Skip to main content
Log in

Explicit convex and concave envelopes through polyhedral subdivisions

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we derive explicit characterizations of convex and concave envelopes of several nonlinear functions over various subsets of a hyper-rectangle. These envelopes are obtained by identifying polyhedral subdivisions of the hyper-rectangle over which the envelopes can be constructed easily. In particular, we use these techniques to derive, in closed-form, the concave envelopes of concave-extendable supermodular functions and the convex envelopes of disjunctive convex functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Khayyal F.A., Falk J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8, 273–286 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balas E., Mazzola J.B.: Nonlinear 0-1 programming: I. Linearization Tech. Math. Program. 30, 1–21 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao X., Sahinidis N.V., Tawarmalani M.: Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs. Optim. Methods Softw. 24, 485–504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belotti P., Lee J., Liberti L., Margot F., Waechter A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24, 597–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benson H.P.: Concave envelopes of monomial functions over rectangles. Naval Res. Logist. 51, 467–476 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Busygin S., Prokopyev O.A., Pardalos P.M.: Feature selection for consistent biclustering via fractional 0-1 programming. J. Comb. Optim. 10, 7–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ceria S., Soares J.: Convex programming for disjunctive convex optimization. Math. Program. 86, 595–614 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coppersmith, D., Günlük, O., Lee, J., Leung, J.: A polytope for a product of real linear functions in 0/1 variables. IBM Research Report (2003)

  9. Crama Y.: Recognition problems for special classes of polynomials in 0-1 variables. Math. Program. 44, 139–155 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crama Y.: Concave extensions for nonlinear 0-1 maximization problems. Math. Program. 61, 53–60 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schoenheim, J. (eds.) Combinatorial Structures and Their Applications, pp. 69–87, Gordan and Breach (1970)

  12. Grötschel M., Lovász L., Schrijver A.: Geometric Algorithms and Combinatorial Optimization. Princeton Mathematical Series. Springer, Berlin (1988)

    Book  Google Scholar 

  13. Hardy G., Littlewood J., Pólya G.: Inequalities. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  14. Hiriart-Urruty C., Lemaréchal J.-B.: Fundamentals of Convex Analysis. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  15. Hock W., Schittkowski K.: Test Examples for Nonlinear Programming Codes. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  16. Horst R., Tuy H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  17. Lee, C.W.: Subdivisions and triangulations of polytopes. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, Chap. 14, CRC Press, Boca Raton (1997)

  18. Linderoth J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103, 251–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. LINDO Systems Inc.: LINGO 11.0 optimization modeling software for linear, nonlinear, and integer programming. Available at http://www.lindo.com (2008)

  20. Lovász L.: Submodular functions and convexity. In: Grötschel, M., Korte, B. (eds) Mathematical Programming: The State of the Art., pp. 235–257. Springer, Berlin (1982)

    Google Scholar 

  21. McCormick G.P.: Computability of global solutions to factorable nonconvex programs: part I—Convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meyer C.A., Floudas C.A.: Convex envelopes for edge-concave functions. Math. Program. 103, 207–224 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nemhauser G.L., Wolsey L.A.: Integer and Combinatorial Optimization. Wiley-interscience Series in Discrete Mathematics and Optimization. Wiley, Newyork (1988)

    Google Scholar 

  24. Richard J.-P.P., Tawarmalani M.: Lifted inequalities: a framework for generating strong cuts for nonlinear programs. Math. Program. 121, 61–104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rikun A.D.: A convex envelope formula for multilinear functions. J. Glob. Optim. 10, 425–437 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar R.T.: Convex Analysis. Princeton Mathematical Series. Princeton University Press, Princeton (1970)

    Google Scholar 

  27. Rodrigues, C.-D., Quadri, D., Michelon, P., Gueye, S.: A t-linearization scheme to exactly solve 0-1 quadratic knapsack problems. In: Proceedings of the European Workshop on Mixed Integer Programming, pp. 251–260. CIRM, Marseille, France (2010)

  28. Ryoo H.S., Sahinidis N.V.: Analysis of bounds of multilinear functions. J. Glob. Optim. 19, 403–424 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schrijver A.: Theory of Linear and Integer Programming. Chichester, New York (1986)

    MATH  Google Scholar 

  30. Schrijver A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  31. Sherali H.D.: Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets. Acta Math. Vietnam. 22, 245–270 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Sherali H.D., Wang H.: Global optimization of nonconvex factorable programming problems. Math. Program. 89, 459–478 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stubbs R., Mehrotra S.: A branch-and-cut method for 0-1 mixed convex programming. Math. Program. 86, 515–532 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tardella F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2, 363–375 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tawarmalani, M.: Polyhedral Basis and Disjunctive Programming. Working paper (2005)

  36. Tawarmalani, M.: Inclusion Certificates and Simultaneous Convexification of Functions. Math. Program. (2010, submitted)

  37. Tawarmalani M., Richard J.-P.P., Chung K.: Strong valid inequalities for orthogonal disjunctions and bilinear covering sets. Math. Program. 124, 481–512 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tawarmalani M., Sahinidis N.V.: Semidefinite relaxations of fractional programs via novel convexification techniques. J. Glob. Optim. 20, 137–158 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tawarmalani M., Sahinidis N.V.: Convex extensions and envelopes of lower semi-continuous functions. Math. Program. 93, 247–263 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tawarmalani M., Sahinidis N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  41. Tawarmalani M., Sahinidis N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tawarmalani M., Sahinidis N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Topkis D.M.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Tawarmalani.

Additional information

The work was supported by NSF CMMI 0900065 and 0856605.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawarmalani, M., Richard, JP.P. & Xiong, C. Explicit convex and concave envelopes through polyhedral subdivisions. Math. Program. 138, 531–577 (2013). https://doi.org/10.1007/s10107-012-0581-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0581-4

Mathematics Subject Classification

Navigation