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Abstract

Consider a homogeneous multifold convex conic system

Ax = 0, x ∈ K1 × · · · ×Kr

and its alternative system

ATy ∈ K∗

1
× · · · ×K∗

r
,

where K1, . . . ,Kr are regular closed convex cones. We show that there
is canonical partition of the index set {1, . . . , r} determined by certain
complementarity sets associated to the most interior solutions to the
two systems. Our results are inspired by and extend the Goldman-
Tucker Theorem for linear programming.

Key words strict complementarity, Goldman-Tucker Theorem, conic fea-
sibility system, multifold conic system

1 Introduction

Assume K ⊆ IRn is a closed convex cone and A ∈ IRm×n. Consider the
homogeneous conic system

Ax = 0, x ∈ K, (P)

and its alternative system
ATy ∈ K∗, (D)
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where K∗ ∈ IRn is the dual of K∗. It is immediate that any solutions x̄
and ȳ to (P) and (D) respectively are complementary, that is, they satisfy
ȳT(Ax̄) = 0. In particular, if either (P) or (D) has a strict feasible solution,
then the other one only has trivial solutions. In the special case when
K = IRn

+, a stronger related property holds. As a consequence of Goldman-
Tucker Theorem [3], there always exist solutions x̄ and ȳ to (P) and (D)
respectively such that x̄+ATȳ ∈ IRn

++. Such pairs of strictly complementary
solutions are associated to a canonical partition B ∪N = {1, . . . , n} of the
index set {1, . . . , n} (see Proposition 1 below). The partition sets B and
N correspond to the most interior solutions to (P) and (D) respectively.
Furthermore, there is a nice geometric interpretation of the sets B,N (see
Proposition 2 below).

We present a generalization of the above strict complementary results
to more general conic systems. To that end, we consider the case when the
cone K is the direct product of r lower-dimensional regular closed convex
cones. That is, we assume

K = K1 × · · · ×Kr, (1)

where Ki ⊆ IRni is a regular closed convex cone for i = 1, . . . , r. Throughout
the sequel we shall use I to denote the set I = {1, . . . , r} and n to denote
the dimension n =

∑r
i=1 ni.

Following the terminology introduced in [2] we call the conic systems
(P) and (D) multifold when the cone K is as in (1). This type of multifold
structure is common in optimization. Formulations for linear programming
(LP), second-order conic programming (SOCP) and semidefinite program-
ming (SDP) problems generally lead to feasibility problems of this form.
Our first main result (Theorem 1) shows that there are some canonical sub-
sets B,N and B0, N0 of I associated to certain geometric properties of the
problems (P) and (D). These sets generalize the partition sets B,N in the
case K = IRn

+. Our second main result (Theorem 2) shows that there exists
a unique canonical partition of the index set I associated to the most interior
solutions to (P) and (D).

The paper is organized as follows. Section 2 provides the foundation for
our work, namely the existence of strictly complementary solutions to (P),
(D) when K = IRn

+. Section 3 presents our main results, namely Theorem 1
and Theorem 2. Section 4 discusses in more detail the special case of second-
order conic systems. Section 5 concludes the paper with some final remarks.
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2 Strict Partition for Polyhedral Homogeneous Sys-

tems

To motivate and state our main results, we first consider the special case
when K = IRn

+ in (P), (D). In this case the conic systems become

Ax = 0, x ≥ 0; (2)

and
ATy ≥ 0, (3)

where A ∈ IRm×n. This can be considered as a special case of a multifold
conic system with r = n and Ki = IR+ in (1). Hence throughout this section
we have I = {1, . . . , n}. Furthermore, for notational convenience, we shall
write A =

[

a1 · · · an
]

∈ IRm×n. In other words, ai ∈ IRn is the i-th
column of A. The following result is a consequence of the Goldman-Tucker
Theorem for linear programming [3].

Proposition 1. Consider the pair of feasibility problems (2) and (3) for a
given A ∈ IRm×n. For a unique partition B ∪N = I of the index set I there
exist solutions x̄ to (2) and ȳ to (3) satisfying

x̄B > 0, AT
N ȳ > 0,

where we have used the standard notation: x̄B > 0 means x̄i > 0 for all
i ∈ B, and AT

N ȳ > 0 means aTi ȳ > 0 for all i ∈ N .

The partition sets B,N in Proposition 1 can be described is several ways.
The three descriptions of B,N displayed in Proposition 2 below lay the
foundation for our main work. In the sequel we use the following convenient
notation. For a convex cone C ⊆ IRd, let Lin (C) ⊆ IRd denote the lineality
space of C, that is, the largest linear subspace contained in C. Observe that
because C is a convex cone, Lin (C) = {x |x,−x ∈ C}.

Proposition 2. The sets B,N in Proposition 1 can be described as

B = {i ∈ I | ∃x : Ax = 0, x ≥ 0, xi > 0},

N = {i ∈ I | ∃ y : ATy ≥ 0, aTi y > 0}.
(4)

These sets can also be described as

B = {i ∈ I |ATy ≥ 0 ⇒ aTi y = 0},

N = {i ∈ I | Ax = 0, x ≥ 0 ⇒ xi = 0}.
(5)
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And they can also be described as

B = {i ∈ I | ai ∈ Lin (AIRn
+)},

N = {i ∈ I | ai 6∈ Lin (AIRn
+)}.

(6)

The description (6) of the sets B,N has an interestcolorreding geometric
interpretation. What determines if a particular index i belongs to B or N
is whether the corresponding i-th column ai lies in the lineality space of
the cone AIRn

+. This geometric interpretation has an interesting extension
to multifold conic systems as Theorem 1 below shows. Proposition 2 is a
consequence of Farkas Lemma and is also a special case of Theorem 1 below.

3 A Canonical Partition for Multifold Conic Sys-

tems

Consider now the general conic systems (P), (D) where A ∈ IRm×n and
the cone K ⊆ IRn is as in (1). For notational convenience, write A =
[

A1 · · · Ar

]

, where Ai ∈ IRm×ni is the i-th block of the matrix A.
Our main results generalize Proposition 1 and Proposition 2 to multifold

conic systems. Motivated by (4), define

B = {i ∈ I | ∃x : Ax = 0, x ∈ K, xi ∈ intKi},

N = {i ∈ I | ∃ y : ATy ∈ K∗, AT
i y ∈ intK∗

i }.
(7)

Likewise, motivated by (5), define

B0 = {i ∈ I |ATy ∈ K∗ ⇒ AT
i y = 0},

N0 = {i ∈ I |Ax = 0, x ∈ K ⇒ xi = 0}.
(8)

We are now ready to state our main results. The following theorem
establishes a characterization of the index sets B,B0, N,N0 in terms of the
geometry of the sets AK and AiKi. In the statement below, AK denotes
the closure of AK.

Theorem 1. (i) The sets B, N defined in (7) can also be described as

B = {i ∈ I | riAiKi ∩ Lin (AK) 6= ∅},

N = {i ∈ I |Ai(Ki \ {0}) ∩ Lin (AK) = ∅}.
(9)
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(ii) The sets B0, N0 defined in (8) can also be described as

B0 = {i ∈ I | riAiKi ∩ Lin (AK) 6= ∅},

N0 = {i ∈ I |Ai(Ki \ {0}) ∩ Lin (AK) = ∅}.
(10)

To ease exposition, we defer the proof of Theorem 1 to the end of this
Section.

Observe that in the case when K is a polyhedral cone, we have AK =
AK. Thus for K polyhedral Theorem 1 yields B = B0 and N = N0. In
particular Proposition 2 readily follows from Theorem 1.

The next theorem generalizes Proposition 1. It shows that there is a
unique canonical partition of the index set I into six complementarity sub-
sets of indices.

Theorem 2. For a unique partition B ∪ B′ ∪ N ∪ N ′ ∪ C ∪ O = I of the
index set I the following three properties hold:

(i) There exists a solution x̄ to (P) such that

x̄i ∈ intK for all i ∈ B and xi 6= 0 for all i ∈ B′ ∪ C,

(ii) There exists a solution ȳ to (D) such that

AT
i ȳ ∈ intK∗

i for all i ∈ N, and AT
i ȳ 6= 0 for all i ∈ N ′ ∪ C.

(iii) For any solutions x to (P) and y to (D) we have

xi = 0 for all i ∈ N ′ ∪N ∪O and AT
i y = 0 for all i ∈ B ∪B′ ∪O.

Proof. Take B,N and B0, N0 as in (7) and (8) respectively, and let

B′ := B0 \(B∪N0); N ′ = N0 \(N ∪B0); O = B0∩N0; C = I \(B0∪N0).
(11)

The sets B,B′, C,N,N ′, O comprise a partition of I because by Theorem 1
B ⊆ B0, N ⊆ N0, and also B ∩N0 = N ∩B0 = ∅.

We next prove part (i). By Theorem 1(ii), for every i /∈ N0 there exists

a solution x(i) to (P) such that x
(i)
i ∈ Ki \ {0}. Hence xN0

=
∑

i∈I\N0
x(i) is

solution to (P) and for every i /∈ N0 we have xi 6= 0 (since Ki is pointed). By
the definition of B, for each i ∈ B there exists a solution x̄(i) to (P) such that

x
(i)
i ∈ intKi. Then xB =

∑

i∈B x(i) is solution to (P) and (xB)i ∈ intKi (by
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[4, Lemma A.2.1.6]). Therefore, again by the pointedness of each Ki and
by [4, Lemma A.2.1.6], the point x̄ = xB + xN0

is a solution to (P) such
that x̄i ∈ intK for all i ∈ B and xi 6= 0 for all i ∈ B′ ∪ C. An analogous
argument proves part (ii). Part (iii) follows directly from the definition (8)
of B0 = B ∪B′ ∪O and N0 = N ∪N ′ ∪O.

The uniqueness of the partition is proven as follows. First, observe that
if (i) and (ii) hold, then by construction B,N must be as in (7). Likewise
if (iii) holds, then B0, N0 must be as in (8). Therefore if (i), (ii), and (iii)
hold, the sets B,B′, C,N,N ′, O must be as in (11).

The Venn diagram representing the relations between the subsets of B,
B′, N , N ′, C and O of I is given in Fig. 1. In Section 5.1 we provide

Figure 1: Partition of I into six disjoint sets based on B, N , B0 and N0

an example of a second-order conic programming problem for which all six
sets are nonempty. It should be noted that a six-set partition for second-
order conic programs similar to the one suggested here was mentioned in [1,
Section 6]. However, there was no prior characterization of this partition
along the lines of Theorem 1.

We conclude this section with the proof of Theorem 1. Our proof relies
on the following separation lemma. Although this result is likely known, we
were not able to locate it in the literature in this exact form.

Lemma 1. Let K1,K2 ⊆ IRn be closed convex cones such that K1∩K2 = {0}
and Lin (K2) = {0}. Then K1 and K2 can be strictly separated in the
following sense. There exists s ∈ IRn such that

〈s, y〉 ≤ 0 ∀y ∈ K1, 〈s, y〉 > 0 ∀y ∈ K2 \ {0}. (12)
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Proof. Let C := {x ∈ K2 | ‖x‖ = 1}. Since K2 is closed and LinK2 = {0},
the set co C is compact and 0 /∈ co C. In particular K1 ∩ co C = ∅. Hence,
by [4, Corol. A.4.1.3], there exists a point s ∈ IRn such that

sup
y∈K1

〈s, y〉 < min
y∈co C

〈s, y〉. (13)

Since 0 ∈ K1 we have supy∈K1
〈s, y〉 ≥ 〈s, 0〉 = 0. Thus from (13) and the

fact that K1 is a cone it follows that

sup
y∈K1

〈s, y〉 = 0 < min
y∈C

〈s, y〉,

and (12) readily follows.

Proof of Theorem 1.

(i) We first show B ⊇ {i ∈ I | riAiKi ∩ Lin (AK) 6= ∅}. Assume i ∈
I is such that ri (AiKi) ∩ Lin (AK) 6= ∅. By [4, Prop. A.2.1.12],
ri (AiKi) = Ai(riKi) = Ai(intKi). Hence there exists x̄i ∈ intKi such
that Aixi ∈ Lin (AK). Thus −Aixi = Ax′ for some x′ ∈ K. Let
x ∈ K be defined by putting xj = x′j for j 6= i and xi = x′i+ x̄i. By [4,
Lemma A.2.1.6], it follows that x is a solution to (P) and xi ∈ intKi.
Thus i ∈ B.

Next, we show B ⊆ {i ∈ I | riAiKi ∩ Lin (AK) 6= ∅}. Assume i ∈ B.
Hence there exists x ∈ K such that xi ∈ intKi = riKi and Ax = 0.
By [4, Prop. A.2.1.12],

Aixi ∈ riAiKi. (14)

Let x′ ∈ IRn be defined by putting x′j = 0 for j 6= i and x′i = xi. We
have x̄ = x− x′ ∈ K and so −Aixi = Ax̄ ∈ AK. But Aixi ∈ AiKi ⊂
AK as well, therefore

Aixi ∈ Lin (AK). (15)

From (14) and (15) we have riAiKi ∩ Lin (AK) 6= ∅.

Now we show N ⊇ {i ∈ I |Ai(Ki \{0})∩Lin (AK) = ∅}. Assume i ∈ I
is such that Ai(Ki \ {0}) ∩ Lin (AK) = ∅. Since AiKi ⊆ AK, this
yields

Lin (AiKi) = {0} and −Ai(Ki \ {0}) ∩ AK = ∅.

Therefore by Lemma 1 applied to K1 = AK and K2 = −AiKi,
there exists a nonzero y ∈ IRm such that yTAx ≥ 0 ∀x ∈ K and
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yT(−Aixi) < 0 ∀xi ∈ Ki \ {0}. In particular, y is a solution to (D)
and AT

i y ∈ intK∗
i .

Next we show N ⊆ {i ∈ I |Ai(Ki \ {0}) ∩ Lin (AK) = ∅}. To that
end, we show the contrapositive. Assume i ∈ I is such that Ai(Ki \
{0}) ∩ Lin (AK) 6= ∅. Then there exists xi ∈ Ki \ {0} such that
Aixi,−Aixi ∈ AK. Hence for any solution y to (D) we have yTAixi ≥
0 and yT(−Aixi) ≥ 0 so yTAixi = 0. Since xi ∈ Ki \ {0}, this
implies that AT

i y 6∈ intK∗
i . Consequently i 6∈ N .

(ii) We first show B0 ⊇ {i ∈ I : riAiKi ∩ Lin (AK) 6= ∅}. Assume that
riAiKi ∩ Lin (AK) 6= ∅. Then by [4, Prop. A.2.1.12] there exists
xi ∈ intKi such that Aixi,−Aixi ∈ AK. Therefore, as in the previous
paragraph, it follows that yTAixi = 0 for any solution y to (D). Since
xi ∈ intKi, this implies that AT

i y = 0 for any solution y to (D). Thus
i ∈ B0.

We next show B0 ⊆ {i ∈ I : riAiKi ∩ Lin (AK) 6= ∅}. Assume i ∈ B0.
Then for all solutions y to (D) and all xi ∈ Ki we have (Aixi)

Ty = 0.
Thus Aixi,−Aixi ∈ AK for all xi ∈ Ki, and hence AiKi ⊂ Lin (AK).

We now show N0 ⊇ {i ∈ I : Ai(Ki\{0})∩Lin (AK) = ∅}. To that end,
we show the contrapositive. Assume i ∈ I is such that there exists a
solution x to (P) with xi 6= 0. Since −Aixi =

∑

j 6=iAjxj ∈ AK, we
have Aixi,−Aixi ∈ AK with xi 6= 0. Hence Aixi ∈ Ai(Ki \ {0}) ∩
Lin (AK).

We finally show N0 ⊆ {i ∈ I : Ai(Ki \ {0}) ∩ Lin (AK) = ∅}. Again
we show the contrapositive. Assume i ∈ I is such that Ai(Ki \ {0}) ∩
Lin (AK) 6= ∅. Then there exists xi ∈ Ki\{0} such that Aixi,−Aixi ∈
AK. In particular, for some x′ ∈ K we have −Aixi = Ax′. Then the
point x̄ ∈ K defined by putting x̄j = x′j for j 6= i and x̄i = x′i + xi is a
solution to (P) with x̄i 6= 0 (because Ki is pointed).

4 Second-Order Conic Systems

Consider the special case when the cone K in (P),(D) is a cartesian product
of Lorentz cones. In other words,

K = Ln1−1 × · · · × Lnr−1, (16)

8



where
Lni−1 = {(x0, x̄) ∈ IRni |x0 ≥ ‖x̄‖}, i = 1, . . . , r.

Here ‖ · ‖ is the Euclidean norm in IRni . We shall put, by convention, L0 =
IR+ when ni = 1. Also, for d ≥ 1 we will let IBd ⊆ IRd denote the Euclidean
closed unit ball in IRd centered at zero.

For each i ∈ I assume the i-th block Ai ∈ IRm×ni of A is of the form

A =
[

Ai0 Āi

]

, Ai0 ∈ IRm, Āi ∈ IRm×(ni−1).

In other words, Ai0 denotes the first column of Ai, and Āi denotes the block
of remaining ni − 1 columns. Put

Ei =

{

Ai0 + ĀiIBni−1, if ni > 1,
Ai0, if ni = 1.

(17)

Observe that AK = cone co i∈I{Ei}. Theorem 1 can now be stated in a way
that more closely resembles (6) in Proposition 2.

Proposition 3. Consider the pair of multifold conic systems (P), (D). As-
sume K is as in (16) and Ei, i ∈ I are as in (17). Then

(i) The sets B, N defined in (7) satisfy

B = {i ∈ I | riEi ∩ Lin (AK) 6= ∅},

N = {i ∈ I |Ei ∩ Lin (AK) = ∅}.

(ii) The sets B0, N0 defined in (8) satisfy

B0 = {i ∈ I | riEi ∩ Lin (AK) 6= ∅},

N0 = {i ∈ I |Ei ∩ Lin (AK) = ∅}.

Proof. This readily follows from Theorem 1 and the construction of the sets
Ei, i ∈ I.

We now discuss an example of a second-order feasibility system where
all six sets B,N,B′, N ′, C,O in the partition of Theorem 2 are nonempty.

Example 1. Let K = IR+ × IR+ × IR+ × L1 × L1 × L3 ⊆ IR11 and

A =





1 0 0 1 0 1 1 0 1 0 0
0 1 0 0 0 −1 0 0 0 1 0
0 0 1 1 1 0 0 1 0 0 1



 .
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In this case,

E1 = {(1, 0, 0)}, E2 = {(0, 1, 0)}, E3 = {(0, 0, 1)}, E4 = co {(1, 0, 0), (1, 0, 2)},

E5 = co {(0,−1, 0), (2,−1, 0)}, E6 = {(0, 0, 1)} + IB3.

Thus

AK = {(x, y, z) ∈ IR3 | z > 0} ∪ {(x, y, z) ∈ IR3 | z = 0, x ≥ 0},

AK = {(x, y, z) ∈ IR3 | z ≥ 0},

and
Lin (AK) = {0} × IR× {0}; Lin (AK) = IR× IR× {0}.

Figure 2 shows the sets Lin (AK),Lin (AK), E1, . . . , E6.

Figure 2: Geometric interpretation of the partition in Example 1

From Proposition 3 we readily get

B = {2}, N = {3}, B0 = {1, 2, 5}, N0 = {1, 3, 4}.

Hence in this case the partition sets of Theorem 2 are

O = {1}, B = {2}, N = {3}, N ′ = {4}, B′ = {5}, C = {6}.

We note that in this small example the systems Ax = 0, x ∈ K and
ATy ∈ K can be solved directly. We obtain the following parametric families
of solutions to (P) and (D) respectively:

x = (0, λ, 0, 0, 0, λ,−λ, µ, 0, 0,−µ), λ ≥ 0, µ ≥ 0;
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and
y = (0, 0, γ) , γ ≥ 0.

The correctness of the partition O = {1}, B = {2}, N = {3}, N ′ =
{4}, B′ = {5}, C = {6} can then be directly verified.

5 Some Final Remarks

5.1 Geometric interpretation of Theorem 1

Proposition 3 can be stated in a form that holds more generally. Consider
the general multifold systems (P), (D). Assume K is as in (1) where each
Ki ⊆ IRni , i ∈ I is regular. Furthermore, assume Bi be a compact convex
subset of Ki such that 0 /∈ Bi and Ki = coneBi for i ∈ I. Put

Ei = AiBi, i ∈ I. (18)

Observe that AK = cone co i∈I{Ei}. Theorem 1 can now be stated as
follows.

Theorem 3. Consider the pair of multifold conic systems (P), (D). Assume
K is as in (1) and Ei, i ∈ I are as in (18). Then

(i) The sets B, N defined in (7) satisfy

B = {i ∈ I | riEi ∩ Lin (AK) 6= ∅},

N = {i ∈ I |Ei ∩ Lin (AK) = ∅}.

(ii) The sets B0, N0 defined in (8) satisfy

B0 = {i ∈ I | riEi ∩ Lin (AK) 6= ∅},

N0 = {i ∈ I |Ei ∩ Lin (AK) = ∅}.

Remark 1. The alternate descriptions for the sets B,B0 in Theorem 3 can
also be stated as follows.

riEi ∩ Lin (AK) 6= ∅ ⇔ riEi ⊆ Lin (AK),

riEi ∩ Lin (AK) 6= ∅ ⇔ riEi ⊆ Lin (AK).

11



5.2 Some observations on polyhedral systems

While for the polyhedral feasibility problem strict complementarity always
holds (Proposition 1), one might ask: what happens if each lower-dimensional
cone in a multifold system is itself a product of nonnegative orthants? Since
a linear image of a polyhedral set is closed, from Theorem 2 it follows that
B = B0 and N = N0. Hence, we have only three possible complementar-
ity sets: B, N and C = I \ (B ∪ N). Any problem with both B and N
nonempty could alternatively be considered as a multifold problem with a
single cone. In this case its only index would be in C. Therefore, there are
polyhedral systems with nonempty C. However, for any polyhedral system
the partition sets B′, N ′ and O are always empty.
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