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Abstract

A high-ranking goal of interdisciplinary modeling approaches in sci-
ence and engineering are quantitative prediction of system dynamics and
model based optimization. Quantitative modeling has to be closely re-
lated to experimental investigations if the model is supposed to be used
for mechanistic analysis and model predictions. Typically, before an ap-
propriate model of an experimental system is found different hypothetical
models might be reasonable and consistent with previous knowledge and
available data. The parameters of the models up to an estimated con-
fidence region are generally not known a priori. Therefore one has to
incorporate possible parameter configurations of different models into a
model discrimination algorithm which leads to the need for robustifica-
tion. In this article we present a numerical algorithm which calculates a
design of experiments allowing optimal discrimination of different hypo-
thetic candidate models of a given dynamical system for the most inap-
propriate (worst case) parameter configurations within a parameter range.
The design comprises initial values, system perturbations and the optimal
placement of measurement time points, the number of measurements as
well as the time points are subject to design. The statistical discrimina-
tion criterion is worked out rigorously for these settings, a derivation from
the Kullback-Leibler divergence as optimization objective is presented for
the case of discontinuous Heaviside-functions modeling the measurement
decision which are replaced by continuous approximation during the op-
timization procedure. The resulting problem can be classified as a semi-
infinite optimization problem which we solve in an outer approximations
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approach stabilized by a suggested homotopy strategy whose efficiency is
demonstrated. We present the theoretical framework, algorithmic realiza-
tion and numerical results.

1 Introduction

High-ranking goals of interdisciplinary modeling approaches in the natural sci-
ences are quantitative prediction of system dynamics and model based optimiza-
tion. In particular in modern systems biology a related issue is to link molecular
attributes to dynamic mechanisms and functional properties at the system level
in order to mechanistically understand emerging functionality. For these pur-
poses, mathematical modeling, numerical simulation and scientific computing
techniques are indispensable. Quantitative modeling closely combined with ex-
perimental investigations is required if the model is supposed to be used for
sound mechanistic analysis and model predictions.

Typically, before an appropriate model of a system is found different hy-
pothetical models might be reasonable and consistent with previous knowledge
and available data. The goal of this article is to derive, develop, implement
and apply a numerical algorithm which calculates in a suitable sense an optimal
design of experiments which allows the best discrimination of different hypo-
thetic candidate models in form of ordinary differential equations (ODE). The
algorithmic idea is to iteratively separate the response of different models by
use of variations of experimental conditions and perturbations to the system.

To discriminate a set of candidate models against a given set of experimental
data likelihood ratio tests based on bootstrap methods have been described in
the literature, see e.g. [22], [46] or [48]. Ranking methods like Stewart’s method
([44]) or the well known Akaike information criterion (see e.g. [15]) are popular
as well in the field of biological modeling. Applications can be found for example
in [24] or [10].
In contrast to these approaches our work deals with the problem of designing
experiments so that statistical methods can be exploited in an optimal sense for
model discrimination. This differs from the approach to find an experimental
design to best estimate the parameters of a model for a given experimental
system in terms of criteria characterizing the confidence regions [25, 7, 6].

Different approaches to design experiments for model discrimination exist.
Besides optimization methods (see e.g [29], [19], [47] or [26]) a model-based
feedback controller see e.g [3] and Markov chain Monte Carlo sampling methods
[34] have been used to construct an appropriate design. An overview of various
experimental design techniques can be found in [27].
Here, we present a robust numerical optimization algorithm which calculates the
optimal design of experiments allowing the best discrimination of different candi-
date ODE models. An appropriate model and its parameters up to an estimated
confidence region are not known a priori. Therefore one has to incorporate pos-
sible parameter configurations of different models into a model discrimination
algorithm. The aim is to calculate the most discriminable response of different
models for the most inappropriate parameter configurations within a parameter
range via a worst case estimate. In that context inappropriate parameter con-
figurations refer to the case when different models have calibrated parameter
values such that the models have the most similar response. This worst case

2



estimate leads to the formulation of a maxmin optimization problem. Building
on our previous work [43] we present an algorithm to compute robust optimal
experimental designs. For the robustification we set up an outer approximation
approach stabilized by a homotopy strategy.
The article is organized as follows. In Section 2.1 we give a brief overview of
so called Kullback-Leibler(KL)-optimality as discussed by López-Fidalgo et al.
[32] in the context of model discrimination. In Section 2.2 we derive our optimal
design criterion by use of KL-optimality. In Section 3 the theoretical framework
for the calculation of a robust design via solution of a maxmin optimization
problem is presented. The numerical implementation is discussed in Section
3.1. The homotopy solution strategy is presented in Section 3.2. We demon-
strate applications of the algorithmic framework for two test cases from biology,
an allosteric metabolic enzyme model for glycolytic oscillations and a model
describing signal sensing in dictyostelium discoideum, results are presented in
Section 4.

2 Statistical Basis of Model Discrimination

2.1 KL-optimal design

In this section a model discrimination criterion based on the Kullback-Leibler
(KL) divergence called KL-optimality as discussed by López-Fidalgo et al. [32]
is introduced. López-Fidalgo et al. [32] demonstrate that KL-optimality is con-
sistent with T-optimality [5] and generalized T-optimality [49] which are well
known model discrimination criteria based on statistical tests.

We introduce the concept of a probability space and formally define the KL-
divergence.

Definition 1. The probability space is a triple
(
Ω,F , P

)
consisting of

• a non-empty set Ω (sample space),

• a σ-algebra F ⊆ P(Ω), E ∈ F is called an event

• a probability measure P : F → [0, 1].

Definition 2. Two probability spaces
(
Ω,F , Pi

)
, i = 1, 2, are called absolutely

continuous with respect to each other, in symbols P1 ≡ P2, if ∄ E ∈ F :
(P1(E) = 0 AND P2(E) 6= 0) OR (P1(E) 6= 0 AND P2(E) = 0).

The Radon-Nikodym Theorem allows a representation of a probability mea-
sure via a measurable probability density function.

Theorem 1. (Radon-Nikodym)
Let λ be a probability measure such that λ ≡ P1, λ ≡ P2. Then λ-measurable
functions fi : Ω → R, i = 1, 2, called generalized probability densities, exist
which are unique up to sets of measure zero and non-negative, such that

Pi(E) =

∫

E

fi(x)dλ(x), i = 1, 2, (1)

for all E ∈ F .
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A proof of this theorem can be found e.g in [12].

In the following we use X for the generic variable and x for a specific value
of X . If Hi, i = 1, 2 is the hypothesis that X is from the statistical population
with probability measure Pi, the mean information for discrimination in favor
of H1 against H2 given x ∈ E ∈ F , for P1 is given by the Kullback–Leibler
divergence.

Definition 3. The Kullback–Leibler (KL) divergence is given by

I(P1 : P2;E) :=
1

P1(E)

∫

E

log
f1(x)

f2(x)
dP1(x)

=





1

P1(E)

∫

E

f1(x) log
f1(x)

f2(x)
dλ(x), if P1(E) > 0,

0, if P1(E) = 0,

(2)

with
dP1(x) = f1(x)dλ(x). (3)

When E is the entire sample space Ω, we shorten the notation to I(P1 : P2).
For discrete sets E the integral is substituted by a sum.

For details we refer to [28].

Now assume that the sample space Ω is split into two disjoint sets E1 and
E2, Ω = E1 ∪ E2. We define a statistical test procedure to choose between
hypotheses H1 and H2 by accepting H1 if x ∈ E1 and accepting H2 if x ∈ E2.
Assuming that one of the hypotheses has to be true we treat H2 as the null
hypothesis and call E1 the critical region. The following wrong test decisions
can occur.

Definition 4. Incorrectly accepting H1 although H2 is true is called the type I
error. The probability that this error occurs is given by

α = Prob(x ∈ E1|H2) = P2(E1). (4)

Definition 5. Incorrectly accepting H2 although H1 is true is called the type II
error. The probability that this error occurs is given by

β = Prob(x ∈ E2|H1) = P1(E2). (5)

We assume that the test is repeated n-times and denote by On a sample of
n independent observations. O1 represents a sample of a single observation. βn

is defined as the corresponding probability of an error of type II which depends
on the number of independent observations and the splitting of the probability
space Ω into disjoint sets E1 and E2.

The following theorem demonstrates an asymptotic relation between the KL-
divergence and the minimum possible probability β∗

n of an error of type II with
respect to all possible splittings E1∪E2 = Ω with given α = Prob(x ∈ E1|H2) =
P2(E1) [18].
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Theorem 2. For any value of α, say α0, 0 < α0 < 1,

lim
n→∞

(
β∗
n

)1/n
= e−I(P2:P1,O1) (6)

A proof of this theorem is given in [18, 28].

Assuming probability models for the outcome of a data measurement ex-
periment depending on experimental design parameters ξ ∈ Ξ ⊂ Rd, this the-
orem justifies the KL-divergence to be an appropriate objective functional for
model-based computation of an optimal experimental design for discrimination
between model hypotheses. For a design with the largest possible value of I the
asymptotic probability β∗

n of encountering an error of type II becomes minimal
with respect to all possible splittings E1 ∪ E2 = Ω with given α0. We indicate
the dependency of the KL-divergence on the design by I(P2 : P1,O1; ξ). Our

aim is to derive an algorithm to calculate the optimal design ξ̂ ∈ Ξ such that

ξ̂ = argmax
ξ∈Ξ

I(P2 : P1,O1; ξ). (7)

An extension of the case to test a simple null hypothesis against a simple alter-
native hypothesis to the more general case of both hypotheses being composite is
generally of interest. This includes the situation to test whether given measure-
ment data can be explained best by one out of a finite set of probability models
based on measures Pr1 , r1 ∈ {1, ...,M1} parametrized by parameters θr1 ∈ Θr1

where Θr1 ⊂ Rpr1 is the set of all possible parameter values to parametrize
Pr1 and M1 is the cardinality of the set of probability models, against the hy-
pothesis that the measurement can best be explained by another one out of a
second finite set of probability models based on measures Pr2 , parametrized by
parameters θr2 ∈ Θr2 where Θr2 ⊂ Rpr2 and r2 ∈ {1, ...,M2}.
By calculating

ξ̂ = argmax
ξ∈Ξ

min
r1∈{1,...,M1}
r2∈{1,...,M2}

min
θr1∈Θr1

θr2∈Θr2

I(Pr2(θr2) : Pr1(θr1),O1; ξ) (8)

we can get a robust worst case estimate of an optimally discriminating design
for the case of composite null and alternative hypothesis.
In practical applications a simple strategy to sort different probability models
into null and alternative hypothesis would be to first rank all models according
to the existing measurements and then set the best model as null hypothesis
and the others as alternative hypothesis. The development of a suitable and
efficient strategy is subject to further work.
It should be noted that the presented criteria is not symmetric, i.e. the null
hypothesis is favored. In the case that both hypotheses might be equally rea-
sonable we suggest to use the symmetrized version of the KL-divergence, i.e.

Isym(P2 : P1,O1; ξ) =
I(P2 : P1,O1; ξ) + I(P1 : P2,O1; ξ)

2
, (9)

as optimization objective instead.
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2.2 Derivation of the optimal experimental design crite-

rion

In this section we derive a numerically computable optimization objective func-
tional based on the framework of KL divergence. The derivation is motivated
by the requirements of biological in vitro time series experiments modeled by
kinetic ODE systems. In most situations such experiments are time and cost
consuming. Therefore a central issue is to get the most information out of a
single time series data measurement experiment taking place within a given
fixed time span [0, Tend]. This means that in an optimal experimental design
the most informative measurement time points for one measurement run have
to be calculated in such a way that only one measurement at one time point can
be performed. Often, an experiment cannot produce measurements in a time
continuous way. Therefore we assume that there has to be a minimal time span
∆T for the separation of subsequent measurement time points. This contrasts
to the usual approach to associate weights to a discrete or continuous time de-
sign scheme, see e.g. [5]. Additionally, the initial species concentrations of the
participating species should be chosen in a most discriminating way.
A commonly used experimental practice is to combine kinetic time series mea-
surements with perturbation stimuli like external adding of species quantities.
From the model discrimination point of view the optimal time point of pertur-
bations and the optimal species quantities to be added should be determined.
We further assume that a measurement cannot be done at the same time as a
perturbation.
In the following we translate these experimental conditions into a statistical
model. Given the measurement time-vector t ∈ Rn

+ with entries ti for the n
measurement time points ti, i ∈ {1, ..., n} such that ti+1 ≥ ti, the “internal”
model response vectors yirj at measurement time ti for the parametrized prob-
ability measures Prj , rj ∈ {1, ...,Mj}, j ∈ {1, 2} are given by

yirj := yrj (ti−1, ti, y
i−1
rj + ci−1, θrj ), (10)

where yrj (ti−1, ti, y
i−1
rj + ci−1, θrj ) ∈ Rmrj are the solutions of the initial value

problems
dyrj
dt

= f rhs
rj (yrj , θrj ), t ∈ [ti−1, ti], (11)

with initial state yrj (t
i−1) := yi−1

rj + ci−1 at end time ti where t0 := 0 and
c0 := 0. The vectors ci ∈ Rmmax denote species quantities the system can be
perturbed with at time points ti where mmax is the maximum dimension of the
models, i.e.

mmax := max
j∈{1,2}

max
r∈{1,...,Mj}

mrj . (12)

f rhs
rj (·, ·) are the right hand side functions of the ODE models. yI ∈ Rmmax

denotes the initial species concentration vector of the entire experiment which
is for all models the same, i.e. y0rj := yI . By mmin we denote the minimal
dimension of the models, i.e

mmin := min
j∈{1,2}

min
r∈{1,...,Mj}

mrj . (13)

We do not assume that mmin = mmax therefore for a model with mrj < mmax

the “redundant” entries in ci and yI are “ignored”.
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To each ODE model we associate an observable function Orj : Rmrj → Ro

which describes an experimental observation explained by that model where o
denotes the dimension of the experimental observation. The expected observa-
tion Oi

rj of the rj -th model at time point i is given by

Oi
rj := Orj (y

i
rj ). (14)

Let Oti denote an observation at measurement time point ti. By assuming
that the measurements at successive time points ti are independent with nor-
mally distributed error vectors ǫirj ∈ Rm with zero mean and variance functions

vrj (O
i
rj , ti, θrj )

2 we get for the regression models

Oti = Oi
rj + ǫirj (15)

the model probability densities frj (·; ·) at measurement time point ti given by

frj (Oti ;O
i
rj ) =

1√
2π|vi,rj |

e
− 1

2
(Oi

rj
−Oti )TV i

rj
(Oi

rj
−Oti )

, (16)

with |vi,rj | :=
∏o

k=1 v
k
rj (O

i
rj , ti, θrj ), where v

k
rj (O

i
rj , ti, θrj ) denotes the k-th en-

try of the square root of the variance functions vrj (O
i
rj , ti, θrj )

2, and diagonal

matrices V i
rj ∈ Ro×o with diagonal entries

[
V i
rj

]
kk

:= (1/vkrj(O
i
rj , ti, θrj))

2.

We generally allow different error models. The error models might dependent
on the expected observations Oi

rj , the time ti and possibly on parameters θrj .

For the sake of notational simplicity we define

frj (O
ti) := frj (O

ti ;Oi
rj ). (17)

For a full measurement run containing n measurement time points we get the
probability density models

frj (O) :=

n∏

i=1

frj (O
ti ). (18)

However, by assuming such a model probability distribution we still allow that
two measurements are separated by a time span less than ∆T .

To overcome this problem we extend the probability spaces Ωi = Ro of a mea-
surement at one measurement time point by one-element-containing sets Ni

to
Ω̃i = Ωi ·∪Ni (19)

where Ω̃i is the disjoint union of Ωi and Ni. The element of the set Ni with
measure P (Ni) ∈ [0, 1] represents the event “no measurement”, i.e. Õti ∈ Ni ⇔
“no measurement performed at time point ti”.

In order to derive measures on Ω̃i, i = 1, ..., n that allow for a density func-
tion representation according to the Radon-Nikodym theorem (Theorem 1), we
introduce the Heaviside-function

H : R+ −→ [0, 1] (20)
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with

H(ti) =

{
1 if ti − ti−1 ≥ ∆T
0 if ti − ti−1 < ∆T

(21)

By use of this Heaviside-function and σ-algebras Fi, where Fi contains the
Lebesgue measurable sets on Ωi and additionally the union of these with the
set Ni, we define probability spaces (Ω̃i,Fi, P̃i,rj ) with measures

P̃i,rj : Ei ∈ Fi 7→ P̃i,rj (Ei) ∈ [0, 1]. (22)

Three cases have to be distinguished: 1. Ei ⊂ Ωi, 2. Ei ⊂ Ni, 3. Ei ∩ Ωi 6= ∅
and Ei ∩ Ni 6= ∅.
For case one with Ei ⊂ Ωi we set

P̃i,rj (Ei) := H(ti)

∫

Ei

frj(O
ti )dOti . (23)

For case two with Ei ⊂ Ni we set

P̃i,rj (Ei) := 1−H(ti). (24)

For case three with Ei ∩Ωi 6= ∅ and Ei ∩Ni 6= ∅ we set

P̃i,rj (Ei) := H(ti)

∫

Ei∩Ωi

frj (O
ti)dOti + (1−H(ti)) . (25)

By introducing these modifications the probability models based on measures
P̃i,rj do not depend on measurements which are performed in less than ∆T time
after the previous measurement any more.

To take into account that a species concentration perturbation can only be
applied if no measurement is done at the same time, the same procedure is
repeated with the additional Heaviside-function

H̃(ci) =

{
0 if ci > 0
1 if ci = 0.

(26)

The measures P̃i,rj are defined in the same way as above replacing H(ti) by

H(ti)H̃(ci).

For specific r1 and r2 inserting the probability models P̃i,r1 and respectively

P̃i,r2 into the KL-divergence (Definition 3) using λi := P̃i,r2 and the additivity
of the KL divergence for independent events one gets the following expression

I(Pr2 : Pr1 ,O1) =
n∑

i=1

[∫
H(ti)H̃(ci)fr2(O

ti) log

{
H(ti)H̃(ci)fr2(O

ti )

H(ti)H̃(ci)fr1(O
ti )

}
dOti +

(
1−H(ti)H̃(ci)

)
· log (1−H(ti)H̃(ci))

(1−H(ti)H̃(ci))

]
,

(27)

where cn := 0. With log(1) = 0 this simplifies to

I(Pr2 : Pr1 ,O1) =

n∑

i=1

H(ti)H̃(ci)

∫
fr2(O

ti) · log
{
fr2(O

ti)

fr1(O
ti)

}
dOti . (28)
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By inserting the normal distribution (16) in (28) one gets

I(Pr2 : Pr1 ,O1) =

n∑

i=1

H(ti)H̃(ci)·

∫
fr2(O

ti ) · log





1√
2π|vi,r2 |

e−
1
2
(Oi

r2
−Oti )TV i

r2
(Oi

r2
−Oti )

1√
2π|vi,r1 |

e−
1
2
(Oi

r1
−Oti )TV i

r1
(Oi

r1
−Oti )



 dOti .

(29)

This is equivalent to

I(Pr2 : Pr1 ,O1) =

n∑

i=1

H(ti)H̃(ci)

(
o∑

k=1

log
vkr1(O

i
r1 , ti, θr1)

vkr2(O
i
r2 , ti, θr2)

+Ai
k

)
, (30)

with

Ai
k :=

1

2

∫ ⌊
fr2(O

ti)
⌋
k
·

[
− 1

(vkr2(O
i
r2 , ti, θr2))

2

(⌊
Oi

r2

⌋2
k
− 2

⌊
Oi

r2

⌋
k

⌊
Oti
⌋
k
+
⌊
Oti
⌋2
k

)
+

1

(vkr1(O
i
r1 , ti, θr1))

2

(⌊
Oi

r1

⌋2
k
− 2

⌊
Oi

r1

⌋
k

⌊
Oti
⌋
k
+
⌊
Oti
⌋2
k

)] ⌊
dOti

⌋
k
.

(31)

and where ⌊O⌋k gives the k− th entry of the observation vector O. Ai
k reduces

using the well known moments of the normal distribution to

Ai
k =

1

2

[
− 1

(vkr2(O
i
r2 , ti, θr2))

2

(⌊
Oi

r2

⌋2
k
− 2

⌊
Oi

r2

⌋2
k
+
⌊
Oi

r2

⌋2
k
+ (vkr2(O

i
r2 , ti, θ2))

2
)

+
1

(vkr1(O
i
r1 , ti, θr1))

2

(⌊
Oi

r1

⌋2
k
− 2

⌊
Oi

r1

⌋
k

⌊
Oi

r2

⌋
k
+
⌊
Oi

r2

⌋2
k
+ (vkr2(O

i
r2 , ti, θr2))

2
)]

.

(32)

This further simplifies to

Ai
k =

1

2


−1 +

(⌊
Oi

r1

⌋2
k
− 2

⌊
Oi

r1

⌋
k

⌊
Oi

r2

⌋
k
+
⌊
Oi

r2

⌋2
k
+ (vkr2(O

i
r2 , ti, θr2))

2
)

(vkr1(O
i
r1 , ti, θr1))

2


 .

(33)

Substituting Ai
k back into (30) we get

I(Pr2 : Pr1 ,O1) =

n∑

i=1

H(ti)H̃(ci)

o∑

k=1

(
log

(
vkr1(O

i
r1 , ti, θr2)

vkr2(O
i
r2 , ti, θr1)

)
+

1

2

[
−1 +

(⌊
Oi

r1

⌋
k
−
⌊
Oi

r2

⌋
k

)2
+ (vkr2(O

i
r2 , ti, θr2))

2

(vkr1(O
i
r1 , ti, θr1))

2

])
.

(34)
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This reduces to

I(Pr2 : Pr1 ,O1) =
1

2

n∑

i=1

H(ti)H̃(ci)·
(

o∑

k=1

[
(vkr2(O

i
r2 , ti, θr2))

2 +
(⌊
Oi

r2

⌋
k
−
⌊
Oi

r1

⌋
k

)2

(vkr1(O
i
r1 , ti, θr1))

2

−2 log

(
vkr2(O

i
r2 , ti, θr2)

vkr1(O
i
r1 , ti, θr1)

)]
− o

)
.

(35)

This criterion has to be maximized with respect to the initial concentration
vector yI , the measurement time point vector t and the system perturbation
vector c, thus ξ := (yI , t, c) ∈ Ξ ⊂ Rd.
For our optimal experimental design we generally start with a large number of
measurement time points. By use of the Heaviside functions the number of mea-
surement time points is reduced such that for ti− ti−1 < ∆T the corresponding
measurement time point is “turned off”.

These Heaviside-functions H(·) and H̃(·) can be replaced by any appropriate
continuously differentiable switching functions with range space [0, 1].
It should be noted that we assume that we have the same time discretization
for measurements of different species and the addition of further species quan-
tities. This assumption is practical especially for the application to in vitro
experiments performed by biologists. For introducing arbitrary generic con-
trols we need a more general formulation of time schemes, i.e. simultaneously
time schemes which are independent of each other. One is associated with the
controls, others may be associated with distinct observables which might be
measured indepently. The incorporation to the presented framework is subject
of further work.

3 Solution of the max-min optimization prob-

lem

We formally state now the experimental design optimization problem PΘ:

max
(τ,ξ)∈Ξ⊂Rd+1

τ (36)

subject to

min
θr1∈Θr1

θr2∈Θr2

I(Pr2(θr2) : Pr1(θr1),O1; ξ)− τ ≥ 0, r1 ∈ {1, ...,M1}, r2 ∈ {1, ...,M2},

n∑
i=1

∆ti = Tend,

ymin
I ≤ yI ≤ ymax

I ,

0 ≤ ∆t ≤ tmax,

0 ≤ c ≤ cmax,

10



with ξ := (yI ,∆t, c) ∈ Rd, ∆ti := ti−ti−1 and Θ := {(Θr1 ,Θr2)|rj ∈ {1, ...,Mj}}.
The auxiliary variable τ ∈ R is used to transform the maxmin optimization
problem (8) to a maximization problem with an infinite number of inequality
constraints. The remaining constraints model the feasible range of experimental
setups.

To solve optimization problem (36) numerically by applying efficient derivative

based algorithms we replace the Heaviside functions H(ti) and H̃(ci) in (35)
by continuously differentiable approximations, parametrized hyperbolic tangent
functions of the form

H′(ti) =
tanh(6(∆ti−b1)

a1
) + 1

2
and H̃′(ci) =

tanh(− 6(ci−b2)
a2

) + 1

2
. (37)

The parameters a1,2 characterize the width of the transition region between 0
and 1. The parameters b1,2 determine the center of the transition region (see
Figure 1). By setting the parameters in an adequate way arbitrarily close ap-
proximations of the Heaviside functions can be generated. A different approach
to handle the discontinuous Heaviside functions would be to introduce binary
variables and treat the resulting problem as Mixed Integer Nonlinear Program-
ming problem. The drawback of this approach is that its solution can become
very expensive. There seems to be little theoretical work in literature on Mixed
Integer maxmin problems and an efficient solution strategy is not obvious in
that case.

Figure 1: Switching functions: the left switching function is used to guarantee
that only one measurement is done at a time point, the right one is used to
guarantee that if a perturbation is done at a time point no measurement is done
at the same time point.

In literature, problems as (36) fall into the class of semi-infinite inequality and
equality constrained optimization problems (SIECP) [38].
Several methods to solve such SIECP problems are available, an overview can
be found in [21, 38]. We choose the method of outer approximation [41, 42, 38],
whose origin can be traced back to cutting plane methods for convex problems
[38]. This approach is beneficial in the presence of a complex inner problem, in
our case the robustification against the parameters θr1and θr2 . The outer ap-
proximation algorithm iteratively solves discretized finite counterparts PΘ̃N of
the semi-infinite problem PΘ in each step N , successively refining the discretiza-
tion Θ̃N until a sufficient approximation of the original problem PΘ is reached.
For problem (36) this means that in each iteration of the outer approximation
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scheme Θr1 and Θr2 are replaced by finite approximations Θ̃N
r1 and respectively

Θ̃N
r2 with Θ̃N := {(Θ̃N

r1 , Θ̃
N
r2)|rj ∈ {1, ...,Mj}}. This relation between the semi-

infinite problem and an infinite sequence of finite problems can be formalized
in the theory of consistent approximations and epi-convergence [35, 36, 37, 38].

We use a modified version of Algorithm 3.6.4 in [38] where “Step 1.”, the cal-
culation of augmenting vectors θ̃N+1

r1 and θ̃N+1
r1 to construct

Θ̃N+1
r1 := {θ̃N+1

r1 } ∪ Θ̃N
r1 and Θ̃N+1

r2 := {θ̃N+1
r2 } ∪ Θ̃N

r2 , (38)

is realized by

(θ̃N+1
r1 , θ̃N+1

r2 ) := arg min
θr1∈Θr2

θr2∈Θr2

I(Pr2 (θr2) : Pr1(θr1),O1; ξN ), (39)

with ξN denoting a locally optimal design of the previous problem PΘ̃N . The
algorithmic scheme is as follows:

Algorithm 1.

• Data. Choose ξ0 ∈ Ξ and a sequence {ǫN}∞N=1 with ǫN > 0 and ǫN ↓ 0.

• Step 0. Set N = 1, set Θ̃0
rj := ∅.

• Step 1. Calculate Θ̃N according to (38) and (39).

• Step 2. Calculate approximate solution of PΘ̃N such that

ΨΘ̃N
((τN , ξN )) ≥ −ǫN , (40)

and the equality and inequality constraints in problem PΘ̃N are fulfilled up
to ǫN .

• Step 3. Replace N by N + 1, and goto Step 1.

ΨΘ̃N
(·) : Rd+1 → R≤0 denotes the optimality function associated to problem

PΘ̃N , see Theorem 2.2.24 in [38]. The optimality function ΨΘ̃N
(·) is always non

positive and directly related to the first order generalized Karush-Kuhn-Tucker
(KKT) conditions, i.e. ΨΘ̃N

((τ, ξ)) = 0 if evaluated at a generalized KKT point,
see Theorem 2.2.19 in [38].
Assuming that I(Pr2 (θr2) : Pr1(θr1),O1; ξ) and ∇ξI(Pr2(θr2) : Pr1(θr1),O1; ξ)
are Lipschitz continuous on bounded sets with respect to ξ and θrj and Θrj are
compact any accumulation point of Algorithm 1 fulfills the generalized KKT
conditions, compare Theorem 3.6.5 in [38].

To calculate θ̃N+1
rj in Step 1. of Algorithm 1 we use on heuristic base a simple

random search approach coupled to a local optimization method, i.e. we have
randomly generated P different start values in Θrj , from which we have started
the local optimization method for parameter estimation. The best value out
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of the P trials is chosen to augment the set Θ̃N
rj . Of course there are more

sophisticated approaches to search for a global minimum for a review see e.g.
[4], but at this point an effective calculation of Step 1. of Algorithm 1 was
not our primary goal. For the local parameter optimization we use the same
optimization method as for Step 2. in Algorithm 1.

In our implementation we use a fixed ǫ at the desired final accuracy to solve
problem PΘ̃N in every loop of Step 2. of Algorithm 1, i.e. ǫN = ǫ, N > 0.
In that way Step 1. of Algorithm 1 gives a worst case estimate of the KL di-
vergence I(Pr2(θr2) : Pr1(θr1),O1; ξN ) for the current design ξN with respect
to θrj . Therefore for practical application the algorithm can be stopped if the
worst case estimate of KL divergence for the current design ξN is big enough
although no local optima might be achieved during optimization. As stopping
criterion of Algorithm 1 we use:

Algorithmic Stop Criterion.

Stop after Step 1. of Algorithm 1, if

δ ≥ min
r1∈{1,...,M1}
r2∈{1,...,M2}

min
θr1∈Θ̃N−1

r1

θr2∈Θ̃N−1
r2

I(Pr2(θr2) : Pr1(θr1),O1; ξN−1)−

min
r1∈{1,...,M1}
r2∈{1,...,M2}

min
θr1∈Θr1

θr2∈Θr2

I(Pr2(θr2) : Pr1(θr1),O1; ξN−1) =: ∆RG,
(41)

where δ is a small positive constant, then consider (θ̃N+1
r1 , θ̃N+1

r2 ), r1 ∈ {1, ...,M1},
r2 ∈ {1, ...,M2} and ξN as (approximate) solutions of problem PΘ, else goto Step
2. and calculate a new design ξN+1.

This stop criterion has also been used in [42, 39]. We call the distance ∆RG

given by (41), robustification gap.

3.1 Numerical solution of the problem PΘ̃N

We have implemented the resulting optimization problem in a multiple shooting
setup (see for example [45, 14, 13]). In our multiple shooting setup the whole in-
tegration interval [0, Tend] is subdivided into several subintervals by introducing
auxiliary multiple shooting node variables srj,i,l, j ∈ {1, 2}, rj ∈ {1, ...,Mj}, i ∈
{1, ..., n}, l ∈ {1, ..., N}, on each of which an independent initial value problem
is solved. Each end point of a subinterval corresponds to one measurement time
point. Matching conditions which enter the optimization problem as additional
equality constraints assure continuity of the state trajectory from one subinter-
val to the next.

To incorporate the perturbations c matching conditions

srj,i,l − yrj (ti−1, ti, srj ,i−1,l, θ̃
l
rj ) = 0, (42)

srj ,i,l, denoting the multiple shooting nodes with srj,0,l = yI are modified to

srj,i,l − yrj (ti−1, ti, sj,i−1,l, θ̃
l
rj ) = ci, i ∈ {1, ..., n− 1},

srj ,n,l − yrj(tn−1, tn, sj,n−1,l, θ̃
l
rj ) = 0.

(43)
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A graphical scheme of the multiple shooting setup is shown in Figure 2.
Instead of evaluating the objective functional (35) by use of the values yirj , given
by the solution of the initial value problem (11), depending on the parameters
θ̃rj , (35) is evaluated by use of the auxiliary multiple shooting node variables
srj ,i,l replacing the values yirj with srj,i,l respectively. The dependency of (35)
on srj ,i,l is indicated by I(sr1,·,l, sr2,·,l).

Figure 2: Scheme of the multiple shooting setup for computing the experimental
design to discriminate two models. A dot denotes one measurement time point.
The black solid line corresponds to model 1 and the gray dashed one to model
2.

The overall optimization problem can be stated as

max
τ,yI ,∆t,c,s

τ (44)

subject to

dyrj

dt = f rhs
rj (y, θ̃lrj ), t ∈ [ti−1, ti], yrj(ti−1) := srj ,i−1,l

srj,i,l − yrj (ti−1, ti, srj ,i−1,l, θ̃
l
rj ) = ci,

srj ,n,l − yrj(tn−1, tn, srj,n−1,l, θ̃
l
rj ) = 0,

srj ,0,l = yI ,

ymin
I ≤ yI ≤ ymax

I ,

0 ≤ ∆t ≤ tmax,

0 ≤ c ≤ cmax,

smin
rj ,i,l

≤ srj ,i,l ≤ smax
rj ,i,l

,
∑n

i=1 ∆ti = Tend,

I(sr1,·,l, sr2,·,l)− τ ≥ 0, r1 ∈ {1, ...,M1}, r2 ∈ {1, ...,M2},

(45)

with j ∈ {1, 2}, rj ∈ {1, ...,Mj}, i ∈ {1, ..., n}, l ∈ {1, ..., N}.

We have implemented this problem within the interior point optimization pack-
age IPOPT [50, 51], using the linear solver MA27 [23]. Usually for the solution
of the KKT system within the direct multiple shooting ansatz the linear system
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is solved utilizing tailored structure-exploitation, e.g., condensing or high rank
updates. See for example [30]. Since speed aspects are not our primary concern
we rely on the sparse solver MA27 instead of developing a tailored solver for
this problem class at the current stage.
All derivatives up to second order, which are used for the calculations of the
Hessian needed for a robust performance of IPOPT, are calculated by automatic
differentiation using CppAD, [9, 8].
For the solution of the differential equations within the optimization problem,
which are commonly stiff in chemical and biochemical applications, we have
implemented a fully variable step, variable order (order 1 to 6), Backward dif-
ferentiation formulae (BDF) method, based on Nordsiek array polynomial inter-
polation similar to the EPISODE BDF method by Byrne and Hindmarsh [16],
but with the step size selection strategy of Calvo and Rández [17].
For the generation of sensitivities we have adopted the sophisticated principles
of internal numerical differentiation developed by Albersmeyer and Bock [2, 1]
in forward and adjoint mode.
The idea of this principle is instead of calculating the sensitivities by use of
the sensitivity differential equation, to directly differentiate the BDF integra-
tion scheme by automatic differentiation, which we implemented using CppAD
[9, 8].
According to some notes in the PhD thesis of Albersmeyer [1] we also have im-
plemented the possibility to control the step size scheme not only by the local
truncation error of the nominal trajectory but as well by the local truncation
error of the sensitivities generated by the forward mode of automatic differen-
tiation with respect to the sensitivity differential equation, which has shown by
numerical experience to improve the robustness of the optimization approach.
A different approach would be to use collocation, i.e. to incorporate a full dis-
cretization of the ODEs into the optimization problem, see e.g. [11]. Since the
kinetic ODE systems in the focus of our applications are usually stiff, we prefer
adaptive time integration.

3.2 Stabilizing homotopy method for subsequent PΘ̃N+1

By solving the subsequent optimization problems PΘ̃N+1 with an interior point
code like IPOPT [50, 51] initialized with primal and dual variables of the pre-
vious problem or with primal variables only, one often observes that the new
solution may differ significantly from the previous. This is due to the fact that
the solution of the previous problem PΘ̃N is infeasible for PΘ̃N+1 and thus the
algorithm tries to find a feasible state before it proceeds to find a new optimum.
This behavior is not desired in the context of an outer approximation algorithm,
because convergence of the algorithm may be slowed down significantly. This
circumstance originates from a jumping between vicinities of distinct local max-
ima of problem (36). The discretization Θ̃N of the robustification space may
not be equally adequate for different local maxima. To overcome this problem
we have implemented a heuristic homotopy method to gradually introduce the
additional constraints

gr1,r2(τ, ξ)N+1 := I(sr1,·,N+1, sr2,·,N+1)− τ ≥ 0, (46)

15



of problem PΘ̃N+1. We replace gr1,r2(τ, ξ)N+1 by

g̃r1,r2(τ, ξ;κ)N+1 := I(sr1,·,N+1, sr2,·,N+1)− τ + (1 − κ)ρ ≥ 0, (47)

with homotopy parameter κ ∈ [0, 1] and ρ is a constant which has to be set such
that g̃r1,r2(τ, ξ;κ)N+1 are inactive for κ = 0 at the initial design ξN . We choose
ρ to be

ρ := K · max
r1∈{1,...,M1}
r2∈{1,...,M2}


 min

θr1∈Θ̃N
r1

θr2∈Θ̃N
r2

I(Pr2 (θr2) : Pr1(θr1),O1; ξN )−

min
θr1∈Θr1

θr2∈Θr2

I(Pr2(θr2) : Pr1(θr1),O1; ξN )


 .

(48)

K is a save guard factor we set empirically to K = 1.4, which worked well
in practice for our examples. For κ = 0 the augmented optimization problem
should be easily solvable within a few iterations by performing a warm start from
the solution of the previous problem. By increasing the homotopy parameter
to κ = 1 the additional constraint is gradually introduced, which leads to a
sequence of easily solvable subproblems whose solutions stay in the vicinity of
the solution of the previous problem PΘ̃N . A similar homotopy strategy can be
found e.g. in [40].

4 Numerical results

We have applied the algorithm developed in Section 2 and 3 to two example
problems for which we present results in the following section. For the purpose
of illustration we restrict ourself to the case that each hypothesis comprise only
one model whereby we assume that only the alternative hypothesis is composite.
We also assume that each species is “directly” measurable. We treat model 1
as null hypothesis and model 2 as alternative hypothesis.

4.1 Discriminating design for two models describing gly-

colytic oscillations

In the first test case for model discrimination we implemented the following
models for glycolytic oscillations as described in [20].

Model 1 is an allosteric enzyme model with positive feedback under cooper-
ativity and linear product sink. The differential equations for model 1 are given
by

dα1

dt
= ν − σφ(α1, γ1),

dγ1
dt

= q1σφ(α1, γ1)− ksγ1,

φ(α1, γ1) =
α1(1 + α1)(1 + γ1)

2

L1 + (1 + α1)2(1 + γ1)2
.
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Model 2 is an allosteric model with positive feedback in the absence of co-
operativity and the product sink is represented by Michaelis-Menten kinetics.
The differential equations for Model 2 are given by

dα2

dt
= ν − φ(α2, γ2),

dγ2
dt

= q2φ(α2, γ2)−
rsγ2
µ+ γ2

,

φ(α2, γ2) =
α2(1 + γ2)

L2 + (1 + α2)(1 + γ2)
.

α1,2 denotes the species concentration of the substrate γ1,2 that of the product.
For both models the inflow parameter ν is the same and fixed to the value
ν = 0.22. It represents the inflow of substrate to the experimental system, a
CSTR (continuously stirred tank reactor).
The parameters σ, q1, ks and L1 of model 1 are regarded as known. Their values
are given in Table 1, the parameters q2, rs, µ and L2 of model 2 are regarded
as unknown and subject to robustification. For the permitted parameter range
see Table 1.

Model 1 Model 2
σ q1 ks L1 q2 rs µ L2

0.92 2.01 0.11 17206.10 [10−7, 100] [10−7, 100] [10−7, 100] [100, 300]

Table 1: Parameter values for the glycolytic oscillation models.

For simplicity we consider the homoscedastic case with equal variances, i.e.
v1 = v2 = σ2. In this case I(P1 : P2,O1) reduces to,

I(P1 : P2,O1) =
n∑

i=1

H′(ti)H̃′(ci)
(
(αi

1 − αi
2)

2 + (γi
1 − γi

2)
2
)
. (49)

For this test case the homotopy strategy as presented in Section 3.2 is only ap-
plied if the robustification gap ∆RG < 0.1, then the successive problem PΘ̃N+1

is calculated by use of the homotopy strategy with 30 homotopy steps, i.e.
κh = h/30, h ∈ {1, ..., 30}. Otherwise the problem PΘ̃N+1 is solved without ho-
motopy strategy. For each subsequent problem PΘ̃N+1 the solution of problem
PΘ̃N is used as initial guess.

We first present a robust design without the possibility to disturb the system
by adding species at later time points.
The design is calculated within a fixed time window i.e. Tend = 400. 100 equally
spaced possible measurement points are defined in the initial state of the opti-
mization procedure, the distance vector ∆t between the time points is subject
to design and each entry is restricted to ∆ti ∈ [10−7, 1019], i ∈ {1, ..., 100}. The
disturbance vectors ci are set to ci = 0, i ∈ {1, ..., 99} and are fixed to model
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the fact that no species disturbance is allowed.
The initial species concentrations which are also subject to experimental design
are restricted to αI ∈ [10−7, 25] and γI ∈ [10−7, 25]. The initial values were set
to αI = 15 and γI = 2. The parameters of the switching functions H′(ti) are
chosen as a1 = 20.0 and b1 = 10.0. The parameters of the switching functions
H̃′(ci) are chosen as a2 = 0.05 and b2 = 0.025. The algorithmic settings are
summarized in Table 2.

Optimization settings Integrator settings
P δ IPOPT-tol: Step 1./Step 2. relTol/absTol relTolSens/absTolSens
5 10−6 10−10/10−8 10−12/10−12 10−12/10−12

Table 2: On the left hand side the optimization settings are listed comprising
the IPOPT stopping tolerances for Step 1. and Step 2. of Algorithm 1 and on
the right hand side the integration tolerances for the nominal trajectory and the
first order sensitivities. We use the IPOPT option “honor original bounds=no”
for Step 1. and Step 2. of Algorithm 1.

A plot of the functions α1, α2 and γ1, γ2 in the initial state and for the solution
of problem PΘ̃1 are shown in Figure 3. A plot for the same functions with the
same solution design as for problem PΘ̃1 after the next robustification step is
shown in Figure 4. The final design is also shown in Figure 4. A plot of the
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Figure 3: The model functions α1, α2 and γ1, γ2 are shown before the opti-
mization procedure (left) and after the optimization procedure of problem PΘ̃1

(right) for the glycolytic design setup without the possibility to disturb the
system. One square represents one measurement time point.

robustification gap ∆RG and as well for the objective value of problem PΘ̃N for
each iteration N of Algorithm 1 are shown in Figure 5. A selection of design
variables as solutions of problem PΘ̃N is shown in Figure 6(left).

In a second scenario we additionally allow for species perturbations. In this
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Figure 4: The model functions α1, α2 and γ1, γ2 are shown for the same solution
design as for problem PΘ̃1 after the next robustification step (left) and for the
final design (right) for the glycolytic design setup without the possibility to
disturb the system. One square represents one measurement time point.

new scenario at the 21th 41th, 61th and 81th measurement time points, the
system can get disturbed by additional species quantities. The free vectors ci,
i ∈ {21, 41, 61, 81} are constrained by ci ∈ [10−7, 10]. The initial values are set
to ci = 1. The remaining conditions are as before, however we change the time
vector bound constraints for i ∈ {1, 6, 11, 21, 26, 31, 41, 46, 51, 61, 66, 71, 81} to
∆ti ∈ [8, 1019] and the initial state to ∆ti = 15. The bounds for the remaining
entries are as before, and the remaining measurement time points were equally
spaced.
A plot of the functions α1, α2 and γ1, γ2 in the initial state and for the solution
of problem PΘ̃1 are shown in Figure 7. A plot for the same functions with the
same solution design as for problem PΘ̃1 after the next robustification step is
shown in Figure 8. The final design is also shown in Figure 8. A plot of the
robustification gap ∆RG and the objective value of problem PΘ̃N for each iter-
ation N of Algorithm 1 are shown in Figure 9. A selection of design variables
as solutions of problem PΘ̃N is shown in Figure 6(right).

4.2 Discriminating design for two models describing signal

sensing in dictyostelium discoideum

The second test case is the discrimination of two models describing the chemo-
tactic response in the amoeba Dictyostelium discoideum as presented in [33]
using the framework presented in Section 2 and 3. The two models describe the
adaption mechanism observed when amoebae encounter the chemoattractant
cAMP [31], see figure 10. For both models, a chemotaxis response regulator R
gets activated (R∗) by an activator enzyme A, when a cAMP ligand S appears.
But the deactivating mechanism determined by the interaction with an inhibitor
molecule I differs for both models. Both models comprise mass action kinetics
in form of ODE.
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Figure 5: In the left figure the robustification gap ∆RG is plotted versus the
number of iterations N of Algorithm 1 and in the right figure the objective value
of problem PΘ̃N is shown for the glycolytic design setup without the possibility
to disturb the system.
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Figure 6: A selection of design variables as solutions of problem PΘ̃N for the
glycolytic design setup without the possibility to disturb the system (left) and
with the possibility to disturb the system (rigth) are shown.

In model 1 the activator enzyme as well as the inhibitor enzyme are regulated
by the external signal , which is proportional to the cAMP concentration S.
The overall model in this case is given by,

Ȧ1 = −k−aA1 + kaS1

İ1 = −k−iI1 + ki1S1

Ṙ∗
1 = −(krA1 + k−rI1)R

∗
1 + krRTA1,

(50)

where k−a, ka, k−i, ki1 , kr and k−r are the mass action rate constants and
RT := R∗ +R is the total amount of the response regulator.

In model 2 the inhibitory molecule I is activated through the indirect action of
activator A instead of direct activation by sensing ligand binding. The overall
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Figure 7: The model functions α1, α2 and γ1, γ2 are shown before the opti-
mization procedure (left) and after the optimization procedure of problem PΘ̃1

(right) for the glycolytic design setup with the possibility to disturb the system.
One square represents one measurement time point.

model in this case is given by,

Ȧ2 = −k−aA2 + kaS2

İ2 = −k−iI2 + ki2A2

Ṙ∗
2 = −(krA2 + k−rI2)R

∗
2 + krRTA2,

(51)

where k−a, ka, k−i, ki2 , kr and k−r are the mass action rate constants and
RT := R∗ +R is the total amount of the response regulator.
For modeling details we refer to [33]. We have extended these systems of ordi-
nary differential equations by an additional state corresponding to the cAMP
ligand S with Ṡ = 0. By allowing species concentration perturbations c only
to the state S we can mimic a piecewise constant control of the system by the
cAMP ligand S.

The experimental design parameters are the initial species concentrations of
the four states namely, AI , II , RI , SI , the measurement time points t and the
species concentration perturbation c with respect to S. We discard the condi-
tion that either a measurement or a perturbation can be performed since in
that setting by use of the perturbations c we mimic a piecewise constant input
control S and therefore that restriction seems unnatural. Again for simplicity
we consider the homoscedastic case with equal variances i.e. v1 = v2 = σ2,
where I(P1 : P2,O1) reduces now to

I(P1 : P2,O1) =
n∑

i=1

H′(ti)
(
(Ai

1 −Ai
2)

2 + (Ii1 − Ii2)
2 + (R∗,i

1 −R∗,i
2 )2

)
. (52)

The parameters k−a, ka, k−i, ki1 , kr, k−r and RT are regarded as known and
fixed, their values are given in Table 3. Parameter ki2 is regarded as un-
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Figure 8: The model functions α1, α2 and γ1, γ2 are shown for the same solution
design as for problem PΘ̃1 after the next robustification step (left) and for the
final design (right) for the glycolytic design setup with the possibility to disturb
the system. One square represents one measurement time point.

k−a ka k−i ki1 kr k−r RT

2.0 3.0 0.1 1.0 1.0 1.0 23/30

Table 3: Parameter values for the fix values within model 1 and model 2.

known and subject to robustification. The range of the parameter ki2 is set
to ki2 ∈ [0, 2].
The optimal design is calculated within a fixed time window with Tend = 100.
100 equally spaced possible measurement points are defined in the initial state of
the optimization procedure. The distance vector ∆t between time points is sub-
ject to design and each entry is restricted to ∆ti ∈ [10−7, 1019], i ∈ {1, ..., 100}.
The free perturbation vectors ci, i ∈ {11, 21, 31, 41, 51, 61, 71, 81, 91} are not re-
stricted. The initial values are set to ci = 0, i ∈ {11, 21}, c31 = 0.3, ci = −0.48,
i ∈ {41, 61, 81} and ci = 0.48, i ∈ {51, 71, 91}.
The initial species concentrations which are also subject to the experimental
design are restricted to SI ∈ [0.01, 0.5], AI ∈ [10−7, 1], II ∈ [10−7, 1] and
RI ∈ [10−7, I]. The initial values are set to SI = 0.2, AI = 1.0, I = 10−4 and
R = 10−4. The multiple shooting intermediate variables for the species S are
restricted to si ∈ [0.01, 0.5] to restrict the piecewise constant control to this in-
terval. The parameters of the switching functions H′(ti) are chosen as a1 = 5.0
and b1 = 2.5. The algorithmic settings are summarized in Table 4.
With these design conditions we start the optimization procedure twice. First
by use of the homotopy strategy for successive problems PΘ̃N+1 with 10 homo-
topy steps.
Since the “discriminating power” of the experimental setup is very low in this
case, i.e. the deviation between the two models is small, we plot the distance
functions (S1 − S2), (A1 −A2), (I1 − I2) and (R1 −R2) for the initial state and
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Figure 9: In the left figure the robustification gap ∆RG is plotted versus the
number of iterations N of Algorithm 1 and in the right figure the objective value
of problem PΘ̃N is shown for the glycolytic design setup with the possibility to
disturb the system.
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Figure 10: Two models of the signal system of the Dictyostelium amoeba.

for the solution of problem PΘ̃1 in Figure 11. A plot for the same functions
with the same solution design as for problem PΘ̃1 after the next robustification
step is shown in Figure 12. The final design is also shown in Figure 12.
A plot of the robustification gap ∆RG for each iteration N of Algorithm 1 is
shown in Figure 13 (left). A plot of the objective value of problem PΘ̃N for each
iteration N of Algorithm 1 is shown in Figure 14 (left). A selection of design
variables as solutions of problem PΘ̃N is shown in Figure 15 (left).

Second we calculate the design without the homotopy strategy. We expe-
rience huge jumps in the final objective value of problem PΘ̃N for subsequent
iterations N of Algorithm 1. This is due to the fact that the final design of the
former problem PΘ̃N is an infeasible starting point for the successive problem
PΘ̃N+1 in the interior point solution strategy. First the optimizer tries to force
the iterates back into the feasible region and afterwards the new central path
leads to a different design.
For this case a plot of the robustification gap ∆RG for each iteration N of Algo-
rithm 1 is shown in Figure 13 (right). A plot of the objective value of problem
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Optimization settings Integrator settings
P δ IPOPT-tol: Step 1./Step 2. relTol/absTol relTolSens/absTolSens
5 10−8 10−10/10−11 10−14/10−14 10−14/10−14

Table 4: On the left hand side the optimization settings are listed comprising
the IPOPT stopping tolerances for Step 1. and Step 2. of Algorithm 1 and on
the right hand side the integration tolerances for the nominal trajectory and the
first order sensitivities. We use the IPOPT option “honor original bounds=no”
for Step 1. and Step 2. of Algorithm 1.
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Figure 11: The model variable distance functions (S1−S2), (A1−A2), (I1− I2)
and (R1 −R2) are shown before the optimization procedure (left) and after the
optimization procedure of problem PΘ̃1 (right) for two models describing signal
sensing in dictyostelium discoideum. One square represents one measurement
time point.

PΘ̃N for each iteration N of Algorithm 1 is shown in Figure 14 (right). A se-
lection of design variables as solutions of problem PΘ̃N is shown in Figure 15
(right). As one can clearly see, the homotopy strategy helps to considerably
stabilize Algorithm 1.

5 Conclusion

We present a framework for the robust computation of optimal experimental de-
signs for the purpose of model discrimination. The theoretical framework as well
as the numerical realization by utilization of an outer approximation algorithm
are worked out. A strategy for the numerical stabilization of the algorithm
by use of a homotopy approach is suggested. The optimization procedure is
successfully exemplified on two biological model systems. In our examples we
clearly found that the homotopy approach is significantly superior to a cold
start of successive design problems PΘ̃N+1. For the first test case, the discrimi-
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Figure 12: The model variable distance functions (S1−S2), (A1−A2), (I1− I2)
and (R1 −R2) are shown for the same solution design as for problem PΘ̃1 after
the next robustification step and for the final design (right) for two models
describing signal sensing in dictyostelium discoideum. One square represents
one measurement time point.

nation of two models describing glycolytic oscillations, the outer approximation
scheme completely fails to reach the desired accuracy δ without homotopy strat-
egy. For the second test case, the discrimination of two models describing signal
sensing in dictyostelium discoideum, the outer approximation scheme also fails
without warmstart, however the homotopy strategy also works with only two
homotopy steps (not presented in this paper). This indicates the need of a step
size strategy for reasons of efficiency which will be a next step in our work.
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[40] Victor Pérez, John Renaud, and Layne Watson. Homotopy curve tracking
in approximate interior point optimization. Optimization and Engineering,
10:91–108, 2009. 10.1007/s11081-008-9042-6.

[41] D. Salmon. Minimax controller design. Automatic Control, IEEE Trans-
actions on, 13(4):369 – 376, aug. 1968.

[42] Kiyotaka Shimizu and Eitaro Aiyoshi. Necessary conditions for min-max
problems and algorithms by a relaxation procedure. IEEE Transactions on
Automatic Control, 25(1):62–66, 1980.

[43] Dominik Skanda and Dirk Lebiedz. An optimal experimental design ap-
proach to model discrimination in dynamic biochemical systems. Bioinfor-
matics, 26(7):939–945, 2010.

[44] W. E. Stewart, Y. Shon, and G. E. P. Box. Discrimination and goodness of
fit of multiresponse mechanistic models. AIChE Journal, 44(6):1404–1412,
1998.

29



[45] Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis. Num-
ber 12 in Texts in Applied Mathematics. Springer, New York, third edition,
2002.

[46] C. Stricker, S. Redman, and D. Daley. Statistical analysis of synaptic trans-
mission: model discrimination and confidence limits. Biophysical Journal
Of The Royal Statistical Society Series B, 67:532–547, 1994.

[47] R. Takors, W. Wiechert, and D. Weuster-Botz. Experimental design for the
identification of macrokinetic models and model discrimination. Biotechnol
Bioeng, 56(5):564–576, Dec 1997.

[48] Jens Timmer, T. G. Müller, I. Swameye, O. Sandra, and U. Klingmüller.
Modeling the nonlinear dynamics of cellular signal transduction. Interna-
tional Journal of Bifurcation and Chaos, 14(6):2069–2079, 2004.
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