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Abstract

We consider the question of finding deep cuts from a model with two rows of the type PI =
{(x, s) ∈ Z2×Rn

+ : x = f + Rs}. To do that, we show how to reduce the complexity of setting up the
polar of conv(PI) from a quadratic number of integer hull computations to a linear number of integer
hull computations. Furthermore, we present an algorithm that avoids computing all integer hulls. A
polynomial running time is not guaranteed but computational results show that the algorithm runs
quickly in practice.

Keywords Integer Programming, Cutting Planes, Multi-row Cuts

1 Introduction

Cutting plane generation has become an important part of integer programming solvers. It allows one
to automatically strengthen the linear programming relaxation of a given formulation of a mixed-integer
program. Most cutting plane techniques that are implemented and computationally effective deal with
inequalities that are either problem-specific or derived from one-row relaxations of the initial problem. In
recent years however, a renewed interest has developed in generating cuts from several rows of a mixed-
integer program. A recurrent model that has been studied in this framework consists in considering a
subset of the rows of a simplex (optimal) tableau in which one relaxes the nonnegativity of the integer
basic variables and the integrality of the nonbasic variables. This can be seen as a continuous relaxation of
the corner polyhedron introduced by Gomory and Johnson [23, 21, 22]. Andersen, Louveaux, Weismantel
and Wolsey [4] and Cornuéjols and Margot [14] studied the case of two rows and they showed that
the facet-defining inequalities for the convex hull of all mixed-integer solutions of the relaxed model are
intersection cuts obtained from lattice-free polyhedra in R2 with at most four sides. This result has been
generalized to an arbitrary number of rows of the simplex tableau by Borozan and Cornuéjols in [12]
where they show that the facet-defining inequalities are intersection cuts from lattice-free polyhedra in
Rm in general. Many authors have studied variants of the model, considering for example bounds on
nonbasic variables [2] or bounds on basic variables [18, 8, 20]. Some papers also considered the problem
of strengthening the inequalities by considering the integrality of the nonbasic variables, the so-called
lifting problem [17, 13]. This line of research has also generated some theoretical work comparing the
strength of such inequalities with split cuts [5, 10, 16].

Another question that arises in this context regards how to generate and use such cutting planes com-
putationally. Espinoza [19] performed some early experiments, generating cutting planes using three
families of lattice-free polyhedra in Rm. More recently, Dey, Lodi, Tramontani and Wolsey [15] and
Basu, Bonami, Cornuéjols and Margot [9] also tackled the question, by focusing on a particular type
of parametric lattice-free polyhedron in R2. Specifically, both make use of so-called Type-2 triangles,
whose precise shape is determined by a heuristic procedure in [15], while [9] concentrates on the case
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where one of the two considered rows has zero as a right-hand side. In this paper we also consider the
question of how to generate these cuts computationally. However, our approach is different from [19],
[9] and [15] as we do not fix a priori the shape or the type of lattice-free polyhedra used in order to
generate a cut. In particular, consider a model of the type PI = {(x, s) ∈ Z2 × Rn+ : x = f +

∑n
j=1 r

jsj}
with f ∈ R2 \ Z2, rj ∈ R2. We study the separation problem i.e. given (x̂, ŝ) ∈ R2 × Rn+, either show
that (x̂, ŝ) ∈ conv(PI) or provide a valid inequality

∑n
j=1 αjsj ≥ 1 for conv(PI) that separates (x̂, ŝ),

or in other words such that
∑n
j=1 αj ŝj < 1. The separation problem for the 2-row model is known to

be solvable in polynomial time by explicitly writing the polar of conv(PI) [3], but that approach reveals
difficult to apply efficiently in practice. More specifically, the polar system of conv(PI) can be constructed
by considering a set of constraints for every pair of nonbasic variables (i, j). Given (i, j), there is one
constraint in the polar for every vertex of the convex hull of {(x, s) ∈ Z2 × R2

+ : x = f + ris1 + rjs2}.
Constructing the polar therefore requires a quadratic number of two-dimensional integer hull computa-
tions. There are two main results in our paper. Our first result is to show that the complexity of the
polar can be reduced from a quadratic to a linear (in n) number of integer hull computations in order
to perform an exact separation. Our second result is to provide an algorithm that avoids computing
explicitly all integer hulls and hence obtain a method that runs quickly in practice despite having no
guaranteed polynomial running time.

The paper is organized as follows. Section 2 introduces the notation and the main tool to tackle the
separation question, namely the polar system. We then prove the main theorem in this paper, i.e.
that we can reduce the complexity of stating the polar from a quadratic number to a linear number of
constraints (in n). In Section 3, we show how to further reduce the number of constraints by avoiding
to compute explicitly all two-dimensional integer hulls. Finally, Section 4 presents computational results
obtained with an implementation of our algorithm. In particular, we show that cut generation is fast in
practice, and closes a measurable amount of gap on top of one-row intersection cuts, although much of
that gap closure can be achieved with split cuts of the same rank.

2 Reducing the complexity of setting up the polar of conv(PI)

We deal with the MIP problem
min cTx
s.t. Ax = b

x ≥ 0
xj ∈ Z, ∀j ∈ J.

(1)

Consider a basis of the corresponding linear relaxation

xi +
∑
j∈N

aijxj = bi, ∀i ∈ B. (2)

If we select two rows of (2) where the basic variables are required to be integer, relax the nonnegativity of
these two basic variables, and relax the integrality of all nonbasic variables, we obtain the model discussed
by Andersen et al. [4], namely the set PI = {(x, s) ∈ Z2 × Rn+ : x = f +

∑
j∈N sjr

j}. Note that this set
is a relaxation of the initial MIP (1), thus any valid inequality for conv(PI) is also valid for (1). For ease
of presentation, we assume without loss of generality in the rest of the paper that no two vectors ri, rj

are parallel with the same direction, i.e. rj 6= µri for all i, j and µ ≥ 0. We consider the question of the
separation for conv(PI) using its polar, which we now introduce. To do so, we start with some useful
definitions and notation. First, given a pair of indices (i, j), Cij denotes the conic polyhedron with apex
f and two extreme rays ri and rj .

Notation 1. Cij := {x ∈ R2 : x = f + risi + rjsj , si, sj ≥ 0}.

Next, we introduce a notation for the set of all vertices of the integer hull of Cij .

Definition 1. We define Xij as the set of vertices of conv(Cij ∩ Z2).
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Once we fix i and j, every point x ∈ R2 has a unique representation as x = f + risi + rjsj . That
representation is very useful to set up the polar and is defined next.

Definition 2. Let x, ri, rj ∈ R2. We define sxi,j and sxj,i to be such that

x = f + sxi,j r
i + sxj,i r

j .

These values exist and are unique unless ri = νrj , for some ν ∈ R.

Observe that sxi,j , s
x
j,i ≥ 0 if x ∈ Cij . The following definition is similar except that it deals with rays.

Definition 3. Let ri, rj , rk ∈ R2. We define λji,k and λjk,i to be such that

rj = λji,k r
i + λjk,i r

k.

These values exist and are unique unless ri = νrk, for some ν ∈ R.

What we refer to as the polar here is related to the 1-polar in [26] and is defined in more detail in
Appendix A. Let P ⊆ Rn+ be a polyhedron that does not contain 0, and whose recession cone is Rn+. Its
polar Q is the set

Q := {α ∈ Rn : αTx ≥ 1 is a valid inequality for P}. (3)

It is a polyhedron in Rn+ and it has the following property: every extreme point ᾱ of Q is such that
ᾱTx ≥ 1 is a facet-defining inequality for P , and every other facet-defining inequality for P is of the form
β̄Tx ≥ 0 where β̄ is an extreme ray of Q. Furthermore, the polar of the polar is the polyhedron itself, so
a symmetric relationship holds: the facet-defining inequalities of Q are x̄Tα ≥ 1 for every extreme point
x̄ of P , and r̄Tα ≥ 0 where r̄ is an extreme ray of P .

We are now ready to express the polar of conv(PI). The following statements have been proven in [4]:

1. The dimension of conv(PI) is n.

2. The extreme rays of conv(PI) are (rj , ej) for j ∈ N , where ej denotes the jth unit vector.

3. The vertices of conv(PI) take the form:

(x, s) = (f + sjr
j + skr

k, sjej + skek), with x ∈ Xij and s ∈ Rn+.

Note that, since PI is defined with two equality constraints, it can be observed that the x variables are
not needed in the representation. Therefore, if we project conv(PI) onto the space of the s variables,
we easily obtain the full-dimensional polyhedron projs(conv(PI)), whose facet-defining inequalities also
define facets of conv(PI). Every vertex of conv(PI) can be projected onto a vertex of projs(conv(PI)).
Hence, we can formulate the polar Q of projs(conv(PI)) as follows:

Q = { α ∈ Rn : sTα ≥ 1, ∀(x, s) extreme point of conv(PI)

tTα ≥ 0, ∀(r, t) extreme ray of conv(PI)}

or, with our notation,

Q = { α ∈ Rn : sxi,jαi + sxj,iαj ≥ 1, ∀i, j, ∀x ∈ Xij ,
αi ≥ 0, ∀i }.

This allows us to consider the question of separating a point (x∗, s∗), namely either proving that (x∗, s∗) ∈
conv(PI), or finding α∗ ∈ Q such that α∗T s∗ < 1. In order to do so, we need to solve the linear
optimization problem

min s∗Tα
s.t. α ∈ Q. (4)
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Figure 1: Kα is lattice-free while Lα is not Figure 2: Both Lα and Kα are lattice-free, but Kα

is not convex

Observe that (4) is bounded as long as (x∗, s∗) belongs to the linear relaxation of PI , as then s∗ ≥ 0. If
the optimal value of (4) is greater than or equal to 1, this implies that (x∗, s∗) ∈ conv(PI), otherwise the
optimal solution α∗ of (4) yields a violated valid inequality for conv(PI).

While it is possible to optimize over the polar Q, we present an alternative, more compact formulation
Q. Indeed, to set up Q, we need to consider every pair (ri, rj) of rays and compute the vertices of the
integer hull of the cone Cij that they define (i.e. the set Xij). Every such vertex (every point in every
Xij) generates one constraint of Q. On the other hand, we construct Q by considering only pairs of
consecutive rays (ri, ri+1) and their respective Xi,i+1, plus at most n constraints linking the α coefficients
for triples of consecutive rays. More precisely, we consider the set

Q = {α ∈ Rn+ : sxi,i+1αi + sxi+1,iαi+1 ≥ 1, ∀i, ∀x ∈ Xi,i+1, (5)

αi ≤ λii−1,i+1αi−1 + λii+1,i−1αi+1, ∀i : ri ∈ cone(ri−1, ri+1) }, (6)

where the rays are indexed in counter-clockwise order, and modulo n (e.g. r−1 ≡ rn−1). We observe
that the set Q is described by

∑n−1
i=0

∑n−1
j=i+1 |Xij | constraints while Q features at most n+

∑n−1
i=0 |Xi,i+1|

constraints. Theorem 1 shows that optimizing over Q can be done through optimizing over Q.

Theorem 1. Let c ∈ Rn, c > 0, the problem min{cTα : α ∈ Q} and the problem min{cTα : α ∈ Q}
share the same set of optimal solutions.

Before proving Theorem 1 we present some geometric intuition on the result. Let PLP := {(x, s) ∈
R2×Rn+ : x = f+Rs} be the linear relaxation of PI , we define the two-dimensional lattice-free polyhedron
Lα as follows.

Definition 4. Let α ∈ Rn+. The polyhedron Lα is such that its interior is the projection on the plane
(x1, x2) of the points (x, s) ∈ PLP that violate the inequality αT s ≥ 1 :

Lα := {x ∈ R2 : there exists s ∈ Rn+ s.t.(x, s) ∈ PLP and αT s ≤ 1}.

Definition 5. Assume that αi > 0 for all i, we define vi := f + 1
αi
ri.

To simplify the geometric discussion, we assume for the time being that α > 0, which implies that Lα is
bounded, and that the rays {ri} span R2. Observe that Lα = conv({v0, . . . , vn−1}) (see Figure 2). The
geometric intuition behind the constraints of Q is that stating α ∈ Q is equivalent to stating that Lα is
lattice-free. Instead, if we want α ∈ Q, we first consider only the constraints of Q that correspond to
cones formed with consecutive rays. In other words, we state that Kα :=

⋃
i conv({f, vi, vi+1}) is lattice-

free (Figure 1). Note that Kα is not necessarily convex; but we can observe that if it is, then Lα = Kα.
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This motivates the inclusion of the n additional constraints (6) in Q, which enforce the convexity of Kα.
Indeed, for Kα to be nonconvex, there must exist two consecutive triangles whose union is nonconvex,
like conv({f, v0, v1}) and conv({f, v1, v2}) in Figure 1. The n additional constraints enforce that any
vi must be farther from f than the point in the line segment joining vi−1 and vi+1 along the half line
f + cone(ri). In the presence of such constraints, we miss some valid solutions α ∈ Q, i.e. those which
correspond to a nonconvex Kα (Figure 2). However, in every such solution, there is one vi = f + ri/αi
in the interior of Lα, and the cut can be trivially strengthened by decreasing αi until vi is on the border
of Lα.

We prove Theorem 1 by showing that Q is a subset of Q (Lemma 2) and that every optimal solution to
min{cTα : α ∈ Q}, is feasible for Q (Lemma 3). First, we need the following result which shows that
when (6) holds, a similar constraint also holds for non-consecutive rays contained in the same cone. In
other words, it is sufficient to impose convexity constraints on consecutive triangles of Kα in order to
obtain convexity of Kα.

Lemma 1. If, for all j such that rj ∈ cone(rj−1, rj+1),

αj ≤ λjj−1,j+1αj−1 + λjj+1,j−1αj+1,

then for all i, j, k such that rj ∈ cone(ri, rk),

αj ≤ λji,kαi + λjk,iαk.

Proof. We prove it by induction on p := k − i (mod n). If p = 0, p = 1 or p = 2, the result is true by
hypothesis. We now prove that

if ∀i, j, l : 2 ≤ l − i < p (mod n) and rj ∈ cone(ri, rl), αj ≤ λji,lαi + λjl,iαl

then ∀i, j, l : l − i = p (mod n) and rj ∈ cone(ri, rl), αj ≤ λji,lαi + λjl,iαl.

Let j, k be such that rj , rk /∈ {ri, rl}, rj 6= rk and rj , rk ∈ cone(ri, rl). Without loss of generality, we can
assume that rj ∈ cone(ri, rk) and rk ∈ cone(rj , rl), i.e.

rj = λji,kr
i + λjk,ir

k (7)

rk = λkj,lr
j + λkl,jr

l (8)

λji,k, λ
j
k,i, λ

k
j,l, λ

k
l,j ≥ 0 (9)

hence, using (8) in (7),
rj = λji,kr

i + λjk,i(λ
k
j,lr

j + λkl,jr
l)

(1− λjk,iλ
k
j,l)r

j = λji,kr
i + λjk,iλ

k
l,jr

l.

This describes rj in terms of ri and rl, giving, by definition of the λ symbols (Definition 3),

λji,l =
λj

i,k

1−λj
k,iλ

k
j,l

, λjl,i =
λj

k,iλ
k
l,j

1−λj
k,iλ

k
j,l

(10)

and this is well defined because rj ∈ cone(ri, rl).

Since the rays are ordered, rk 6= rl and rk ∈ cone(ri, rl), we know that k − i < p (mod n). Similarly,
l − j < p (mod n). Therefore, we can write, using the induction hypothesis,

αj ≤ λji,kαi + λjk,iαk (11)

αk ≤ λkj,lαj + λkl,jαl (12)

hence, replacing αk in (11) by the right-hand side of (12) and given that λjk,i ≥ 0 in (9), we obtain the
new inequality

αj ≤ λji,kαi + λjk,i(λ
k
j,lαj + λkl,jαl)
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which can be rewritten as
(1− λjk,iλ

k
j,l)αj ≤ λ

j
i,kαi + λjk,iλ

k
l,jαl.

Since λji,l, λ
j
l,i ≥ 0, given their expression in (10), we know that (1− λjk,iλkj,l) ≥ 0 and

αj ≤
λji,k

1− λjk,iλkj,l
αi +

λjk,iλ
k
l,j

1− λjk,iλkj,l
αl

or equivalently, using again the expressions in (10),

αj ≤ λji,lαi + λjl,iαl.

We can prove similarly that αk ≤ λki,lαi + λkl,iαl which concludes the induction for l − i = p.

Lemma 2. Q is a subset of Q.

Proof. Consider α ∈ Rn+ such that α ∈ Q. Some constraints of Q do not belong to the description of Q.
We must prove that they are satisfied. Let x ∈ Cij with j = i + 1 (mod n). We consider all h, k such
that x ∈ Chk. Obviously, Cij ⊆ Chk, thus ri, rj ∈ cone(rh, rk). In particular, using Lemma 1, we have

αi ≤ λih,kαh + λik,hαk (13)

αj ≤ λjh,kαh + λjk,hαk. (14)

Using the description of Q, we also have

sxi,jαi + sxj,iαj ≥ 1. (15)

We now need to prove that sxh,kαh + sxk,hαk ≥ 1.

Using Definition 2, we can express x in terms of f , ri, rj . And since ri, rj ∈ cone(rh, rk), we can use
Definition 3 to express them in terms of rh, rk:

x = f + sxi,jr
i + sxj,ir

j (16)

ri = λih,kr
h + λik,hr

k (17)

rj = λjh,kr
h + λjk,hr

k (18)

hence, using (17)-(18) in (16),

x = f + (sxi,jλ
i
h,k + sxj,iλ

j
h,k) rh + (sxi,jλ

i
k,h + sxj,iλ

j
k,h) rk

which gives an expression of x in terms of rh and rk. Therefore, by Definition 2, sxh,k = sxi,jλ
i
h,k + sxj,iλ

j
h,k

sxk,h = sxi,jλ
i
k,h + sxj,iλ

j
k,h

. (19)

Using (13)-(14) in (15), since sxi,j , s
x
j,i ≥ 0, we obtain

sxi,j(λ
i
h,kαh + λik,hαk) + sxj,i(λ

j
h,kαh + λjk,hαk) ≥ 1

(sxi,jλ
i
h,k + sxj,iλ

j
h,k) αh + (sxi,jλ

i
k,h + sxj,iλ

j
k,h) αk ≥ 1

which, given (19), is equivalent to sxh,kαh + sxk,hαk ≥ 1

Lemma 3. If c > 0, all optimal solutions to min{cTα : α ∈ Q} are feasible for Q.
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Proof. Let α∗ ∈ Q\Q. We want to prove that α∗ is not an optimal solution to min{cTα : α ∈ Q}. Since
α∗ /∈ Q, at least one constraint of Q that is not in Q must be violated by α∗, i.e. there exists i such that

ri ∈ cone(ri−1, ri+1) and α∗i > λii−1,i+1α
∗
i−1 + λii+1,i−1α

∗
i+1

Consider α′ such that

α′j =

{
α∗j , j 6= i

λii−1,i+1α
∗
i−1 + λii+1,i−1α

∗
i+1, j = i.

(20)

We claim that α′ ∈ Q. First, trivially, for all j, k 6= i and x ∈ Xjk,

sxj,kα
′
j + sxk,jα

′
k ≥ 1. (21)

Then, for all k and x ∈ Xik, from Definition 2 and Definition 3, we have

x = f + sxi,k r
i + sxk,i r

k

ri = λii−1,i+1r
i−1 + λii+1,i−1r

i+1

with sxi,k, s
x
k,i, λ

i
i−1,i+1, λ

i
i+1,i−1 ≥ 0, hence

x = f + sxi,kλ
i
i−1,i+1r

i−1 + sxi,kλ
i
i+1,i−1r

i+1 + sxk,ir
k

is a valid representation of x. Thus (x, sxi,kλ
i
i−1,i+1ei−1 +sxi,kλ

i
i+1,i−1ei+1 +sxk,iek) ∈ PI and since α∗ ∈ Q,

it must satisfy

sxi,kλ
i
i−1,i+1α

∗
i−1 + sxi,kλ

i
i+1,i−1α

∗
i+1 + sxk,iα

∗
k ≥ 1

sxi,k(λii−1,i+1α
∗
i−1 + λii+1,i−1α

∗
i+1) + sxk,iα

∗
k ≥ 1

sxi,kα
′
i + sxk,iα

′
k ≥ 1, (22)

the third inequality being obtained because of the construction of α′ in (20). Together, (21) and (22)
prove that α′ ∈ Q. By construction, cTα′ < cTα∗, if c > 0. Therefore α∗ is not optimal.

As a byproduct, the proof of Lemma 3 shows that independently of the objective function c, given
α∗ ∈ Q\Q, there exists α′ ∈ Q which provides coefficients for a cut that strictly dominates the one based
on α∗. This is the reason for requiring c > 0.

Proof of Theorem 1. Lemma 3 shows that all optimal solutions to min{cTα : α ∈ Q} are feasible for Q.
Since Q ⊆ Q (Lemma 2), they correspond to the set of optimal solutions to min{cTα : α ∈ Q}.

Corollary 1. All vertices of Q are vertices of Q.

Proof. For any vertex α∗ of Q, there must exist an objective function c̄ such that α∗ is the unique optimal
solution to min{c̄Tα : α ∈ Q}. For any c such that ci < 0, the problem is unbounded. For any c such
that ci = 0, the optimal solution is not unique. Therefore, all vertices of Q can be obtained by optimizing
over Q with a positive objective function, and Theorem 1 applies.

Theorem 1 does not provide a way to tackle the case where there are zero coefficients in the objective func-
tion c, which may be important since we typically want to separate points that contain zero components.
However, the following corollary holds for any c ≥ 0.

Corollary 2. Given c ≥ 0, any valid inequality αTx ≥ 1 for conv(PI) with α ∈ Q\Q is strictly dominated
by a valid inequality α̂Tx ≥ 1 with α̂ ∈ Q.

Proof. Observe that α can be expressed as α = α̂ + β̂ where α̂ is in the convex hull of the vertices of Q
(thus α̂ ∈ Q by Corollary 1) and β̂ is in the recession cone of Q. As the recession cone of Q is in Rn+, it
follows that β̂ ≥ 0, hence cT α̂ ≤ cTα. Since α /∈ Q, β̂ 6= 0. In other words, α̂ ≤ α and α̂j < αj for some
j.
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3 Separation algorithm

Optimizing over the set Q developed above requires explicit knowledge of the sets Xi,i+1. More precisely,
we should compute, for every cone(ri, ri+1), the vertices of the convex hull of Z2 ∩ (f + cone(ri, ri+1)).
To each of them corresponds one linear constraint of Q. The number of such vertices is polynomial in
the encoding length of (ri, ri+1) [24], and a polynomial-time algorithm for computing them has been
presented in [3].

We adopt a fundamentally different approach that lets us avoid fully computing Xi,i+1 and considering
one linear constraint per point in Xi,i+1. The motivation for this is to keep the linear program that
we optimize over extremely small. In order to do that, we relax the expression of Q, by considering
constraints (5) only for x in small sets Si,i+1 ⊆ Ci,i+1 ∩ Z2 instead of in Xi,i+1. Note that this is indeed
a relaxation since the constraints that correspond to points in (Ci,i+1 ∩ Z2) \ Xi,i+1 are redundant yet
valid for Q. We denote this relaxation by Q(S) ⊇ Q, where S = ∪iSi,i+1.

Q(S) = {α ∈ Rn+ : sxi,i+1αi + sxi+1,iαi+1 ≥ 1, ∀i, ∀x ∈ Si,i+1

αi ≤ λii−1,i+1αi−1 + λii+1,i−1αi+1, ∀i : ri ∈ cone(ri−1, ri+1) }

We then follow a classic row-generation approach summarized in Algorithm 1. First, we initialize S to a
reasonable subset of ∪iXi,i+1. We then optimize over Q(S) and find a solution α. As Q(S) is a relaxation
of Q, α may violate some constraints (5). If we find such a constraint, we add the corresponding point
x to S, and iterate. Otherwise, if no such constraint is violated, α is valid for Q and is thus the desired
optimal solution.

Initialization: S := S0

Step A: ᾱ := argmin{cTα : α ∈ Q(S)}

Step B: Look for x ∈ Z2 such that ᾱ /∈ Q(S ∪ {x})

If no such x exist
ᾱ is optimal for min{cTα : α ∈ Q}, terminate.

Otherwise
S := S ∪ {x}, go back to Step A.

Algorithm 1: Using Q(S) to optimize over Q

This scheme mainly relies on the fact that we possess an oracle that is able to find violated constraints
of Q, or prove that no such constraints exist. We describe such an oracle in this section. Note that
the complexity of the algorithm as it is stated here is undefined, as it depends on the output of the
oracle. Adopting a geometric perspective, we can restate the task of the oracle as follows: Given Q(S),
ᾱ := argmin{cTα : α ∈ Q(S)} and the polyhedron Lᾱ, find x ∈ Z2 ∩ interior(Lᾱ) or prove that no
such points exist. Barvinok [6] presented a polynomial-time algorithm that can solve this problem in
any fixed dimension d, with the vertices of Lᾱ as its only input. However, we proceed otherwise, taking
advantage of our specific two-dimensional setup and our knowledge of the set S. Our proposed oracle
can be summarized as described in Algorithm 2. We detail the procedure in the rest of this section.

Step 1. We define T ⊆ S to be the set of vertices of conv(S ∩ Lᾱ). An example is shown on Figure 3.
After Step A, sxi,jᾱi+s

x
j,iᾱj ≥ 1 for all x ∈ S. Therefore, no such x lies in the interior of Lᾱ, and points in

T must be on the boundary of Lᾱ. We want to check whether conv(T ) is lattice-free. By triangularizing
conv(T ), the problem reduces to finding integer points on line segments and in the interior of triangles
with integer vertices. Both can be solved by elementary modulo calculus. In particular, the number of
integer points in the interior of a triangle conv({0, u, v}), with u, v ∈ Z2, follows directly from Pick’s
formula (see for example [7])

Ninterior = 1 +
det([u|v])− gcd(u1, u2)− gcd(v1, v2)− gcd(v1 − u1, v2 − u2)

2
(23)
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Input: S ⊂ Z2, ᾱ ∈ Q(S)

Step 1: Let T be the set of vertices of conv(S ∩ Lᾱ).
Check whether conv(T ) is lattice-free.

Step 2: Check whether there are integer points
in the relative interior of the edges of conv(T )
that are in the interior of Lᾱ.

Step 3: Assume ᾱ > 0.
Use Theorem 2 to check whether Lᾱ is lattice-free.

Algorithm 2: Oracle for finding integer points in the interior of Lᾱ

Figure 3: T := vertices of conv(S ∩ Lᾱ)

9



Then, knowing that the triangle contains integral points, we find them using the following procedure: If
there are lattice points in the relative interior of two or three edges, we construct an integral point using
integer combinations of these. This point is in the interior of conv(T ) except when there is exactly one
lattice point in the relative interior of each edge, in which case we divide conv(T ) in the 4 sub-triangles
they define, and proceed with one of these sub-triangles, as they all contain the same number of integer
points in their interior. Otherwise, at least two edges contain no lattice points in their relative interior,
and we make use of Lemma 4.

Lemma 4. Let ∆ be a triangle with integer vertices {0, u, v} that has interior lattice points and such
that gcd(u1, u2) = gcd(v1, v2) = 1. ∆ has an interior lattice point w such that w = 1

det([u|v])u+ kv

det([u|v])v

with kv ∈ Z+.

Proof. Any point w in Z2 can be expressed as w = βuu+ βvv, with(
βu
βv

)
=
[
u1 v1

u2 v2

]−1(
w1

w2

)
.

By explicitly developing the matrix inverse, we get βu = ku(w)
det([u|v]) and βv = kv(w)

det([u|v]) , with ku(w) :=
w1v2 − w2v1 and kv(w) := u1w2 − u2w1. Note that ku(w) and kv(w) are the components of w in
the coordinate system defined by u and v, multiplied by det([u|v]), and are thus integral as long as
w is integer. We are looking for a point w in the interior of ∆, i.e. such that ku(w), kv(w) ≥ 1 and
ku(w)+kv(w) ≤ det([u|v])−1. The claim in this Lemma is that such a point exists even when ku(w) is fixed
to 1. We now consider ku(w) = 1 as a Diophantine equation with variables w1, w2, i.e. w1v2 −w2v1 = 1.
Since gcd(v2,−v1) = 1, there exist w̄1, w̄2 ∈ Z such that ku(w̄) = 1, and we could find the value of w̄ using
the Euclidian algorithm. If 1 ≤ kv(w̄) ≤ det([u|v]) − 2, then w̄ is an interior lattice point. Otherwise,
we build the integer point w′ = w̄ + λv, with λ = −bkv(w̄)/det([u|v])c. Observe that ku(w′) = 1
and kv(w′) ∈ {0, 1, . . . ,det([u|v]) − 1}. The point w′ has the desired form and is in the interior of the
triangle ∆ unless kv(w′) = 0 or kv(w′) = det([u|v]) − 1. The first case, kv(w′) = 0, is impossible since
the segment (0, u) does not have lattice points in its relative interior. In the second case, we note that
w′ = 1

det([u|v])u + det([u|v])−1
det([u|v]) v ∈ Z2. By hypothesis, there exists an integer point in the interior of ∆.

Let ŵ = ku( bw)
det([u|v])u + kv( bw)

det([u|v])v be such a point. We know that ku(ŵ), kv(ŵ) ≥ 1 and ku(ŵ) + kv(ŵ) <

det([u|v])). Finally, we build a second point w′′ = ŵ+ (ku(ŵ)− 1)(v−w′) = 1
det([u|v])u+ ku( bw)+kv( bw)−1

det([u|v]) v,
which proves the claim.

Lemma 4 allows us to find an integer point w = 1
det([u|v])u+ kv

det([u|v])v in the interior of ∆ by solving the
Diophantine system {

u1 + kvv1 = k1 det([u|v])
u2 + kvv2 = k2 det([u|v]) , kv, k1, k2 ∈ Z

for kv, choosing the smallest positive solution. This can be done either by three applications of the
Euclidean algorithm or by using the Hermite normal form of the system. In both cases, finding the
smallest positive solution is easy as the set of solutions is a one-dimensional translated lattice.

Step 2. We now assume that conv(T ) is lattice-free, and we check that the relative interior of its edges
does not contain integer points that are in the interior of Lᾱ. Note that since Lᾱ is convex, it is enough
to check one integer point in the relative interior of each edge of conv(T ).

Step 3. We now assume that no integer point was found in the interior of Lᾱ through Steps 1 and 2.
Moreover, we assume that ᾱi > 0 for all i, hence Lᾱ is a polytope; we show in Section 4 how we proceed
if this assumption is not true. We start by showing that Lᾱ is tight at three affinely independent points
in S, or in other words that conv(T ) = conv(S ∩ Lᾱ) is full-dimensional.

Lemma 5. Let ᾱ be a vertex of Q(S). If cone(r1, . . . , rn) = R2 and ᾱ > 0, then S ∩ Lᾱ contains three
affinely independent points.
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Proof. Note that we can assume wlog that for every x ∈ S there exists a unique i such that x ∈ Si,i+1.
Consider now the constraints defining the set Q(S).

sxi,i+1αi + sxi+1,iαi+1 ≥ 1, ∀i, ∀x ∈ Si,i+1 (24)

αi ≤ λii−1,i+1αi−1 + λii+1,i−1αi+1, ∀i : ri ∈ cone(ri−1, ri+1) (25)

αi ≥ 0 ∀i (26)

There are |S| constraints of type (24), n of type (25), and n of type (26), of which a subset of n linearly
independent overall must be tight at ᾱ. Because ᾱ > 0, none of the nonnegativity constraints are tight
for ᾱ. Now observe that vi is a vertex of Lᾱ only if it is not on aff(vi−1, vi+1). In other words, only if
ᾱi 6= λii−1,i+1ᾱi−1 + λii+1,i−1ᾱi+1, i.e. the associated constraint (25) is not tight.

Moreover, if cone(r1, . . . , rn) = R2, then f ∈ interior(Lᾱ). Therefore, Lᾱ is full-dimensional, and has at
least three vertices. This implies that at most n− 3 of the constraints (25) are tight for ᾱ. Equivalently,
we have at least three tight constraints of type (24) for ᾱ. If the corresponding three integer points are
affinely independent, the result follows.

Suppose now that they are on a line. More specifically let W be a collinear set of such tight points, i.e.
W ⊆ S ∩ boundary(Lᾱ) such that |W | ≥ 3 and dim(aff(W )) = 1. Since Lᾱ is convex, all points in W
must belong to a single facet conv(vi, vj) of Lᾱ. Now let us define K as the index set of the rays inside
the corresponding cone, i.e. K := {k : rk ∈ cone(ri, rj)}. Observe that there are at most |K| linearly
independent tight constraints including the variables with indices in K only. Thus, there must be at least
n− |K| linearly independent tight constraints including at least one of the n− |K| remaining variables.
For at least one of these remaining variables, the associated ray supports a vertex of Lᾱ, i.e. there exists
h /∈ K such that vh is a vertex of Lᾱ. Therefore, at least one of the n − |K| remaining constraints (25)
is not tight for ᾱ. It follows that there is at least one additional tight constraint (24), which does not
correspond to a point in W .

As suggested by Lemma 5, we ensure that we have three affinely independent points on the boundary of
Lᾱ by adding artificial rays to PI , as needed, in order to have R2-spanning rays. By using a zero objective
function cost for variables associated to artificial rays, we do not modify the separation problem. Observe
that since conv(T ) is a lattice-free polyhedron in R2 with integer vertices, we know that it has at most
four vertices [25], thus |T | may only be three or four, i.e. conv(T ) is a triangle or a qualidrateral.

Definition 6 summarizes the assumptions we can make in Step 3: we call (T, Lᾱ) checkable if we found
integer points in the interior of Lᾱ neither in Step 1 nor in Step 2.

Definition 6. We call a couple (T, Lᾱ) checkable if

(a) conv(T ) and Lᾱ are full-dimensional convex polytopes in R2,

(b) the vertices of conv(T ) are integral and belong to the boundary of Lᾱ,

(c) conv(T ) is lattice-free,

(d) the integer points in the relative interior of the edges of conv(T ) do not belong to the interior of Lᾱ.

We showed previously that it is easy to verify whether (T, Lᾱ) is checkable. In the remainder of this
section, we show that it is computationally cheap to check whether Lᾱ is lattice-free when (T, Lᾱ) is
checkable. Lemma 6, 7, 8 and 9 cover the four possible cases.

Lemma 6. Let (T, Lᾱ) be checkable and conv(T ) be a lattice-free triangle with exactly one integer point
in the relative interior of each edge. Then Lᾱ is lattice-free.

Proof. conv(T ) is a maximal lattice-free body. Therefore, Lᾱ ⊇ conv(T ) is lattice-free if and only if
Lᾱ = conv(T ). Since the integer points on the edges of conv(T ) are not in the interior of Lᾱ, they are
on its boundary, so Lᾱ = conv(T ).
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Figure 4: One lattice point in the relative interior
of each edge of conv(T ) (Lemma 6)

Figure 5: conv(T ) is a unimodular triangle
(Lemma 7)

Figure 6: One or more lattice points in the rela-
tive interior of one edge of conv(T ) (Lemma 8)

Figure 7: conv(T ) is a quadrilateral (Lemma 9)

Figure 8: The half-plane H in the proof of Lemma 7
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Figure 9: w′ in Lemma 8

Figure 10: Unimodular triangle decomposition in Lemma 9

Lemma 7. Let (T, Lᾱ) be checkable and conv(T ) be a triangle with vertices D, D + u, D + v such that
det([u|v]) = 1. Then Lᾱ is lattice-free if and only if Lᾱ contains neither D + u + v nor D + u − v nor
D + v − u in its interior.

Proof. LetH be the half-plane delimited by the line (D+u,D+v) not containingD (see Figure 8). We first
consider the vertices of Lᾱ that lie in H. Observe that by convexity, they must belong to D+ cone(u, v),
otherwise D+u or D+v would belong to the interior of Lᾱ. Since (u, v) is an integral basis of Z2, there is
no integer point in the interior of conv({D,D+ v}) + cone({u}) or conv({D,D+u}) + cone({v}). Hence,
if the vertices of Lᾱ all lie in conv({D,D + v}) + cone({u}) or all lie in conv({D,D + u}) + cone({v}),
then Lᾱ ∩H is lattice-free. Otherwise, D+ u+ v is in the interior of Lᾱ. By symmetry for the two other
half-planes, the result follows.

Lemma 8. Let (T, Lᾱ) be checkable and conv(T ) be a lattice-free triangle with vertices D, D+ u, D+ v
such that gcd(u1, u2) = gcd(v1, v2) = 1 and gcd(w1, w2) 6= 1, with w = v − u. Then Lᾱ is lattice-free if
and only if Lᾱ contains neither D + w′ nor D − w′ in its interior, with w′ = w

gcd(w1,w2) .

Proof. By convexity, the point D+u+w′ belongs to Lᾱ, but since it is in the relative interior of an edge
of conv(T ), it is not in the interior of Lᾱ. Thus, D + u + w′ is on the boundary of Lᾱ and we consider
the triangle conv({D,D + u,D + u+ w′}). By (23), det([−u,w′]) = 1 and Lemma 7 applies. Therefore,
in that case, Lᾱ is lattice-free if and only if D + w′, D − w′ and D + 2u + w′ do not lie in its interior.
Note that since the line (D + u,D + v) is a facet of Lᾱ, D + 2u+ w′ can not be in Lᾱ.

Lemma 9. Let (T, Lᾱ) be checkable and conv(T ) be a lattice-free quadrilateral. Then Lᾱ is lattice-free.
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Proof. As for Lemma 8, we can decompose conv(T ) in unimodular triangles (Figure 10) and apply
Lemma 7 on one of them. The vertices of this unimodular triangle can be vertices of conv(T ) or integer
points in the relative interior of the edges of conv(T ), belonging in both cases to the boundary of Lᾱ.
One can easily see that the integer points to be verified in Lemma 7 are either on the edges of conv(T )
or trivially not in the interior of Lᾱ, by convexity.

Theorem 2. Let (T, Lᾱ) be checkable and conv(T ) be a 2-dimensional convex polytope of wich D, D+u
and D + v are three vertices. Then Lᾱ is lattice-free if and only if it contains neither D + u′ + v′ nor
D + u′ − v′ nor D + v′ − u′ in its interior, with u′ = u

gcd(u1,u2) and v′ = v
gcd(v1,v2) .

Proof. This follows from Lemma 6, 7, 8 and 9.

The results in this section show that, in Step 3, it is enough to check at most three integer points against
the interior of Lᾱ to verify that Lᾱ is lattice-free.

4 Computations

In this section, we present an implementation of the two-row cut separator described previously and
computational results obtained with it. First, we need to address an issue that was not covered before.

Handling of the case αi = 0. So far, we have only considered the case where Lᾱ is a polytope, i.e.
ᾱi > 0 for all i, while the constraints of Q(S) only ensure ᾱi ≥ 0. Note that if Lᾱ is lattice-free and
unbounded, then it is necessarily a split set. If only one coefficient ᾱh is zero, then we can check that
Lᾱ is inscribed in a split set parallel to rh. If two such coefficients ᾱj and ᾱk are zero, then Lᾱ is not
lattice-free and we can easily construct an integer point f + µjr

j + µkr
k in its interior. However, both

these operations involve computing a rational representation of the rays ri and the point f , which are
usually only available in floating-point form. Besides numerical difficulties, this could yield points with
large coefficients, and that are very “far” from f . Recall that when we find points in Z2 ∩ interior(Lᾱ),
we add them to the set S, whose elements correspond to the constraints of Q that are considered in its
relaxation Q(S). In that context, large coefficients cause numerical instability, and points that are “far”
from f typically correspond to weak (i.e. dominated) constraints of Q.

We tackle this issue in a different way, by imposing positive lower bounds on α, thus ensuring that we
obtain a bounded polyhedron Lᾱ. This can yield problems in case some of these bounds end up tight in
ᾱ, as then the result of Lemma 5 is not guaranteed to hold, i.e. conv(T ) may not be full-dimensional.
If it is full-dimensional nevertheless, then Theorem 2 holds and we can still use the oracle described in
Algorithm 2. Otherwise, as mentioned earlier, we could fall back on verifying that Lᾱ is lattice-free
with the polynomial-time algorithm of Barvinok [6]. But for that case, we instead implement the naive
enumeration that runs in w(Lᾱ) iterations, where

w(Lᾱ) = max{x1 : x ∈ Lᾱ} −min{x1 : x ∈ Lᾱ}.

This is not polynomial in the encoding length of Lᾱ, and potentially much more costly than Algorithm 2,
which is basically O(1) for fixed values of |S| and n. In practice however, it is possible to bound the
number of iterations by suitably choosing the value of the lower bounds on α, for instance αi ≥ |r

i|
K for

some K > 0. Since the vertices of Lᾱ are of the form vi = f + 1
ᾱi
ri, this ensures that Lᾱ is contained

in a disc of radius K centered at f , implying w(Lᾱ) ≤ 2K. In our implementation, K = 500. Note also
that if we fix the value of K, the complexity of Algorithm 1 becomes polynomial, as it performs at most
O(K2) iterations.

Remark that Lᾱ being lattice-free is enough for ᾱT s ≥ 1 to be a valid inequality for PI , but if some
components of ᾱ are at their positive lower bound, then ᾱT s ≥ 1 is not guaranteed to define a facet of

14



conv(PI), as the lower bounds on α are not actual constraints of the polar of conv(PI). For this reason,
whenever we generate a valid inequality having a coefficient αj at lower bound, we consider instead the
intersection cut corresponding to a split set of direction rj , i.e. the lattice-free body Lα = {x ∈ R2 :
bpT fc ≤ pTx ≤ dpT fe} where p ∈ Z2 is an integral vector orthogonal to rj . This is the only facet-defining
inequality for PI having αj = 0, and is hence a solution to min{s∗Tα : α ∈ Q} in this case, if K is
sufficiently large. The computation can fail since pT f may be integral, which is made more likely by the
fact that we must convert (approximately) a floating-point representation of rj into a rational in order
to compute p. If it fails for every such αj at lower bound, then we discard the current cut, so that we
return only facet-defining inequalities.

Computational experiment. Algorithm 3 summarizes the computational experiment performed in
order to measure the practical speed of our method. Given a mixed-integer problem, the algorithm

1 input: a mixed-integer problem P , its linear relaxation PLP
2
3 for r = 1 to RANK MAX (outer loop)
4 Optimize over PLP . Let x∗ be the optimal solution.
5 Compute the optimal simplex tableau.
6 Build up to MODELS MAX two-row models.
7
8 for each row of the simplex tableau,
9 generate the corresponding one-row intersection cut.

10 end for
11 Add the one-row cuts separating x∗ to PLP .
12
13 do (inner loop)
14 Optimize over PLP . Let x∗ be the optimal solution.
15
16 for each two-row model,
17 generate a cut, trying to separate x∗.
18 end for
19 Add the cuts separating x∗ to PLP .
20
21 while at least one cut was added.
22 end for

Algorithm 3: Computational experiment

starts by optimizing over its linear relaxation. In the outer loop, we extract, from the simplex tableau
associated to the current optimal solution x∗, the two-row models to be used for cut generation. In the
inner loop, we separate one inequality with each model and add the cuts that separate x∗ to the linear
relaxation, over which we then reoptimize, yielding a new solution x∗. The inner loop terminates when
no more separating inequality is found. At that point, the next iteration of the outer loop will build
different models based on a new simplex tableau. Observe that at a given iteration of the outer loop, all
the generated inequalities are at most of rank r.

In order to compare two-row inequalities with their single-row counterpart, we compute the one-row
intersection cut associated to each row of the simplex tableau, at every outer loop iteration, before we
start separating two-row inequalities. These cuts are intersection cuts on a one-row relaxation of the
original problem, keeping the integrality constraint only for the corresponding basic variable (i.e. non-
lifted intersection cuts). Note that while much easier to compute, they are a subset of those we can obtain
with our two-row separator.

Although more sophisticated options exist (see e.g. [19, 15, 10, 9]), our method for building the two-row
models is essentially heuristic. We arbitrarily restrict ourselves to reading rows from optimal simplex
tableaux. Our intent is to build models whose constraints have similar supports, while covering all
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CPU: Intel Core i7-990X at 3.47GHz, 6 cores, 12 threads
RAM: DDR3-1333 SDRAM (24Gb)

Compiler: GCC 4.6.3 20120306 (Red Hat 4.6.3-2)
Environment: GNU/Linux (Fedora 15), kernel 2.6.43.8-1.fc15.x86 64

Cut generation: Implemented in C++, single threaded
LP solver: IBM CPLEX 12.4 (C library API), 64 bits, single threaded

Table 1: Conditions of the experiments

relevant rows. Intuitively, this can be motivated by observing that any intersection cut separated from
a model whose two rows have disjoint support is equivalent to a linear combination of two intersection
cuts from the corresponding one-row models. In practice, we select up to MODELS MAX models meeting
the following requirements:

1. Each of the two rows is a suitable simplex tableau row, i.e.

a. its basic variable is integer-constrained,

b. its density, i.e. the ratio of the number of nonzero coefficients in the row over the number of
columns, does not exceed ROW DENSITY MAX.

2. Each of the two rows is used in at most (ROW USE MAX− 1) other selected models.

3. At least one of the two rows has a fractional right-hand side.

4. Among the models that are not selected, none has a higher score. The score of a two-row model is
computed as (c− d) where c is the number of colums having nonzero coefficients in both rows, and d
is the number of columns a having nonzero coefficient in exactly one row.

Results analysis. Tables 2 and 3 present the results of our experiment. The testbed is composed of
problems from the MIPLIB 3 [11] and MIPLIB 2003 [1] libraries. We report results on all the instances
except for three having no integrality gap (dsbmip, enigma, disctom), four whose optimal solution is
unknown (dano3mip, liu, momentum3, t1717), and five for which the experiment runs out of memory
(ds, momentum2, stp3d, mzzv42z, rd-rplusc-21). The general conditions of our experiments are detailed
in Table 1. The columns of Tables 2 and 3 are composed of two parts. The first one (one-row only) serves
as a comparison point using only one-row intersection cuts, i.e. split cuts from a simple disjunction on a
basic variable (MODELS MAX = 0, ROW USE MAX = 0). The column cuts indicates the number of separating
one-row intersection cuts and %gc is the percentage of integrality gap closed as a result. We compute
gap closures as

%gc = 100
zLP+cuts − zLP

zMIP − zLP

where zMIP is the optimal objective function value of the original problem, zLP the one of its LP relaxation,
and zLP+cuts the one of its LP relaxation with cuts added. The second part (one-row + two-row)
corresponds to Algorithm 3 with MODELS MAX = 5000 and ROW USE MAX = 4, i.e. each row of the simplex
tableau is used to build at most 4 different two-row models. Note that we do not consider rows with more
than 40% nonzero components (ROW DENSITY MAX = 0.4). In both cases, we limit ourselves to rank-5
inequalities (RANK MAX = 5), and we discard cuts whose dynamism (i.e. the quotient of the largest and
the smallest nonzero coefficient, in absolute value) exceeds 106, as they are likely to cause numerical
difficulties. Moreover, we consider that a cut αTx ≥ 1 “separates” a point x∗ only if its violation at x∗

is at least 10−6 i.e. 1− αTx∗ ≥ 10−6. The column one-row cuts indicates the number of separating one-
row intersection cuts generated as part of Algorithm 3. In the subcategory two-row, models indicates the
overall number of times the two-row separation procedure is called, time shows the total time spent within
the algorithm, in seconds, and cuts indicates the number of two-row cuts that succeed at separating the
corresponding x∗. The set S in Algorithm 1 is initialized with the four points (bf1c, bf2c), (bf1c, df2e),
(df1e, bf2c) and (df1e, df2e), and +total denotes the total number times a point was added to a set S,
across all separations. Finally, %gc shows the percentage of gap closed by adding all the separating cuts.
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instance one-row only one-row + two-row
one-row two-row

cuts %gc cuts models +total time cuts %gc
10teams 699 0.00 699 286 267 0.179 0 0.00

air03 36 100.00 36 232 111 0.316 0 100.00
air04 1299 9.49 1299 0 0 0.000 0 9.49
air05 1051 6.32 1051 0 0 0.000 0 6.32

arki001 163 27.28 161 14592 72606 32.034 238 32.23
bell3a 71 69.56 71 3008 16994 3.614 430 68.25
bell5 115 26.23 90 1656 8678 1.403 25 23.08

blend2 46 21.61 66 12453 5988 4.357 203 26.73
cap6000 67 54.19 67 0 0 0.000 0 54.19
danoint 100 0.43 95 4657 68866 55.138 121 0.61
dcmulti 278 58.32 206 7052 16350 6.574 370 65.64

egout 79 69.81 47 1867 3781 0.908 244 93.37
fast0507 1662 3.10 1662 453 220 0.759 0 3.10

fiber 253 17.04 195 30092 84777 37.087 401 18.81
fixnet6 93 18.66 78 27487 18291 14.743 535 53.54
flugpl 43 14.22 38 540 1428 0.353 133 20.37

gen 211 61.19 224 7957 36457 10.054 366 63.66
gesa2 290 47.25 270 22181 34055 11.352 687 70.54

gesa2 o 398 47.13 380 52715 71444 29.022 960 67.23
gesa3 324 49.72 208 12012 65236 18.045 668 74.46

gesa3 o 421 67.36 358 39177 80491 27.407 1049 74.62
gt2 79 97.54 78 817 2807 0.485 20 99.00

harp2 130 11.85 133 6612 26458 6.808 264 18.53
khb05250 53 95.57 38 588 258 0.192 43 90.67
l152lav 326 15.20 326 0 0 0.000 0 15.20

lseu 80 38.00 93 722 3144 0.540 96 36.89
markshare1 29 0.00 29 0 0 0.000 0 0.00
markshare2 34 0.00 34 0 0 0.000 0 0.00

mas74 74 4.38 74 0 0 0.000 0 4.38
mas76 77 3.06 77 0 0 0.000 0 3.06

misc03 275 4.56 293 3330 1792 1.129 100 17.36
misc06 37 63.18 52 5383 2796 1.949 140 86.35
misc07 392 0.72 352 6980 13931 5.004 24 0.72
mitre 5631 83.93 5496 125000 826666 210.567 3141 84.45

mkc 725 39.40 788 130000 36106 51.893 676 26.31
mod008 33 11.22 33 0 0 0.000 0 11.22
mod010 258 57.73 256 140 24 0.085 2 58.84
mod011 22 6.87 21 6178 5629 2.869 52 12.41

modglob 50 28.72 42 2392 13963 2.754 122 48.41
noswot 163 0.00 119 3536 5176 1.112 167 0.00

nw04 76 17.95 76 0 0 0.000 0 17.95
p0033 34 12.77 57 1046 10709 1.681 76 57.01
p0201 325 25.93 383 1502 4121 1.131 116 45.17
p0282 182 16.03 247 21296 135084 34.065 100 13.54
p0548 300 50.83 367 17816 57142 15.693 261 66.53
p2756 264 0.89 374 39743 48256 18.420 201 42.12

pk1 68 0.00 68 0 0 0.000 0 0.00
pp08a 204 77.53 158 4048 7886 3.168 217 90.16

pp08acuts 99 47.14 148 5336 23651 8.664 238 60.23
qiu 116 3.05 92 1804 38900 30.450 88 4.64

qnet1 298 22.99 288 13592 18518 8.649 45 28.01
qnet1 o 152 47.84 125 12859 24792 7.785 121 51.54

rentacar 9 0.00 9 368 1254 5.036 0 0.00
rgn 72 0.00 72 385 110 0.123 47 0.00

rout 195 7.81 194 456 414 0.205 7 9.30
set1ch 464 80.71 304 16179 20079 6.433 543 94.14

seymour 22038 14.75 22167 45000 338910 652.530 12 15.01
stein27 452 0.00 437 3248 8342 2.595 18 0.00
stein45 1069 0.00 1089 30119 119287 33.615 268 0.00

swath 278 0.60 283 4320 9450 6.401 342 2.53
vpm1 87 27.29 115 10169 2079 2.192 130 51.69
vpm2 143 38.79 159 15165 18774 7.750 322 53.56

average 695.032 29.415 691.081 12492.677 38912.065 22.344 232.726 36.180

Table 2: Time and gap closed on MIPLIB 3
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instance one-row only one-row + two-row
one-row two-row

cuts %gc cuts models +total time cuts %gc
a1c1s1 278 36.35 219 11214 51555 12.391 529 43.86

aflow30a 154 19.99 170 9388 2211 3.455 92 21.73
aflow40b 169 11.52 179 52312 6659 22.780 112 14.30

atlanta-ip 9050 8.75 12993 120000 2936415 5566.283 446 8.75
glass4 108 0.00 178 3052 299 0.751 885 0.00

manna81 1980 100.00 1980 10000 503 3.316 0 100.00
momentum1 10043 61.03 15421 105000 5586289 3987.552 2471 57.56
msc98-ip 21799 53.94 25529 90000 823555 2052.142 308 53.95

mzzv11 18354 20.06 17285 90000 2976550 10139.824 709 20.16
net12 4180 9.25 4399 90928 845309 554.549 204 11.54

nsrand-ipx 1071 25.51 1292 44768 35315 39.955 363 29.59
opt1217 130 0.53 126 88 20 0.040 2 0.53

protfold 5651 18.24 5759 127651 145047 169.947 2006 13.65
roll3000 3158 67.18 2897 105000 957758 479.864 630 60.07

sp97ar 2585 10.79 2673 34004 11648 27.467 49 11.61
timtab1 555 27.20 353 12162 37555 18.771 676 47.84
timtab2 669 24.96 577 23686 155427 76.760 968 34.21
tr12-30 442 68.53 393 25800 302668 99.013 362 92.22
average 4465.3 31.32 5134.6 53058.5 826376.8 1291.9 600.7 34.53

Table 3: Time and gap closed on MIPLIB 2003 (instances not included in MIPLIB 3)

The primary objective of our experiment is to assess whether our separator is fast in practice. In particu-
lar, since Algorithm 1 does not have a proven complexity bound, we need to evaluate how many iterations
it performs in a practical setting. Over the course of the experiment conducted to generate Table 2 and
Table 3, only 10.4 points are added to S on average per call to the separator, in addition to the four initial
points, i.e. Algorithm 1 performs 11.4 iterations on average. On average, the computation takes 20.5ms
per call to the separator (1.8ms when considering MIPLIB 3 only). A cut is successfully computed in
99.87% of the cases, failure happening when no facet-defining inequality could be generated as explained
above, and 1.39% of the generated cuts do separate the corresponding point x∗. Note that for being
considered a separating cut, a valid inequality must also satisfy the condition on coefficient dynamism
described previously. On the other hand, 86.61% of the generated one-row intersection cuts are separating
(in the same one-row + two-row experiment), with separation taking approximately 0.14ms on average
in our implementation. Recall however that two-row cuts are separated after one-row cuts, hence every
separating two-row cut is, in the separation sense, “stronger” than all the one-row cuts generated before.
Note finally that overall in our experiment, only 16.98% of the time is taken by the two-row separator,
the rest being spent optimizing over the LP relaxation, computing the optimal LP tableau, and selecting
pairs of rows.

The secondary objective of this experiment is to evaluate the usefulness of two-row cuts in a separation
scheme. In terms of average gap closed (35.81%, compared to 29.85% with one-row intersection cuts only),
the addition of two-row inequalities does seem to slightly strengthen the original formulation, without
however providing a compelling argument to justify their computational cost. But it should be noted that
on some instances (e.g. misc03, p0201, p0548, p2756, pp08a, qnet1, tr12-30), two-row cuts provide
a significant improvement in the LP bound, without the addition of a disproportionate number of cuts.
On a lot of other instances, the significant improvement brought by two-row cuts could be attributed to
their sheer number. Remark also that in some cases, the amount of gap closed by one-row + two-row is
smaller than with one-row only. This can happen since, as we do not limit ourselves to rank-1 cuts, the
bases (and hence the tableaux) used in the various experiments can differ, starting from the second outer
loop iteration.

Figure 11 illustrates the evolution of the average gap closed from one (outer loop) iteration to the next,
over both instance sets. The bars labeled one-row only and one-row + two-row correspond to the gap
closed after each iteration in their respective experiment. The one-row (+ two-row) bar corresponds to
the gap closed at each iteration of the one-row + two-row experiment before the addition of two-row
inequalities, i.e. at line 12 of Algorithm 3. Observe that while the difference between the two experiments
is noticeable, one-row cuts still seem to close most of the gap in the one-row + two-row experiment. This
might indicate that the main advantage provided by the two-row inequalities arises from obtaining useful
relaxations from simplex bases that are not reached adding one-row cuts only.
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Figure 11: Gap closed, for different values of r

In Table 4 and Table 5, we survey the lattice-free sets that we obtained throughout the experiment,
and classify them according to the taxonomy described in [17, 16]. We count only lattice-free sets
corresponding to separating two-row cuts. One can observe that no Type-1 triangle is generated, which
is worth noting as only cuts corresponding to Type-1 triangles have infinite split rank [4, 16]. This could
be caused by the fact that the set PI must take a very specific form in order for us to be able to build a
Type-1 triangle with each of its vertices on f + cone(ri) for some ray ri.

Split sets play a special role in the context of intersection cuts. In particular, any two-row intersection cut
from a split set can be obtained, at a fraction of the computational cost, as a one-row cut, by combining
the two initial rows. Such a cut is thus a rank-1 split cut (when constructing models from the initial LP
formulation). In order to evaluate the importance of these cuts, we re-ran the experiment, discarding all
two-row cuts except the ones arising from split sets. Therefore, this new experiment uses only split cuts
of rank at most 5. The results are shown in Table 6 and Table 7, under the column “+ two-row splits”.
It appears that intersection cuts on split sets alone can close most of the gap closed by all two-row cuts
together, going from 29.85% (one-row only) to 34.40% (+ two-row splits), instead of 35.81% (+ two-row
all). More importantly, they do so despite the addition of fewer cuts, 135 in average (+ two-row splits),
instead of 316 (+ two-row all).

5 Conclusion

In this work, we developed a compact formulation of the polar of the two-row model studied by Andersen
et al. [4], built an algorithm to separate two-row cuts using this formulation, and showed computationally
that it is fast in practice. As a result, we are able to generate separating two-row intersection cuts without
fixing the underlying lattice-free set within a few milliseconds of computing time. We do not answer
however the question of the practical usefulness of these cuts, as our experiments show mixed results in
this regard. More precisely, for the instances tested, two-row intersection cuts close significantly more
gap than one-row intersection cuts, but we can achieve almost as much when restricting to two-row cuts
from split sets, which are split cuts of the same rank. In that context, the main direction for further
research is to evaluate computationally the impact of various strengthenings of the two-row relaxation,
obtained by reintroducing some of the original constraints that were dropped in it.

Acknowledgements. We would like to thank two anonymous referees for constructive input regarding
the overall presentation and our computational experiments.
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instance cuts T 1 T 2 T 3 Q1 Q2 split
10teams 0 0 0 0 0 0 0

air03 0 0 0 0 0 0 0
air04 0 0 0 0 0 0 0
air05 0 0 0 0 0 0 0

arki001 238 0 55 27 116 1 39
bell3a 430 0 100 16 211 0 103
bell5 25 0 5 0 9 0 11

blend2 203 0 61 24 101 3 14
cap6000 0 0 0 0 0 0 0
danoint 121 0 5 8 80 6 22
dcmulti 370 0 19 22 255 17 57

egout 244 0 41 12 71 6 114
fast0507 0 0 0 0 0 0 0

fiber 401 0 107 22 194 4 74
fixnet6 535 0 33 14 145 9 334
flugpl 133 0 33 5 84 3 8

gen 366 0 48 20 219 11 68
gesa2 687 0 125 24 483 14 41

gesa2 o 960 0 267 46 510 11 126
gesa3 668 0 104 22 445 17 80

gesa3 o 1049 0 89 36 840 7 77
gt2 20 0 1 0 10 0 9

harp2 264 0 65 18 156 2 23
khb05250 43 0 6 13 17 0 7
l152lav 0 0 0 0 0 0 0

lseu 96 0 47 5 35 3 6
markshare1 0 0 0 0 0 0 0
markshare2 0 0 0 0 0 0 0

mas74 0 0 0 0 0 0 0
mas76 0 0 0 0 0 0 0

misc03 100 0 9 0 47 0 44
misc06 140 0 24 9 86 0 21
misc07 24 0 3 0 5 0 16
mitre 3141 0 1135 77 1822 21 86

mkc 676 0 89 23 474 19 71
mod008 0 0 0 0 0 0 0
mod010 2 0 0 0 0 0 2
mod011 52 0 18 3 31 0 0

modglob 122 0 14 8 50 4 46
noswot 167 0 25 3 129 0 10

nw04 0 0 0 0 0 0 0
p0033 76 0 25 5 36 0 10
p0201 116 0 6 2 11 5 92
p0282 100 0 5 5 68 3 19
p0548 261 0 79 5 114 0 63
p2756 201 0 31 12 18 1 139

pk1 0 0 0 0 0 0 0
pp08a 217 0 29 37 84 10 57

pp08acuts 238 0 43 13 142 16 24
qiu 88 0 0 3 85 0 0

qnet1 45 0 6 0 29 1 9
qnet1 o 121 0 21 4 81 4 11

rentacar 0 0 0 0 0 0 0
rgn 47 0 0 7 3 1 36

rout 7 0 1 0 6 0 0
set1ch 543 0 137 125 205 10 66

seymour 12 0 3 0 3 0 6
stein27 18 0 11 0 4 1 2
stein45 268 0 27 5 182 23 31

swath 342 0 35 25 159 6 117
vpm1 130 0 38 9 37 7 39
vpm2 322 0 45 14 179 17 67

average 232.726 0.000 49.516 11.742 130.177 4.242 37.048

Table 4: Lattice-free body types (MIPLIB 3)
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instance cuts T 1 T 2 T 3 Q1 Q2 split
a1c1s1 529 0 20 60 92 3 354

aflow30a 92 0 17 4 55 4 12
aflow40b 112 0 27 8 69 1 7

atlanta-ip 446 0 47 5 252 46 96
glass4 885 0 4 1 1 0 879

manna81 0 0 0 0 0 0 0
momentum1 2471 0 15 1 1 0 2454
msc98-ip 308 0 11 1 250 23 23
mzzv42z 345 0 16 2 225 27 75

net12 204 0 12 0 48 14 130
nsrand-ipx 363 0 53 17 163 2 128

opt1217 2 0 0 0 0 0 2
protfold 2819 0 97 112 2186 241 183

rd-rplusc-21 327 0 49 25 82 3 168
roll3000 630 0 61 14 386 0 169

sp97ar 49 0 15 1 10 0 23
timtab1 676 0 38 73 113 9 443
timtab2 968 0 52 92 226 18 580
tr12-30 362 0 28 248 52 1 33
average 609.895 0.000 29.579 34.947 221.632 20.632 303.105

Table 5: Lattice-free body types (MIPLIB 2003, instances not included in MIPLIB 3)

A Polarity

In the context of optimization, the term polar is most commonly used to denote a set describing all the
valid inequalities of a polyhedron. For the remainder of this section, we denote by P the polyhedron
whose polar we are interested in. In all generality, the polar of P ∈ Rn could be defined as

Q := {(α, α0) ∈ Rn × R : αx ≥ α0 for all x ∈ P}.

Since we are interested in valid inequalities for conv(PI), which features particular properties, we derive
here a specific polar for a family of polyhedra that includes conv(PI). For the sake of conciseness, we call
them radial polyhedra. This polar is tightly related to the 1-polar in Nemhauser and Wolsey [26], the
latter applying to full-dimensional polytopes.

Definition 7. We call a polyhedron P radial if

(a) P is not empty,

(b) P does not contain a line,

(c) P does not containt the origin 0, and

(d) for every x ∈ P , µx ∈ P for all µ ≥ 1.

Remark that the condition (d) could alternatively be written P = P + cone(P ), or P ⊆ recc(P ), where
recc(P ) denotes de recession cone of P .

We showed earlier that the dimension of conv(PI) is n, as is the dimension of its projection on the space
of the s variables. The valid inequalities for conv(PI) thus coincide with the valid inequalities for that
projection projs(conv(PI)). Note that 0 /∈ projs(conv(PI)), projs(conv(PI)) ⊆ Rn+, and the recession
cone of projs(conv(PI)) is Rn+, so projs(conv(PI)) is radial.

Through normalization of the right-hand side, valid inequalities can be divided in three classes: αTx ≥ 1,
βTx ≥ 0 and γTx ≤ 1. Proposition 1 lets us dismiss the latter class for radial polyhedra.

Proposition 1. Let P be a radial polyhedron. Every facet-defining inequality of P is of the form αTx ≥
1, α ∈ Rn or βTx ≥ 0, β ∈ Rn.

Proof. Consider a facet-defining inequality of type γTx ≤ 1. Either γTx ≤ 0 for all x ∈ P , in which case
γTx ≤ 1 does not describe a proper face of P , or there exists x̄ ∈ P such that γT x̄ > 0. Then, µx̄ ∈ P

21



instance one-row only + two-row splits + two-row all
two-row two-row

cuts %gc cuts %gc cuts %gc
10teams 699 0.00 0 0.00 0 0.00

air03 36 100.00 0 100.00 0 100.00
air04 1299 9.49 0 9.49 0 9.49
air05 1051 6.32 0 6.32 0 6.32

arki001 163 27.28 65 27.97 238 32.23
bell3a 71 69.56 48 67.39 430 68.25
bell5 115 26.23 3 22.38 25 23.08

blend2 46 21.61 6 22.61 203 26.73
cap6000 67 54.19 0 54.19 0 54.19
danoint 100 0.43 28 0.57 121 0.61
dcmulti 278 58.32 24 66.62 370 65.64

egout 79 69.81 70 80.19 244 93.37
fast0507 1662 3.10 0 3.10 0 3.10

fiber 253 17.04 86 23.15 401 18.81
fixnet6 93 18.66 361 53.30 535 53.54
flugpl 43 14.22 1 14.19 133 20.37

gen 211 61.19 54 63.95 366 63.66
gesa2 290 47.25 50 57.52 687 70.54

gesa2 o 398 47.13 69 59.11 960 67.23
gesa3 324 49.72 92 73.18 668 74.46

gesa3 o 421 67.36 126 68.59 1049 74.62
gt2 79 97.54 5 97.54 20 99.00

harp2 130 11.85 10 12.43 264 18.53
khb05250 53 95.57 13 94.58 43 90.67
l152lav 326 15.20 0 15.20 0 15.20

lseu 80 38.00 3 35.33 96 36.89
markshare1 29 0.00 0 0.00 0 0.00
markshare2 34 0.00 0 0.00 0 0.00

mas74 74 4.38 0 4.38 0 4.38
mas76 77 3.06 0 3.06 0 3.06

misc03 275 4.56 43 17.38 100 17.36
misc06 37 63.18 9 72.54 140 86.35
misc07 392 0.72 16 0.72 24 0.72
mitre 5631 83.93 100 84.74 3141 84.45

mkc 725 39.40 133 35.29 676 26.31
mod008 33 11.22 0 11.22 0 11.22
mod010 258 57.73 2 58.84 2 58.84
mod011 22 6.87 12 6.99 52 12.41

modglob 50 28.72 70 44.22 122 48.41
noswot 163 0.00 15 0.00 167 0.00

nw04 76 17.95 0 17.95 0 17.95
p0033 34 12.77 7 56.76 76 57.01
p0201 325 25.93 92 44.47 116 45.17
p0282 182 16.03 15 11.40 100 13.54
p0548 300 50.83 61 61.98 261 66.53
p2756 264 0.89 136 47.64 201 42.12

pk1 68 0.00 0 0.00 0 0.00
pp08a 204 77.53 70 89.29 217 90.16

pp08acuts 99 47.14 32 59.93 238 60.23
qiu 116 3.05 41 8.35 88 4.64

qnet1 298 22.99 11 31.73 45 28.01
qnet1 o 152 47.84 20 47.05 121 51.54

rentacar 9 0.00 0 0.00 0 0.00
rgn 72 0.00 40 2.93 47 0.00

rout 195 7.81 0 7.81 7 9.30
set1ch 464 80.71 144 90.92 543 94.14

seymour 22038 14.75 15 13.27 12 15.01
stein27 452 0.00 19 0.00 18 0.00
stein45 1069 0.00 31 0.00 268 0.00

swath 278 0.60 120 1.48 342 2.53
vpm1 87 27.29 34 43.34 130 51.69
vpm2 143 38.79 58 52.48 322 53.56

average 695.032 29.415 39.677 34.791 232.726 36.180

Table 6: Two-row cuts on split sets (MIPLIB 3)
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instance one-row only + two-row splits + two-row all
two-row two-row

cuts %gc cuts %gc cuts %gc
a1c1s1 278 36.35 337 40.97 529 43.86

aflow30a 154 19.99 13 17.15 92 21.73
aflow40b 169 11.52 3 11.67 112 14.30

atlanta-ip 9050 8.75 53 8.74 446 8.75
glass4 108 0.00 879 0.00 885 0.00

manna81 1980 100.00 0 100.00 0 100.00
momentum1 10043 61.03 4716 61.15 2471 57.56
msc98-ip 21799 53.94 25 53.94 308 53.95

mzzv11 18354 20.06 430 21.65 709 20.16
net12 4180 9.25 179 10.08 204 11.54

nsrand-ipx 1071 25.51 166 28.54 363 29.59
opt1217 130 0.53 2 0.53 2 0.53

protfold 5651 18.24 310 16.03 2006 13.65
roll3000 3158 67.18 159 57.23 630 60.07

sp97ar 2585 10.79 45 12.93 49 11.61
timtab1 555 27.20 363 47.26 676 47.84
timtab2 669 24.96 638 35.61 968 34.21
tr12-30 442 68.53 61 71.80 362 92.22
average 4465.333 31.324 465.500 33.071 600.667 34.532

Table 7: Two-row cuts on split sets (MIPLIB 2003, instances not included in MIPLIB 3)

for all µ ≥ 1. In particular, choosing µ = 2
γT x̄

, we obtain γT (µx̄) = 2, hence γTx ≤ 1 is not a valid
inequality for P .

Furthermore, we can write a variant of the separating hyperplane theorem for radial polyhedra that
involves only valid inequalities of the first class.

Proposition 2. Given a radial polyhedron P and a point y /∈ P , there exist a valid inequality αTx ≥ 1
for P such that αT y < 1.

Proof. By the separating hyperplane theorem, there exist a valid inequality for P that separates y. (a).
If the inequality is of the form αTx ≥ 1, then the claim is proven. (b). Assume that the inequality is of
the form βTx ≥ 0. As it separates y, we know that βT y < 0. Since 0 /∈ P , by the separating hyperplane
theorem, there also exist a valid inequality separating 0. That second inequality can not be of the form
β̄Tx ≥ 0 or γ̄Tx ≤ 1 as it would then not separate 0. Let ᾱTx ≥ 1 be that valid inequality for P . If
ᾱT y < 1 then it separates y and the claim is proven. Otherwise, ᾱT y ≥ 1. We now linearly combine the
two valid inequalities with the positive coefficients ᾱT y

−βT y
and 1, yielding a third valid inequality α̃Tx ≥ 1

with α̃ = ᾱT y
−βT y

β + ᾱ. That inequality separates y since ᾱT y
−βT y

βT y + ᾱT y = 0 < 1. (c). Assume that
the inequality is of the form γTx ≤ 1. As we have shown earlier, there does not exist x̄ ∈ P such that
γT x̄ > 0. Indeed, we would then have µx̄ ∈ P for all µ ≥ 1. In particular, choosing µ = 2

γT x̄
, we would

obtain γT (µx̄) = 2, showing that γTx ≤ 1 is not a valid inequality for P . Hence we can strengthen the
inequality by writing γTx ≤ 0, or equivalently βTx ≥ 0 where β = −γ. Using (b), we obtain a valid
inequality of the desired form.

We are now ready to write the definition of the polar of a radial polyhedron. Although we arbitrarily
restrict ourselves to valid inequalities of the form αTx ≥ 1, we will show at the end of this section why
this choice preserves the generality of the definition.

Definition 8. Let P be a radial polyhedron. The polar Q of P is the set of all α ∈ Rn such that αTx ≥ 1
is a valid inequality for P :

Q =
{
α ∈ Rn : αTx ≥ 1, for all x ∈ P

}

We next present a description of Q in terms of vertices and extreme rays of P . This is especially handy
as this is the type of description that we have of conv(PI).
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Proposition 3 ([26] Proposition 5.1). Q is described by

Q = { α ∈ Rn : αTxk ≥ 1 for all xk extreme point of P

αT rj ≥ 0 for all rj extreme ray of P }.

Proof. Let Q′ = {α ∈ Rn : αTxk ≥ 1, ∀xk extreme point of P, αT rj ≥ 1, ∀rj extreme ray of P}.
Suppose ᾱ ∈ Q. For every xk extreme point of P and rj extreme ray of P , we have ᾱT (xk + µrj) ≥ 1
for all µ ≥ 0. This implies ᾱTxk ≥ 1 and ᾱT rj ≥ 0. Hence ᾱ ∈ Q′, so Q ⊆ Q′. Conversely if α ∈ Q′
and x ∈ P , then x =

∑
k λkx

k +
∑
j µjr

j for some λ, µ satisfying
∑
k λk = 1, λk ≥ 0, µj ≥ 0. Hence

αTx =
∑
k λk(αTxk) +

∑
j µj(α

T rj) ≥ 1. Therefore Q′ ⊆ Q.

Proposition 3 gives a set of constraints describing Q and we know from linear programming theory that
all facet-defining inequalities for Q are part of these constraints (modulo scalar multiplication). The
description may also include non-facet-defining, hence redundant, constraints. However, Proposition 4
shows that all constraints of the form αTxk ≥ 1, where xk is a vertex of P , are facet-defining for Q.

Proposition 4. The facet-defining inequalities of Q are

(a). αTxk ≥ 1 for all xk extreme point of P

(b). αT rj ≥ 0 for all rj extreme ray of P such that rj /∈ cone{x : x extreme point of P}.

Proof. (a). Let y be a vertex of P and let P y = conv{x : x is a vertex of P , x 6= y}+ recc(P ). Because
recc(P y) = recc(P ), P y is also radial, and we denote its polar by Qy. Obviously, P y ( P , indeed
y ∈ P \ P y, and by Proposition 2, there exists an inequality ᾱTx ≥ 1 that is valid for P y and separates
y. Thus ᾱ ∈ Qy while ᾱ /∈ Q, proving that Qy 6= Q. Therefore, all the inequalities of the form αT y ≥ 1
for y extreme point of P are necessary to the description of Q, and are hence facet-defining for Q.

(b). Let PX = conv{x : x is a vertex of P} + cone{x : x is a vertex of P}. Since P is radial, PX ⊆
P + cone(P ) and as noted earlier, P = P + cone(P ), so PX ⊆ P . Let t be an extreme ray of
P such that t /∈ cone{x : x extreme point of P}, i.e. t /∈ recc(PX), and let P t = PX + cone{r :
r is an extreme ray of P, r 6= t}. Because t is an extreme ray of P , it can not be expressed as a conic
combination of other rays of P , so t /∈ recc(P t). By construction, P t is radial and we denote its polar by
Qt. Furthermore, recc(P t) ⊆ recc(P ) hence P t ⊆ P . Let w be an arbitrary vertex of P . As t /∈ recc(P t),
there exist M ∈ R+ sufficiently large such that z = w+Mt does not belong to P t, while by construction
it belongs to P . By Proposition 2, there exists an inequality α̃Tx ≥ 1 that is valid for P t and separates
z. Thus α̃ ∈ Qt while α̃ /∈ Q, proving that Qt 6= Q. Therefore, all inequalities of the form αT t ≥ 0 for
t extreme ray of P such that t /∈ cone{x : x vertex of P} are necessary to the description of Q, and are
hence facet-defining for Q.

One elegant property of radial polyhedra, which they share with full-dimensional polytopes [26], is a
simple duality relationship between them and their polar. Proposition 5 and Proposition 6 establish this
duality.

Proposition 5. The polar Q of a radial polyhedron P is a radial polyhedron.

Proof. (a). Since 0 /∈ P , by Proposition 2, there exist a valid inequality ᾱTx ≥ 1 for P that separates 0,
hence ᾱ ∈ Q, showing that Q is not empty. (b). Since P is not empty, 0Tx ≥ 1 is not a valid inequality
for P , thus 0 /∈ Q. (c). By Proposition 3, Q is a polyhedron. Let α ∈ Q, we know that αTx ≥ 1 for all
x ∈ P . Then for all x ∈ P , (µα)Tx = αT (µx) ≥ 1, since µx ∈ P . Thus µα ∈ Q.

Proposition 6 ([26] Proposition 5.4). The polar of Q is P .
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Figure 12: Example radial set P Figure 13: Example polar Q

Proof. By Proposition 5, Q is a radial polyhedron, thus its polar can be defined as in Definition 8. Let
P = {y ∈ Rn : yTα ≥ 1, for all α ∈ Q} be the polar of Q. If x ∈ P , then αTx ≥ 1, for all α ∈ Q. Thus
x ∈ P , so P ⊆ P . Now let y /∈ P . By Proposition 2, there exists a valid inequality αTx ≥ 1 of P such
that αT y < 1. Since α ∈ Q, y /∈ P , so P \ P = ∅.

Corollary 3. The facet-defining inequalities of P are

(a). αTx ≥ 1 for all α extreme point of Q

(b). βTx ≥ 0 for all β extreme ray of Q such that β /∈ cone{α : α extreme point of P}.

The following example illustrates the properties that we established in this section.

Example 1. Let P ⊆ R2 be given by (Figure 12)

P = conv
((

2
1

)
,

(
1
1

))
+ cone

((
2
1

)
,

(
0
1

))
.

It is easy to verify that P is radial. From the vertices and extreme rays of P immediately follows a
description of its polar Q in terms the constraints (Figure 13)

Q = {(α1, α2) ∈ R2 : 2α1 + α2 ≥ 1 (27)
α1 + α2 ≥ 1 (28)

2α1 + α2 ≥ 0 (29)
α2 ≥ 0}. (30)

By optimizing over Q, we can obtain vertices and extreme rays of Q. In our small example, we can
observe that

Q = conv
((

1
0

)
,

(
0
1

))
+ cone

((
1
0

)
,

(
−1
2

))
and that (27), (28) and (30) are facet-defining for Q while (29) is not (it is strictly dominated by (27)).
Indeed, the corresponding extreme ray of P(

2
1

)
∈ cone

((
2
1

)
,

(
1
1

))
.

Conversely, the vertices and extreme rays of Q yield a constraint description of P

P = {(x1, x2) ∈ R2 : x1 ≥ 1 (31)
x2 ≥ 1 (32)

x1 ≥ 0 (33)
−x1 + 2x2 ≥ 0} (34)
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where (31), (32) and (34) are facet-defining for Q while (33) is not (it is strictly dominated by (31)).
Again, the corresponding ray of Q (

1
0

)
∈ cone

((
1
0

)
,

(
0
1

))
.
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