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Abstract

We prove that there are 0/1 polytopes P ⊆ Rn that do not admit

a compact LP formulation. More precisely we show that for every n
there is a sets X ⊆ {0, 1}n such that conv(X) must have extension

complexity at least 2n/2·(1−o(1)). In other words, every polyhedron Q
that can be linearly projected on conv(X) must have exponentially

many facets.

In fact, the same result also applies if conv(X) is restricted to be a

matroid polytope.

Conditioning on NP 6⊆ P/poly, our result rules out the existence of

any compact formulation for the TSP polytope, even if the formulation

may contain arbitrary real numbers.

1 Introduction

Combinatorial optimization deals with finding the best solution out of a
finite number of choices X ⊆ {0, 1}n, e.g. finding the cheapest spanning
tree in a graph. If possible one aims of course to design a polynomial time
algorithm. However another popular way to study combinatorial problems
is to express the convex hull P = conv(X) by linear inequalities Ax ≤ b, i.e.
describing them as the solutions of a linear program. A drawback of this
approach is that in general an exponential number of inequalities is needed.
In principle one could use the Ellipsoid method to optimize these systems,
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if at least the separation problem can be solved in polynomial time. But in
practice this method is considered to be not applicable. A more satisfactory
approach is to allow polynomially many extra variables in order to reduce the
number of necessary inequalities to a polynomial. This is called a compact
formulation P = {x | ∃y : Ax + Uy ≤ b}. Such compact formulations exist
for example for the spanning tree polytope [Mar91], the parity polytope and
the permutahedron (see [Sch03] for an extensive account).

The advantages of such a compact formulation are that (1) one can now
optimize any linear function over X in polynomial time; (2) one can solve
the problem with a powerful general purpose LP solver, without the need to
implement a custom-tailored algorithm.

This naturally leads to the question for which problems such a com-
pact formulation does not exist. Yannakakis [Yan91] showed that the TSP
polytope PTSP (the convex full of the characteristic vectors of all Hamilto-
nian cycles in the complete graph on n nodes) does not have a subexponen-
tial size symmetric formulation. Surprisingly the same result holds true for
the matching polytope, though here a complete description of all facets is
known due to Edmonds [Edm65] and the problem itself as well as the sep-
aration problem are solvable in polynomial time. Kaibel, Pashkovich and
Theis [KPT10] demonstrate that symmetric formulations are in some cases
more restricted by proving that there is a compact non-symmetric formula-
tion for all log n-size matchings, while symmetric formulations still need size
nΩ(logn).

However, it remains a fundamental open problem to show that the match-
ing polytope or the TSP polytope do not admit any non-symmetric compact
formulation. In fact, it was even an open problem to prove that there exists
any family of 0/1 polytopes without a compact formulation1. In this paper
we answer this question affirmatively.

Our idea is based on a counting argument similar to Shannon’s the-
orem [Sha49] (see also [AB09]) for lower bounds on circuit sizes: Let us
assume for the sake of contradiction that all n-dimensional 0/1 polytopes
have a compact formulation P = {x | ∃y ≥ 0 : Ax+ Uy = b} of polynomial
size r(n). Since there are doubly-exponentially many 0/1 polytopes, there
must also be at least that many formulations of size r(n). This would lead to
a contradiction under the additional assumption that all coefficients in the
system Ax+ Uy = b have polynomial encoding length. Unfortunately there
is no known result which guarantees that the coefficients of U will even be

1This was posed as an open problem by Volker Kaibel on the 1st Cargèse Workshop
in Combinatorial Optimization.
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rational and already a single real number can contain an infinite amount of
information2 ruling out a simple counting argument.

Our contribution

In our approach, we bypass these difficulties by selecting a linearly indepen-
dent subsystem of Ax+Uy = b which maximizes the volume of the spanned
parallelepiped; then we discretize the entries of U . We thus obtain a sub-
system Āx + Ūy = b̄ with the property that x ∈ X if and only if there is
a short certificate y such that Āx + Ūy ≈ b̄ for the rounded system. Sec-
ondly, all numbers in Ā, Ū , b̄ have an encoding length which is bounded by a
polynomial in n. In other words, this construction defines an injective map,
taking a set X as input and providing (Ā, Ū , b̄). Since there are doubly-
exponentially many sets X ⊆ {0, 1}n and by injectivity, the number of such
systems (Ā, Ū , b̄) must also be doubly-exponential, which then implies the
result.

It is folklore, that if NP problems do not all have polynomial size circuits,
then the TSP polytope does not admit a compact formulation in which the
numbers are rationals with polynomial encoding length. We can argue that
the latter condition can be omitted.

2 Related work

A formulation of size O(n log n) for the permutahedron was provided by Goe-
mans [Goe10]. In fact, [Goe10] also showed that this is tight up to constant
factors. The lower bound of [Goe10] is based on the insight that the num-
ber of facets of any extension must be at least logarithmic in the number
of vertices of the target polytope (which is n! for the permutahedron). The
perfect matching polytope for planar graphs and graphs with bounded genus
does admit a compact formulation [Bar93, Ger91]. A useful tool to design
such formulations is the Theorem of Balas [Bal85, Bal98], which describes
the convex hull of the union of polyhedra. For NP-hard problems, one can
of course not expect the existence of any exact compact formulation. Nev-
ertheless, Bienstock [Bie08] gave an approximate formulation of size nO(1/ε)

for the Knapsack polytope. This means, optimizing any linear function over
the approximate polytope will give the optimum Knapsack value, up to a

2Note that the usual argument that a polytope with rational vertices admits rational
inequalities and vice versa does not apply, since both, the vertices and the inequalities of
the extension polyhedron might be irrational.
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1 + ε factor. For a more detailed literature review, we refer to the surveys
of Conforti, Cornuéjols and Zambelli [CCZ10] and of Kaibel [Kai11].

3 Preliminaries

Let P ⊆ Rn be a polytope with non-redundant inequality representation
P = {x ∈ Rn | Ax ≤ b}. An extension is a polyhedron Q ⊆ Rm together
with a linear projection p : Rm → Rn such that p(Q) = P . An extended
formulation is a description of Q with linear inequalities and equations Q =
{z ∈ Rm | Cz ≤ c, Dz = d} (together with p). The size of the extended
formulation is the number of inequalities in the description, i.e. the number
of rows in C. We do not need to account for the number of equations, since
they can always be eliminated. Now we can define the extension complexity
xc(P ) as the smallest size of any extended formulation (see [Kai11] for more
details).

Let X = {x1, . . . , xv} ⊆ P be the vertices (or extreme points) of P and
let f be the number of inequalities in the description P = {x ∈ Rn | Ax ≤ b}.
Then the slack-matrix S ∈ Rf×v of P is defined by Sij = bi − Aixj . Recall
that the rank of a matrix S is the smallest r such that one can factor S = UV ,
where U is a matrix with r columns and V is a matrix with r rows. A
notion which is very important for studying extended formulations is the
non-negative rank of a matrix:

rk+(S) = min{r | ∃U ∈ Rf×r
≥0 , V ∈ Rr×v

≥0 : S = UV }

Note that given a matrix A ⊆ Qm×n
≥ , deciding whether rk(A) = rk+(A) is

NP-hard [Vav09]. A basic theorem concerning extended formulations, is the
insight of Yannakakis, that the non-negative factorization of the slack-matrix
with minimum r gives the smallest extension:

Theorem 1 (Yannakakis [Yan91]). Let P be a polytope with vertices X =
{x1, . . . , xv}, non-redundant inequality description P = {x ∈ Rn | Ax ≤ b}
and corresponding slack matrix S. Then xc(P ) = rk+(S). Moreover, for any
factorization S = UV with U, V ≥ 0 one can write P = {x ∈ Rn | ∃y ≥ 0 :
Ax+ Uy = b} and for every xj ∈ X one has Axj + U · V j = b.

In other words: Given a polytope P = {x ∈ Rn | Ax ≤ b}, the smallest
extension can be found by factoring the slack matrix S into non-negative
factors U and V with minimum number of columns/rows. Then the smallest
extended formulation comprises of Q = {(x, y) ∈ Rn × Rxc(P ) | Ax + Uy =
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b, y ≥ 0} together with the projection on the x-variables projx(Q) = {x ∈
Rn | ∃y : (x, y) ∈ Q}. While for a polytope P , the inequality description
Ax ≤ b is not unique, Theorem 1 implies that the non-negative rank is the
same for all these descriptions.

For any matrix A, we denote its ith row by Ai and the ith column by Ai.
For linearly independent vectors w1, . . . , wk ∈ Rn, we define vol(w1, . . . , wk)
as the k-dimensional volume of the parallelepiped, spanned by w1, . . . , wk.
Hence for k = n one has vol(w1, . . . , wk) = |det(B)| where B is a matrix,
having w1, . . . , wk as column vectors in an arbitrary order. Note that for any
vector w ∈ span(w1, . . . , wk), there are unique coefficients λ ∈ Rk such that
w =

∑k
i=1 λiwi and by Cramer’s rule

|λi| =
vol(w1, . . . , wi−1, w,wi+1, . . . , wk)

vol(w1, . . . , wk)
.

For q ∈ R, let qZ≥0 = {0, q, 2q, . . .} denote all non-negative integer multiples
of q.

4 A lower bound for general 0/1 polytopes

In the following we fix a set X ⊆ {0, 1}n. It is well known, that one can
choose a matrix A and a vector b with integral entries such that P = {x ∈
Rn | Ax ≤ b} = conv(X), while the absolute values of any entry in A and
b are bounded by ∆ := ∆(n) := (

√
n+ 1)n+1 ≤ 2n log(2n) (see e.g. Cor. 26

in [Zie00]). Let S be the corresponding slack-matrix, then S is non-negative
by definition and integral, since A, b and all vertices are integral. More
precisely Sij = bj − Aixj ∈ {0, . . . , (n + 1)∆}. Let S = UV be any non-

negative factorization, i.e. U ∈ Rf×r
≥0 and V ∈ Rr×v

≥0 . As already argued
above, we cannot make any assumption on the rationality/encoding length
of the coefficients of U and V . But what we can do is to bound their absolute
values.

Observe that if we simultaneously scale a column ℓ of U by λ > 0 and
row ℓ of V by 1

λ , then the matrix product UV stays invariant. Thus we may
scale the rows and columns such that ‖U ℓ‖∞ = ‖Vℓ‖∞ (if U ℓ = 0, then we
can just set Vℓ := 0 as well). We call such pairs of matrices normalized.

Lemma 2. For normalized matrices, one has ‖U‖∞ ≤ ∆ and ‖V ‖∞ ≤ ∆.

Proof. Assume for the sake of contradiction that Uiℓ > ∆. Thus ‖Vℓ‖∞ > ∆,
hence there must be an entry Vℓj > ∆. Then Sij = Ui · V j ≥ Uiℓ · Vℓj >
∆2 ≥ (n+ 1)∆, which is a contradiction.

5



Recalling Theorem 1, we can write conv(X) = {x ∈ Rn | ∃y ∈ Rxc(conv(X))
≥0 :

Ax + Uy = b}. Our main technical ingredient is to select a linear indepen-
dent subsystem Āx+ Ūy = b̄ of Ax+Uy = b such that the entries of Ū can
be rounded to rational numbers with small encoding length and still x ∈ X
iff Āx+ Ūy ≈ b̄ for some y.

Theorem 3. For any non-empty X ⊆ {0, 1}n, there are matrices Ā ∈
Z(n+r)×n, Ū ∈ ( 1

4r(n+r)∆Z≥0)
(n+r)×r and a vector b̄ ∈ Zn+r with ‖Ā‖∞, ‖b̄‖∞, ‖Ū‖∞ ≤

∆ such that

X =

{

x ∈ {0, 1}n | ∃y ∈ [0,∆]r : ‖Āx+ Ūy − b̄‖∞ ≤ 1

4(n+ r)

}

Here is r := xc(conv(X)) and ∆ := ∆(n) := (
√
n+ 1)n+1.

Proof. Let X = {x1, . . . , xv} and let Ax ≤ b with A ∈ Zf×n and b ∈ Zf

be a non-redundant description of conv(X) with ‖A‖∞, ‖b‖∞ ≤ ∆. Further-

more let S ∈ Zf×|X|
≥0 be the corresponding slack matrix. By Yannakakis’

Theorem 1, we can write P = conv(X) = {x ∈ Rn | ∃y ∈ Rr : Ax + Uy =
b, y ≥ 0} where U, V are the non-negative factorization of the slack-matrix,
i.e. S = UV . By Lemma 2 we may assume that ‖U‖∞, ‖V ‖∞ ≤ ∆. Let
W = span({(Ai, Ui) | i = 1, . . . , f}) be the span of the constraint matrix
of the system Ax + Uy = b and let k = dim(W ) be its dimension. Choose
I ⊆ {1, . . . , f} of size |I| = k such that vol({(Ai, Ui) | i ∈ I}) is maximized.
Recall that UI is the matrix U , restricted to the rows in I. Let U ′

I be the
matrix UI where coefficients are rounded down to the nearest multiple of

1
4r(n+r)∆ . Our choice will be Ā := AI , Ū := U ′

I , b̄ := bI , hence it remains to
show that

X
!
=

{

x ∈ {0, 1}n | ∃y ∈ [0,∆]r : ‖AIx+ U ′
Iy − bI‖∞ ≤ 1

4(n+ r)

}

=: Y

Claim. X ⊆ Y .

Proof of claim. Consider a vector xj ∈ X. Using Yannakakis’ Theorem 1,
we can simply choose y := V j ≥ 0 and have Axj + U · y = b. Due to
normalization, ‖y‖∞ ≤ ‖V ‖∞ ≤ ∆. Note that ‖U − U ′‖∞ ≤ 1

4r(n+r)∆ . By
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the triangle inequality

‖AIxj + U ′
Iy − bI‖∞ ≤ ‖AIxj + UIy − bI

︸ ︷︷ ︸

=0

+(U ′
I − UI)y‖∞

≤ r · ‖U ′
I − UI‖∞

︸ ︷︷ ︸

≤ 1
4r(n+r)∆

· ‖y‖∞
︸ ︷︷ ︸

≤∆

≤ 1

4(n+ r)

Thus xj ∈ Y . ♦

Claim. X ⊇ Y .

Proof of claim. We show that for x ∈ {0, 1}n with x /∈ X one has x /∈ Y .
Since x /∈ X, there must be a row ℓ with Aℓx > bℓ. Since A, b and x are
integral, one even has Aℓx ≥ bℓ+1. Unfortunately ℓ is in general not among
the selected constraints I. But there are unique coefficients λ ∈ Rk such that
we can express constraint Aℓx + Uℓy = bℓ as a linear combination of those
in I, i.e.

(
Aℓ, Uℓ

)
=

∑

i∈I

λi

(
Ai, Ui

)
.

Note that automatically we have
∑

i∈I λibi = bℓ, since otherwise the system
Ax+ Uy = b could not have any solution (x, y) at all and X = ∅. The next
step is to bound the coefficients λi. Here we recall that by Cramer’s rule

|λi| =
vol

({
(Ai′ , Ui′) | i′ ∈ I\{i} ∪ {ℓ}

})

vol
({

(Ai′ , Ui′) | i′ ∈ I
}) ≤ 1

since we picked I such that vol({(Ai′ , Ui′) | i′ ∈ I}) is maximized. Fix an
arbitrary y ∈ [0,∆]r , then

1 ≤ |Aℓx− bℓ
︸ ︷︷ ︸

≥1

+ Uℓy
︸︷︷︸

≥0

| =
∣
∣
∣

∑

i∈I

λi(Aix− bi + Uiy)
∣
∣
∣ (1)

≤
∑

i∈I

|λi|
︸︷︷︸

≤1

·|Aix− bi + Uiy|

≤ (n+ r) · ‖AIx− bI + UIy‖∞

using the triangle inequality and the fact that |I| ≤ n + r. Again making
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use of the triangle inequality yields

‖AIx− bI + UIy‖∞ = ‖AIx− bI + U ′
Iy + (UI − U ′

I)y‖∞ (2)

≤ ‖AIx− bI + U ′
Iy‖∞ + r · ‖UI − U ′

I‖∞
︸ ︷︷ ︸

≤ 1
4r(n+r)∆

· ‖y‖∞
︸ ︷︷ ︸

≤∆

≤ ‖AIx− bI + U ′
Iy‖∞ +

1

4(n + r)

Combining (1) and (2) gives ‖AIx − bI + U ′
Iy‖∞ ≥ 1

n+r − 1
4(n+r) ≥ 1

2(n+r)

and consequently x /∈ Y . ♦

The assertion of the Theorem follows. Note that by padding empty rows,
we can ensure that Ā, Ū , b̄ have exactly n+ r rows.

Theorem 4. For any n ∈ N, there exists a set X ⊆ {0, 1}n such that
xc(conv(X)) ≥ Ω(2n/2/

√

n log(2n)).

Proof. Let R := R(n) be the maximum value of xc(conv(X)) over all X ⊆
{0, 1}n. In the following, we use that R ≤ 2n (otherwise, there is nothing
to show). The construction in Theorem 3 implicitly defines a function Φ
which maps a set X to a system (Ā, Ū , b̄)3. The important observation is
that due to Theorem 3, for a given system (Ā, Ū , b̄), one can reconstruct the
corresponding set X. In other words, the function Φ is injective. In fact,
adding zero rows and columns to those matrices does not change the claim,
hence we may assume that Ā is an (n+R)×n matrix and Ū is an (n+R)×R
matrix. Every entry in Ū has absolute value at most ∆ and is a multiple
of 1

4r(n+r)∆ for some r ∈ {1, . . . , R}. In other words, the domain for each

entry contains at most
∑R

r=1 2 · 4r(n + r)∆ · ∆ ≤ 8R2(n + R2)∆ ≤ 16∆5

many possible values (here we use the generous estimates R ≤ 2n ≤ ∆ and
n ≤ ∆). By injectivity of Φ, the number of sets X (which is 22

n − 1) cannot
be larger than the number of systems (Ā, Ū , b̄). Thus

22
n − 1 ≤ (16∆5)(n+R+1)·(n+R) ≤ 2C(n4+n log(2n)·R2)

for some constant C > 0. Hence R ≥ C ′ · 2n/2/
√

n log(2n) for some C ′ >
0.

3The initial system Ax ≤ b describing conv(X) might not be unique, as well as index
set I . For Φ to be well defined one can make an arbitrary canonical choice, like choosing
Ax ≤ b and I lexicographical minimal.
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5 A lower bound for matroid polytopes

The main drawback of our result is that it does not rule out compact for-
mulations for any explicitly known polytope. However, we can extend the
result to matroid polytopes. Recall that a pair ([n],I) is called a ma-
troid with ground set [n] = {1, . . . , n} and independent sets I ⊆ 2[n], if
(I) I ∈ I, J ⊆ I ⇒ J ∈ I and (II) for all I, J ∈ I with |I| < |J | there
is a z ∈ J\I with I + z ∈ I . Note that all non-trivial facet-defining in-
equalities for conv(χ(I)) are of the form

∑

i∈S xi ≤ rI(S) with S ⊆ [n],
where rI denotes the rank function of the matroid (χ(I) denotes the set of
characteristic vectors of I). Secondly, any linear objective function can be
optimized over conv(χ(I)) using the greedy algorithm, which involves calling
a membership oracle a polynomial number of times. See e.g. the textbook
of Schrijver [Sch03] for more details.

Nevertheless, it is well known that the number of matroids with ground

set {1, . . . , n} is at least 2(
n

⌊n/2⌋)/(2n) ≥ 22
n/(10n3/2) for n large enough [Duk03].

In other words, there are doubly-exponentially many matroids. Using the
same proof as for Theorem 4 we obtain:

Corollary 5. There exists a family Mn = ({1, . . . , n},In) of matroids such
that xc(conv(χ(In))) = Ω(2n/2/(n5/4 log(2n))).

6 Approximating 0/1 polytopes

In this section, we want to extend the result of Theorem 3 such that any
0/1 polytope P can be arbitrarily well approximated as a projection of a
polytope Q with O(n + xc(P )) facets but still small encoding length. See
Figure 6 for an illustration. In the following, for any ε > 0, let P + ε =
{x+ z ∈ Rn | x ∈ P, ‖z‖2 ≤ ε}.

Theorem 6. For any non-empty 0/1 polytope P = conv(X) (X ⊆ {0, 1}n)
and any ε > 0, there exists a polytope Q = {(x, y) ∈ Rn×Rxc(P ) | Bx+Cy ≤
d} such that B ∈ Q(4xc(P )+2n)×n, C ∈ Q(4xc(P )+2n)×xc(P ) and b ∈ Q4xc(P )+2n

have encoding length poly(n, xc(P ), log(1ε )) and P ⊆ projx(Q) ⊆ P + ε.
Furthermore for any objective function c ∈ Rn, max{cTx | x ∈ projx(Q)}−

max{cTx | x ∈ P} ≤ ε · ‖c‖2.

Proof. Again let P = {x ∈ Rn | Ax ≤ b} be a non-redundant inequality
description of P such that A and b have entries from {−∆, . . . ,∆}. Abbre-
viate r := xc(P ). We again apply Theorem 3 to obtain a system AI , U

′
I , bI .

9
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Figure 1: Visualization of Theorem 6.

But this time, we round the entries in the matrix UI down to the nearest
multiple of δ

4r(n+r)∆ (instead of 1
4r(n+r)∆), for δ := min{ 1

2(n∆)2n+2 ,
ε

n·(n∆)n }.
We choose

Q :=

{

(x, y) | ‖AIx+ U ′
Iy − bI‖∞ ≤ δ

4(n+ r)
, y ∈ [0,∆]r

}

Note that Q is in fact a polytope which can be written in the form Q =
{(x, y) | Bx+Cy ≤ d} such that B,C, d are of the claimed format. Further-
more the encoding length of B,C, d is polynomial in n, xc(P ) and log(1/ε)4.
In the remaining proof we show that P ⊆ projx(Q) ⊆ {x ∈ Rn | Ax ≤
b+ δ1} ⊆ P + ε.

Claim. P ⊆ projx(Q).

Proof of claim. As in Theorem 3, for any vertex xj ∈ P , one has (xj , V
j) ∈

Q (since ‖AIxj +U ′
IV

j − bI‖∞ ≤ r · ‖U ′
I −UI‖∞ · ‖V j‖∞ ≤ δ

4(n+r)). Conse-

quently P ⊆ projx(Q). ♦

4This follows from the fact that all coefficients in B,C, d are products of n, xc(P ), δ, ε,∆
(or their reciprocals) and log(∆) ≤ O(n · log n), log(1/δ) ≤ log(1/ε) +O(n2 log n).
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Claim. projx(Q) ⊆ {x ∈ Rn | Ax ≤ b+ δ1}.

Proof of claim. Suppose for the sake of contradiction, that there is an
x∗ ∈ projx(Q) such that for some ℓ one has Aℓx

∗ > bℓ + δ. Revisiting again
Inequalities (1) and (2), we see that for any y ∈ [0,∆]r now

δ
(1)

≤ (n+ r) · ‖AIx
∗ − bI + UI‖∞

(2)

≤ (n+ r) ·
(

‖AIx
∗ − bI + U ′

Iy‖∞ + r · ‖UI − U ′
I‖∞

︸ ︷︷ ︸

≤δ/(4r(n+r)∆)

· ‖y‖∞
︸ ︷︷ ︸

≤∆

)

≤ (n+ r) · ‖AIx
∗ − bI + U ′

Iy‖∞ +
δ

4

which implies that ‖AIx
∗ − bI + U ′

Iy‖∞ ≥ δ
n+r − δ

4(n+r) > δ
4r(n+r) and

consequently x∗ /∈ projx(Q). This is a contradiction. ♦

Claim. {x ∈ Rn | Ax ≤ b+ δ1} ⊆ P + ε.

Proof of claim. It suffices to prove that every vertex x∗ of {x | Ax ≤ b+δ1}
has a distance of at most ε to P . There is a subsystem AJx ≤ bJ + δ1 of
n constraints such that x∗ is the unique solution of AJx = bJ + δ1 or in
other words x∗ = A−1

J (b + δ1). Since A has integral entries with absolute
value at most ∆, we know that we can write A−1

J = (
αij

β )i,j with αij, β ∈
{−(n∆)n, . . . , (n∆)n}5.

Let us assume for the sake of contradiction that J was not a feasible basis
for P , i.e. A(A−1

J bJ) � b. Well, then there is an index i with Ai(A
−1
J bJ) > bi.

In fact, even Ai(A
−1
J bJ) ≥ bi +

1
β . But since we picked δ small enough,

|Aix
∗ −Ai(A

−1
J bJ)| = |AiA

−1
J δ1| ≤ n2 ·∆ · (n∆)nδ < 1

(n∆)n ≤ 1
β , which is a

contradiction.
Hence we may assume that J is indeed a feasible basis for P and we can

bound the distance of x∗ to P by the distance that the basic solution corre-
sponding to basis J “moved” by shifting the hyperplanes by δ (see Figure 2):

‖x∗ −A−1
J bJ‖2 = ‖A−1

J (bj + δ1)−A−1
J bJ‖2 = ‖A−1

j δ1‖2 ≤ n · δ · (∆n)n ≤ ε.

Here we again used our choice of δ. ♦

Combining the proven claims yields P ⊆ projx(Q) ⊆ P + ε.

5By Cramer’s rule, every entry (i, j) of the inverse of an n × n matrix M can be

written as ± det(M′)
det(M)

for some submatrix M ′ of M . By the Hadamard bound, |det(M)| ≤
∏n

i=1 ‖M
i‖2 ≤ (n‖M‖∞)n.
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P

δ

δ
δ

x∗ = A−1
J (bJ + δ · 1)

A−1
J bJ

{x | Ax ≤ b+ δ · 1}

∈ J

Figure 2: We bound the distance of x∗ to P by the distance to A−1
J bJ (see

dashed line).

7 Complexity theory considerations

The set of problems that admit compact formulations induce a non-uniform
complexity class in a natural way. In the following, we want to briefly dis-
cuss, how this class relates to other, well studied classes. For an up-to-date
introduction into the topic of complexity theory, we recommend the text-
book of [AB09]. Recall that {0, 1}∗ =

⋃

n≥0{0, 1}n is the set of all binary
strings. By a slight abuse of notation we consider a 0/1 string of length n
also as a binary vector of dimension n.

Definition 1. Let CF be the set of languages L ⊆ {0, 1}∗ for which there
exists a polynomial p such that for all n ∈ N there exist A ∈ Rp(n)×n, B ∈
Rp(n)×p(n), b ∈ Rp(n) such that

conv({x ∈ L : |x| = n}) = {x ∈ Rn | ∃y ∈ Rp(n) : Ax+By ≤ b}.

By CF
enc ⊆ CF we denote the subclass of languages, for which there exist in-

tegral matrices A,B and vectors b such that log(max{‖A‖∞, ‖B‖∞, ‖b‖∞}) ≤
p(n).

Since any LP of polynomial size and encoding length can be solved in
polynomial time, it is rather obvious that CF

enc ⊆ P/poly (see also the
remark of Yannakakis [Yan91]). However, Theorem 3 also provides a slightly
stronger claim:

Theorem 7. CF ⊆ P/poly.
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Proof. Let L ∈ CF and X = L ∩ {0, 1}n for some n ∈ N and let r :=
xc(conv(X)). Recall that r must be polynomial in n. It suffices to provide a
Turing machine that takes polynomial advice (see [AB09]). Our advice for
all input strings x of length n consists in the matrices Ā, Ū , b̄ provided by
Theorem 3. Note that their encoding length is bounded by a polynomial in
n and r. To verify whether x ∈ X, we simply test whether the following
polynomial size linear system has a solution y:

− 1

4r(n+ r)
≤ Āx+ Ūy − b̄ ≤ 1

4r(n+ r)

0 ≤ yj ≤ ∆ ∀j = 1, . . . , r

This can be done in polynomial time [Kha79].

We make the following conjecture:

Conjecture 8. CF
enc = CF.

One of the most popular polytopes in the literature is the TSP poly-
tope (see e.g. [Yan91, BS96]), hence we want to discuss how it relates to the
class CF. Let Kn be the complete undirected graph on n nodes. We define
a language

TSP =
⋃

n∈N

{χ(C) ∈ R(
n
2) | C ⊆ En is Hamiltonian cycle in Kn = ([n], En)}

(here χ(C) denotes the characteristic vector of C). Again it is obvious that
NP 6⊆ P/poly ⇒ TSP /∈ CF

enc, but also here we can show a slightly stronger
claim:

Theorem 9. NP 6⊆ P/poly ⇒ TSP /∈ CF. In other words, unless NP

problems do not all have polynomial size circuits, the TSP polytope does
not have a compact formulation, even if arbitrary real numbers are allowed.

Proof. Suppose for the sake of contradiction that TSP ∈ CF. By NP-
hardness of the Hamiltonian Cycle problem [GJ79], given a cost vector c ∈
{1, 2}(n2) it is NP-hard to decide, whether there is an x ∈ TSP with cTx ≤ n.
Consider the Turing machine (taking polynomial advice), which optimizes c
over the polytope Q from Theorem 6 for ε := 1

2n and let x∗ be an optimum
fractional solution. If there is an x ∈ TSP with cTx ≤ n, then cTx∗ ≤ n.
Otherwise, cTx∗ ≥ (n + 1) − ε‖c‖2 > n. Hence the Turing machine decides
an NP-hard problem, which implies the claim.
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Note that TSP ∈ P/poly, since testing whether x is the characteristic
vector of a Hamiltonian cycle is easy. Just optimizing over all those vectors
is difficult.

We should not introduce a new complexity class CF, without relating it
to already known ones. We saw already that CF ⊆ P/poly, so what about
other non-uniform complexity classes within P/poly? Certainly the most

studied of those classes is AC
0, which is the set of languages for which there

are circuits with bounded depth and unbounded fan-in.
Recall that PARITY is the set of all x ∈ {0, 1}∗ such ‖x‖1 is odd. Then

PARITY admits a compact formulation (with small integral coefficients; see
e.g. [CCZ10]), thus PARITY ∈ CF

enc. In a seminal result, Furst, Saxe and
Sipser [FSS84] showed that PARITY /∈ AC

0 and hence CF 6⊆ AC
0 (in fact,

even CF
enc 6⊆ AC

0). On the other hand, under widely believed assumptions
also the reverse is true:

Theorem 10. NP 6⊆ P/poly ⇒ AC
0 6⊆ CF.

Proof. We need to exhibit a problem, which can be solved by constant depth
circuits, but is likely not to be in CF. Consider the complete tripartite
graph Gn = ([n]3, En), i.e. for any distinct i, j, k ∈ [n], one has a triple
e = {i, j, k} ∈ En. We say that a subset E′ ⊆ En is a (3-dimensional)
matching if all triples in E′ are disjoint. Define

3DM =
⋃

n≥1

{χ(E′) | E′ ⊆ En is matching}

Given a cost vector c ∈ {0, 1}En , it is NP-hard to decide, whether there is an
x ∈ 3DM with cTx = n [GJ79] (i.e. whether there is a perfect 3-dimensional
matching contained in {e ∈ E | ce = 1}). Within the same line of arguments
as in Theorem 9 one has 3DM /∈ CF unless NP ⊆ P/poly. Finally it is not
difficult to see that ∧

e,e′∈E:1≤|e∩e′|≤2

(¬xe ∨ ¬xe′)

is a polynomial size, constant depth formula for 3DM, thus 3DM ∈ AC
0.
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