Skip to main content
Log in

Stability analysis of stochastic programs with second order dominance constraints

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we present a stability analysis of a stochastic optimization problem with stochastic second order dominance constraints. We consider a perturbation of the underlying probability measure in the space of regular measures equipped with pseudometric discrepancy distance (Römisch in Stochastic Programming. Elsevier, Amsterdam, pp 483–554, 2003). By exploiting a result on error bounds in semi-infinite programming due to Gugat (Math Program Ser B 88:255–275, 2000), we show under the Slater constraint qualification that the optimal value function is Lipschitz continuous and the optimal solution set mapping is upper semicontinuous with respect to the perturbation of the probability measure. In particular, we consider the case when the probability measure is approximated by an empirical probability measure and show an exponential rate of convergence of the sequence of optimal solutions obtained from solving the approximation problem. The analysis is extended to the stationary points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The property is also known as calmness of \({\vartheta }\) at \(P\), see Section F in [34, Chapter 8] for general discussions on calmness.

References

  1. Artstein, Z., Vitale, R.A.: A strong law of large numbers for random compact sets. Ann. Probab. 3, 879–882 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artstein, Z., Wets, R.J.-B.: Multivar. Anal. Approximating the integral of a multifunction 24, 285–308 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Birge, J.R., Qi, L.: Subdifferential convergence in stochastic programs. SIAM J. Optim. 5, 436–453 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    MATH  Google Scholar 

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  6. Dai, L., Chen, C.H., Birge, J.R.: Convergence properties of two stage stochastic programming. J. Optim. Appl. 106, 489–509 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dentcheva, D., Henrion, R., Ruszczynski, A.: Stability and sensitivity of optimization problems with first order stochastic dominance constraints. SIAM J. Optim. 18, 322–333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dentcheva, D., Ruszczyński, A.: Optimization with stochastic dominance constraints. SIAM J. Optim. 14, 548–566 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dentcheva, D., Ruszczyński, A.: Semi-infinite probabilistic constraints: optimality and convexification. Optimization 53, 583–601 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dentcheva, D., Ruszczyński, A.: Optimality and duality theory for stochastic optimization with nonlinear dominance constraints. Math. Program. 99, 329–350 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dentcheva, D., Ruszczyński, A.: Portfolio optimization with stochastic dominance constraints. J. Banking Finance 30, 433–451 (2006)

    Article  Google Scholar 

  12. Dentcheva, D., Ruszczyński, A.: Composite semi-infinite optimization. Control Cybern. 36, 1–14 (2007)

    Google Scholar 

  13. Gugat, M.: Error bounds for infinite systems of convex inequalities without Slater’s condition. Math. Program. Ser. B 88, 255–275 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henrion, R., Römisch, W.: Metric regularity and quantitative stability in stochastic programs with probabilistic constraints. Math. Program. 84, 55–88 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Henrion, R., Römisch, W.: Hölder and lipschitz stability of solution sets in programs with probabilistic constraints. Math. Program. 100, 589–611 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Homen-De-Mello, T.: On rates of convergence for stochastic optimization problems under non-independent and identically distributed sampling. SIAM J. Optim. 19, 524–551 (2008)

    Article  MathSciNet  Google Scholar 

  17. Homem-de-Mello, T., Mehrotra, S.: A cutting surface method for uncertain linear programs with polyhedral stochastic dominance constraints. SIAM J. Optim. 20, 1250–1273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hiai, F.: Convergence of conditional expectations and strong law of large numbers for multivalued random variables. Trans. Am. Math. Soc. 291, 613–627 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, J., Homem-de-Mello, T., Mehrotra, S.: Sample average approximation for stochastic dominance constrained programs. Math. Program. 133, 171–201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klatte, D.: On the Stability of Local and Global Optimal Solutions in Parametric Problems of Nonlinear Programming, Part I: Basic Results, Seminarbericht Nr. 75, Sektion Mathematik, pp. 1–21. Humboldt-Universität zu Berlin, Berlin (1985)

    Google Scholar 

  21. Klatte, D.: A Note on Quantitative Stability Results in Nonlinear Optimization, Seminarbericht Nr. 90, Sektion Mathematik, pp. 77–86. Humboldt-Universität zu Berlin, Berlin (1987)

    Google Scholar 

  22. Levy, H.: Stochastic dominance and expected utility: survey and analysis. Manag. Sci. 38, 555–593 (1992)

    Article  MATH  Google Scholar 

  23. Liu, Y., Xu, H., Lin, G.-H.: Stability analysis of two stage stochastic mathematical programs with complementarity constraints via NLP-regularization. SIAM J. Optim. 21, 609–705 (2011)

    MathSciNet  Google Scholar 

  24. Meskarian, R., Xu, H., Fliege, J.: Numerical methods for stochastic programs with second order dominance constraints with applications to portfolio optimization. Eur. J. Oper. Res. 216, 376–385 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Molchanov, I., et al.: Theory of random sets. In: Gani, J. (ed.) Probability and Its Applications. Springer, Berlin (2005)

    Google Scholar 

  26. Müller, A., Scarsini, M. (eds.): Stochastic Orders and Decision Under Risk. Institute of Mathematical Statistics, Hayward (1991)

    Google Scholar 

  27. Polak, E.: On the mathematical fondations of nondifferentiable optimization in engineering design. SIAM Rev. 29, 21–89 (1987)

    Article  MathSciNet  Google Scholar 

  28. Price, C.J., Cooper, I.D.: An exact penalty function algorithm for semi-infinite programmes. BIT Numer. Math. 30, 723–734 (1990)

    Article  MATH  Google Scholar 

  29. Rachev, S.T., Römisch, W.: Quantitative stability in stochastic programming: the method of probability metrics. Math. Oper. Res. 27, 792–818 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Robinson, S.M.: An application of error bounds for convex programming in a linear space. SIAM J. Cont. Optim. 13, 271–273 (1975)

    Article  MATH  Google Scholar 

  31. Robinson, S.M.: Stability theory for systems of inequalities. Part II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497–513 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Robinson, S.M., Wets, R.J.-B.: Stability in two-stage stochastic programming. SIAM J. Cont. Optim. 25, 1409–1416 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Robinson, S.M.: Analysis of sample-path optimization. Math. Oper. Res. 21, 513–528 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  35. Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, pp. 483–554. Elsevier, Amsterdam (2003)

    Chapter  Google Scholar 

  36. Römisch, W., Schultz, R.: Stability analysis for stochastic programs. Ann. Oper. Res. 30, 241–266 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ruszczyński, A., Shapiro, A.: Stochastic Programming, Handbook in Operations Research and Management Science. Elsevier, Amsterdam (2003)

    Google Scholar 

  38. Shapiro, A.: Asymptotic properties of statistical estimators in stochastic programming. Ann. Stat. 17, 841–858 (1989)

    Article  MATH  Google Scholar 

  39. Shapiro, A.: Quantitative stability in stochastic programming. Math. Program. 67, 99–108 (1994)

    Article  MATH  Google Scholar 

  40. Shapiro, A., Xu, H.: Uniform laws of large numbers for set-valued mappings and subdifferentials of random functions. J. Math. Anal. Appl. 325, 1390–1399 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shapiro, A., Xu, H.: Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation. Optimization 57, 395–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tanaka, Y., Fukushima, M., Ibaraki, T.: A globally convergent SQP method for semi-infinite nonlinear optimization. J. Comput. Appl. Math. 23, 141–153 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu, H.: Uniform exponential convergence of sample average random functions under general sampling with applications in stochastic programming. J. Math. Anal. Appl. 368, 692–710 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, H., Zhang, D.: Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications. Math. Program. 119, 371–401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the two anonymous referees, the associate editor, Tito Homem-de-Mello and Werner Römisch for their valuable suggestions and comments which have significantly helped improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huifu Xu.

Additional information

The work of Yongchao Liu is carried out while he is visiting Huifu Xu in the School of Mathematics, University of Southampton sponsored by China Scholarship Council. It is also supported by the Fundamental Research Funds for the Central Universities (N0.2012TD032) and National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Xu, H. Stability analysis of stochastic programs with second order dominance constraints. Math. Program. 142, 435–460 (2013). https://doi.org/10.1007/s10107-012-0585-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0585-0

Keywords

Mathematics Subject Classification

Navigation