic integer programming. PhD thesis,
University of Amsterdam, 1987.

10



[20] L. Stougie and M.H. van der Vlerk. Approximation in stochastic integer programming. In
D. Johnson, J. K. Lenstra, and D. Shmoys, editors, Handbook in Operations Research and Man-
agement Science, Approximation and Heuristics. Elsevier Science, Amsterdam, The Nether-
lands, To appear.

[21] M. H. van der Vlerk. Convex approximations for complete integer recourse models. Mathe-
matical Programming, 99(2):297–310, 2004.

[22] R. Van Slyke and R. J-B. Wets. L-shaped linear programs with applications to optimal control
and stochastic programming. SIAM Journal on Applied Mathematics, 17(4):638–663, 1969.

11



Figure 1: Recourse function for Example 2
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