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Abstract
This paper derives new algorithms for signomial programming, a generalization of geometric
programming. The algorithms are based on a generic principle for optimization called the MM
algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting
hyperplane inequality to create a surrogate function with parameters separated. Thus,
unconstrained signomial programming reduces to a sequence of one-dimensional minimization
problems. Simple examples demonstrate that the MM algorithm derived can converge to a
boundary point or to one point of a continuum of minimum points. Conditions under which the
minimum point is unique or occurs in the interior of parameter space are proved for geometric
programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework
easily accommodates equality and inequality constraints of signomial type. For the most important
special case, constrained quadratic programming, the MM algorithm involves very simple updates.
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1 Introduction
As a branch of convex optimization theory, geometric programming is next in line to linear
and quadratic programming in importance [4,5,15,16]. It has applications in chemical
equilibrium problems [14], structural mechanics [5], integrated circuit design [7], maximum
likelihood estimation [12], stochastic processes [6], and a host of other subjects [5].
Geometric programming deals with posynomials, which are functions of the form

(1)

Here the index set S ⊂ ℝn is finite, and all coefficients cα and all components x1, …, xn of
the argument x of f(x) are positive. The possibly fractional powers αi corresponding to a

particular α may be positive, negative, or zero. For instance,  is a posynomial
on ℝ2. In geometric programming we minimize a posynomial f(x) subject to posynomial
inequality constraints of the form uj(x) ≤ 1 for 1 ≤ j ≤ q, where the uj(x) are again
posynomials. In some versions of geometric programming, equality constraints of
posynomial type are permitted [3].
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A signomial function has the same form as the posynomial (1), but the coefficients cα are
allowed to be negative. A signomial program is a generalization of a geometric program,
where the objective and constraint functions can be signomials. From a computational point
of view, signomial programming problems are significantly harder to solve than geometric
programming problems. After suitable change of variables, a geometric program can be
transformed into a convex optimization problem and globally solved by standard methods.
In contrast, signomials may have many local minima. Wang et al. [20] recently derived a
path algorithm for solving unconstrained signomial programs.

The theory and practice of geometric programming has been stable for a generation, so it is
hard to imagine saying anything novel about either. The attractions of geometric
programming include its beautiful duality theory and its connections with the arithmetic-
geometric mean inequality. The present paper derives new algorithms for both geometric
and signomial programming based on a generic device for iterative optimization called the
MM algorithm [9,11]. The MM perspective possesses several advantages. First it provides a
unified framework for solving both geometric and signomial programs. The algorithms
derived here operate by separating parameters and reducing minimization of the objective
function to a sequence of one-dimensional minimization problems. Separation of parameters
is apt to be an advantage in high-dimensional problems. Another advantage is ease of
implementation compared to competing methods of unconstrained geometric and signomial
programming [20]. Finally, straightforward generalizations of our MM algorithms extend
beyond signomial programming.

We conclude this introduction by sketching a roadmap to the rest of the paper. Section 2
reviews the MM algorithm. Section 3 derives MM algorithm for unconstrained signomial
program from two simple inequalities. The behavior of the MM algorithm is illustrated on a
few numerical examples in Section 4. Section 5 extends the MM algorithm for
unconstrained problems to the constrained cases using the penalty method. Section 6
specializes to linearly constrained quadratic programming on the positive orthant.
Convergence results are discussed in Section 7.

2 Background on the MM Algorithm
The MM principle involves majorizing the objective function f(x) by a surrogate function
g(x | xm) around the current iterate xm (with ith component xmi) of a search. Majorization is
defined by the two conditions

(2)

In other words, the surface x ↦ g(x | xm) lies above the surface x ↦ f(x) and is tangent to it
at the point x = xm. Construction of the majorizing function g(x | xm) constitutes the first M
of the MM algorithm.

The second M of the algorithm minimizes the surrogate g(x | xm) rather than f(x). If xm+1
denotes the minimizer of g(x | xm), then this action forces the descent property f(xm+1) ≤
f(xm). This fact follows from the inequalities

Lange and Zhou Page 2

Math Program. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reflecting the definition of xm+1 and the tangency conditions (2). The descent property
makes the MM algorithm remarkably stable. Strictly speaking, the validity of the descent
property depends only on decreasing g(x | xm), not on minimizing g(x | xm).

3 Unconstrained Signomial Programming
The art in devising an MM algorithm revolves around intelligent choice of the majorizing
function. For signomial programming problems, fortunately one can invoke two simple
inequalities. For terms with positive coefficients cα, we use the arithmetic-geometric mean
inequality

(3)

for nonnegative numbers zi and αi and ℓ1 norm  [19]. If we make the choice
zi = xi/xmi in inequality (3), then the majorization

(4)

emerges, with equality when x = xm. We can broaden the scope of the majorization (4) to
cases with αi < 0 by replacing zi by the reciprocal ratio xmi/xi whenever αi < 0. Thus, for

terms  with cα > 0, we have the majorization

where sgn(αi) is the sign function.

The terms  with cα < 0 are handled by a different majorization. Our point of
departure is the supporting hyperplane minorization

at the point z = 1. If we let , then it follows that

(5)

is a valid minorization in x around the point xm. Multiplication by the negative coefficient cα
now gives the desired majorization. The surrogate function separates parameters and is
convex when all of the αi are positive.

In summary, the objective function (1) is majorized up to an irrelevant additive constant by
the sum
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(6)

where S+ = {α : cα > 0}, and S− = {α : cα < 0}. To guarantee that the next iterate is well
defined and occurs on the interior of the parameter domain, it is helpful to assume for each i
that at least one α ∈ S+ has αi positive and at least one α ∈ S+ has αi negative. Under these
conditions each gi(xi | xm) is coercive and attains its minimum on the open interval (0, ∞).

Minimization of the majorizing function is straightforward because the surrogate functions
gi(xi | xm) are univariate functions. The derivative of gi(xi | xm) with respect to its left
argument equals

Assuming that the exponents αi are integers, this is a rational function of xi, and once we
equate it to 0, we are faced with solving a polynomial equation. This task can be
accomplished by bisection or by Newton’s method. In practice, just a few steps of either
algorithm suffice since the MM principle merely requires decreasing the surrogate functions
gi(xi | xm).

In a geometric program, the function  has a single root on the interval (0, ∞). For
a proof of this fact, note that making the standard change of variables xi = eyi eliminates the
positivity constraint xi > 0 and renders the transformed function hi(yi | xm) = gi(xi | xm)
strictly convex. Because |αi| sgn(αi)2 = |αi|, the second derivative

is positive. Hence, hi(yi | xm) is strictly convex and possesses a unique minimum point.
These arguments yield the even sweeter dividend that the MM iteration map is continuously
differentiable. From the vantage point of the implicit function theorem [8], the stationary

condition  determines ym+1,i, and consequently xm+1,i, in terms of xm.

Observe here that  as required by the implicit function.

It is also worth pointing out that even more functions can be brought under the umbrella of
signomial programming. For instance, majorization of the two related functions − ln f(x) and

ln f(x) is possible for any posynomial . In the first case,
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(7)

holds for  and bm = Σα αmα because Jensen’s inequality applies to the
convex function − ln t. In the second case, the supporting hyperplane inequality applied to
the convex function − ln t implies

This puts us back in the position of needing to majorize a posynomial, a problem we have
already discussed in detail. By our previous remarks, the coefficients cα can be negative as
well as positive in this case. Similar majorizations apply to any composition ϕ ◦ f(x) of a
posynomial f(x) with an arbitrary concave function ϕ(y).

4 Examples of Unconstrained Minimization
Our first examples demonstrate the robustness of the MM algorithms in minimization and
illustrate some of the complications that occur. In each case we can explicitly calculate the
MM updates. To start, consider the posynomial

with the implied constraints x1 > 0 and x2 > 0. The majorization (4) applied to the third term
of f1(x) yields

Applied to the second term of f1(x) using the reciprocal ratios, it gives

The sum g(x | xm) of the two surrogate functions

majorizes f1(x). If we set the derivatives
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of each of these equal to 0, then the updates

solve the minimization step of the MM algorithm. It is also obvious that the point

 is a fixed point of the updates, and the reader can check that it minimizes
f1(x).

It is instructive to consider the slight variations

of this objective function. In the first case, the reader can check that the MM algorithm
iterates according to

In the second case, it iterates according to

The objective function f2(x) attains its minimum value whenever . The MM
algorithm for f2(x) converges after a single iteration to the value 2, but the converged point
depends on the initial point x0. The infimum of f3(x) is 0. This value is attained

asymptotically by the MM algorithm, which satisfies the identities  and
xm+1,2 = 22/25xm2 for all m ≥ 1. These results imply that xm1 tends to 0 and xm2 to ∞ in such
a manner that f3(xm) tends to 0. One could not hope for much better behavior of the MM
algorithm in these two examples.
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The function

is a signomial but not a posynomial. The surrogate function (6) reduces to

with all variables separated. The MM updates

converge in a single iteration to a solution of f4(x) = 0. Again the limit depends on the initial
point.

The function

is more complicated than a signomial. It also is unbounded because the point 
satisfies f5(x) = 2 + m−2 − ln(m + 2/m). According to the majorization (7), an appropriate
surrogate is

up to an irrelevant constant. The MM updates are
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If the components of the initial point coincide, then the iterates converge in a single iteration

to the saddle point with all components equal to . Otherwise, it appears that f5(xm)
tends to −∞.

The following objective functions

from the reference [20] are intended for numerical illustration. Table 1 lists initial
conditions, minimum points, minimum values, and number of iterations until convergence
under the MM algorithm. Convergence is declared when the relative change in the objective
function is less than a pre-specified value ε, in other words, when

Optimization of the univariate surrogate functions easily succumbs to Newton’s method.
The MM algorithm takes fewer iterations to converge than the path algorithm for all of the
test functions mentioned in [20] except f6(x). Furthermore, the MM algorithm avoids
calculation of the gradient and Hessian and requires no matrix decompositions or selection
of tuning constants.

As Section 7 observes, MM algorithms typically converge at a linear rate. Although slow
convergence can occur for functions such as the test function f6(x), there are several ways to
accelerate an MM algorithm. For example, our published quasi-Newton acceleration [21]
often reduces the necessary number of iterations by one or two orders of magnitude. Figure
1 shows the progress of the MM iterates for the test function f6(x) with and without quasi-
Newton acceleration. Under a convergence criterion of ε = 10−9 and q = 1 secant condition,
the required number of iterations falls to 30; under the same convergence criterion and q = 2
secant conditions, the required number of iterations falls to 12. It is also worth emphasizing
that separation of parameters enables parallel processing in high-dimensional problems. We
have recently argued [25] that the best approach to parallel processing is through graphics
processing units (GPUs). These cheap hardware devices offer one to two orders of
magnitude acceleration in many MM algorithms with parameters separated.
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5 Constrained Signomial Programming
Extending the MM algorithm to constrained geometric and signomial programming is
challenging. Box constraints ai ≤ xi ≤ bi are consistent with parameter separation as just
developed, but more complicated posynomial constraints that couple parameters are not.
Posynomial inequality constraints take the form

The corresponding equality constraint sets h(x) = 1. We propose handling both constraints
by penalty methods. Before we treat these matters in more depth, let us relax the positivity
restrictions on the dβ but enforce the restriction βi ≥ 0. The latter objective can be achieved

by multiplying h(x) by  for all i. If we subtract the two sides of the resulting
equality, then the equality constraint h(x) = 1 can be rephrased as r(x) = 0 for the signomial

, with no restriction on the signs of the eγ but with the requirement γi
≥ 0 in effect. For example, the equality constraint

becomes

In the quadratic penalty method [1,13,17] with objective function f(x) and a single equality
constraint r(x) = 0 and a single inequality constraint s(x) ≤ 0, one minimizes the sum

, where s(x)+ = max{s(x), 0}. As the penalty constant λ tends
to ∞, the solution vector xλ typically converges to the constrained minimum. In the revised
objective function, the term r(x)2 is a signomial whenever r(x) is a signomial. For example,

in our toy problem the choice  has square

Of course, the powers in r(x) can be fractional here as well as integer. The term  is not
a signomial and must be subjected to the majorization

to achieve this status. In practice, one does not need to fully minimize fλ(x) for any fixed λ.
If one increases λ slowly enough, then it usually suffices to merely decrease fλ(x) at each
iteration. The MM algorithm is designed to achieve precisely this goal. Our exposition so far
suggests that we majorize r(x)2, s(x)2, and [s(x) − s(xm)]2 in exactly the same manner that
we majorize f(x). Separation of parameters generalizes, and the resulting MM algorithm
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keeps all parameters positive while permitting pertinent parameters to converge to 0. Section
7 summarizes some of the convergence properties of this hybrid procedure.

The quadratic penalty method traditionally relies on Newton’s method to minimize the
unconstrained functions fλ(x). Unfortunately, this tactic suffers from roundoff errors and
numerical instability. Some of these problems disappear with the MM algorithm. No matrix
inversions are involved, and iterates enjoy the descent property. Ill-conditioning does cause
harm in the form of slow convergence, but the previously mentioned quasi-Newton
acceleration largely remedies the situation [21]. As an alternative to quadratic penalties,
exact penalties take the form λ|r(x)| + λs(x)+. Remarkably, the exact penalty method
produces the constrained minimum, not just in the limit, but for all finite λ beyond a certain
point. Although this desirable property avoids the numerical instability encountered in the
quadratic penalty method, the kinks in the objective functions f(x) + λ|r(x)| + λs(x)+ are a
nuisance. Our recent paper [24] on the exact penalty method shows how to circumvent this
annoyance.

6 Nonnegative Quadratic Programming
As an illustration of constrained signomial programming, consider quadratic programming
over the positive orthant. Let

be the objective function, Ex = d the linear equality constraints, and Ax ≤ b the linear
inequality constraints. The symmetric matrix Q can be negative definite, indefinite, or
positive definite. The quadratic penalty method involves minimizing the sequence of
penalized objective functions

as λ tends to ∞. Based on the obvious majorization

the term  is majorized by , where

A brief calculation shows that fλ(x) is majorized by the surrogate function

up to an irrelevant constant, where Hλ and υλm are defined by

Lange and Zhou Page 10

Math Program. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



It is convenient to assume that the diagonal coefficients  appearing in the quadratic

form  Hλx are positive. This is generally the case for large λ. One can handle the off-
diagonal term hλijxixj by either the majorization (4) or the majorization (5) according to the
sign of hλij. The reader can check that the MM updates reduce to

(8)

where

When , the update (8) collapses to

(9)

To avoid sticky boundaries, we replace 0 in equation (9) by a small positive constant ε such
as 10−9. Sha et al. [18] derived the update (8) for λ = 0 ignoring the constraints Ex = d and
Ax ≤ b.

For a numerical example without equality constraints take

The minimum occurs at the point (2/3, 4/3)t. Table 2 lists the number of iterations until
convergence and the converged point xλ for the sequence of penalty constants λ = 2k. The
quadratic program
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converges much more slowly. Its minimum occurs at the point (2.4, 1.6)t. Table 3 lists the
numbers of iterations until convergence with (q = 1) and without (q = 0) acceleration and the
converged point xλ for the same sequence of penalty constants λ = 2k. Fortunately, quasi-
Newton acceleration compensates for ill conditioning in this test problem.

7 Convergence
As we have seen, the behavior of the MM algorithm is intimately tied to the behavior of the
objective function f(x). For the sake of simplicity, we now restrict attention to unconstrained
minimization of posynomials and investigate conditions guaranteeing that f(x) possesses a
unique minimum on its domain. Uniqueness is related to the strict convexity of the
reparameterization

of f(x), where  is the inner product of α and y and xi = eyi for each i. The
Hessian matrix

of h(y) is positive semidefinite, so h(y) is convex. If we let T be the subspace of ℝn spanned
by {α}α∈S, then h(y) is strictly convex if and only if T = ℝn. Indeed, suppose the condition
holds. For any υ ≠ 0, it then must be true that αtυ ≠ 0 for some α ∈ S. As a consequence,

and d2h(y) is positive definite. Conversely, suppose T ≠ ℝn, and take υ ≠ 0 with αtυ = 0 for
every α ∈ S. Then h(y+tυ) = h(y) for every scalar t, which is incompatible with h(y) being
strictly convex.

Strict convexity guarantees uniqueness, not existence, of a minimum point. Coerciveness
ensures existence. The objective function f(x) is coercive if f(x) tends to ∞ whenever any
component of x tends to 0 or ∞. Under the reparameterization xi = eyi, this is equivalent to
h(y) = f(x) tending to ∞ as ‖y‖2 tends to ∞. A necessary and sufficient condition for this to
occur is that maxα∈S αtυ > 0 for every υ ≠ 0. For a proof, suppose the contrary condition
holds for some υ ≠ 0. Then it is clear that h(tυ) remains bounded above by h(0) as the scalar
t tends to ∞. Conversely, if the stated condition is true, then the function q(y) = maxα∈S αty
is continuous and achieves its minimum of d > 0 on the sphere {y ∈ ℝn : ‖y‖2 = 1}. It
follows that q(y) ≥ d‖y‖2 and that
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This lower bound shows that h(y) is coercive.

The coerciveness condition is hard to apply in practice. An equivalent condition is that the
origin 0 belongs to the interior of the convex hull of the set {α}α∈S. It is straightforward to
show that the negations of these two conditions are logically equivalent. Thus, suppose q(υ)
= maxα∈S αtυ ≤ 0 for some vector υ ≠ 0. Every convex combination Σα pαα then satisfies
(Σα pαα)t υ ≤ 0. If the origin is in the interior of the convex hull, then ευ is also for every

sufficiently small ε > 0. But this leads to the contradiction . Conversely,
suppose 0 is not in the interior of the convex hull. According to the separating hyperplane
theorem for convex sets, there exists a unit vector υ with υtα ≤ 0 = υt0 for every α ∈ S. In
other words, q(υ) ≤ 0. The convex hull criterion is easier to check, but it is not constructive.
In simple cases such as the objective function f1(x) where the power vectors are α = (−3, 0)t,
α = (−1, −2)t, and α = (1, 1)t, it is visually obvious that the origin is in the interior of their
convex hull.

One can also check the criterion q(υ) > 0 for all υ ≠ 0 by solving a related geometric
programming problem. This problem consists in minimizing the scalar t subject to the

inequality constraints αty ≤ t for all α ∈ S and the nonlinear equality constraint . If
tmin ≤ 0, then the original criterion fails.

In some cases, the objective function f(x) does not attain its minimum on the open domain
. This condition is equivalent to the corresponding function ln

h(y) being unbounded below on ℝn. According to Gordon’s theorem [2,10], this can happen
if and only if 0 is not in the convex hull of the set {α}α∈S. Alternatively, both conditions are
equivalent to the existence of a vector υ with αtυ < 0 for all α ∈ S. For the objective function
f3(x), the power vectors are α = (−1, −2)t and α = (1, 1)t. The origin (0, 0)t does not lie on
the line segment between them, and the vector (−3/2, 1)t forms a strictly oblique angle with
each. As predicted, f3(x) does not attain its infimum on  .

The theoretical development in reference [10] demonstrates that the MM algorithm
converges at a linear rate to the unique minimum point of the objective function f(x) when
f(x) is coercive and its convex reparameterization h(y) is strictly convex. The theory does not
cover other cases, and it would be interesting to investigate them. The general convergence
theory of MM algorithms [10] states that five properties of the objective function f(x) and
MM algorithmic map x ↦ M(x) guarantee convergence to a stationary point of f(x): (a) f(x)
is coercive on its open domain; (b) f(x) has only isolated stationary points; (c) M(x) is
continuous; (d) x* is a fixed point of M(x) if and only if x* is a stationary point of f(x); and
(e) f[M(x*)] ≥ f(x*), with equality if and only if x* is a fixed point of M(x). For a general
signomial program, items (a) and (b) are the hardest to check. Our examples provide some
clues.

The standard convergence results for the quadratic penalty method are covered in the
references [1,10,13,17]. To summarize the principal finding, suppose that the objective
function f(x) and the constraint functions ri(x) and si(x) are continuous and that f(x) is
coercive on . If xλ minimizes the penalized objective function
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and x∞ is a cluster point of xλ as λ tends to ∞, then x∞ minimizes f(x) subject to the
constraints. In this regard observe that the coerciveness assumption on f(x) implies that the
solution set {xλ}λ is bounded and possesses at least one cluster point. Of course, if the
solution set consists of a single point, then xλ tends to that point.

8 Discussion
The current paper presents novel algorithms for both geometric and signomial programming.
Although our examples are low dimensional, the previous experience of Sha et al. [18]
offers convincing evidence that the MM algorithm works well for high-dimensional
quadratic programming with nonnegativity constraints. The ideas pursued here – the MM
principle, separation of variables, quasi-Newton acceleration, and penalized optimization –
are surprisingly potent in large-scale optimization. The MM algorithm deals with the
objective function directly and reduces multivariate minimization to a sequence of one-
dimensional minimizations. The MM updates are simple to code and enjoy the crucial
descent property. Treating constrained signomial programming by the penalty method
extends the MM algorithm even further. Quadratic programming with linear equality and
inequality constraints is the most important special case of constrained signomial
programming. Our new MM algorithm for constrained quadratic programming deserves
consideration in high-dimensional problems. Even though MM algorithms can be
notoriously slow to converge, quasi-Newton acceleration can dramatically improve matters.
Acceleration involves no matrix inversion, only matrix times vector multiplication. In our
limited experiments with large-scale problems [22,23], MM algorithms with quasi-Newton
acceleration can achieve comparable or better performance than limited-memory BFGS
algorithms. Finally, it is worth keeping in mind that parameter separated algorithms are ideal
candidates for parallel processing.

Because geometric programs are convex after reparameterization, it is relatively easy to pose
and check sufficient conditions for global convergence of the MM algorithm. In contrast it is
far more difficult to analyze the behavior of the MM algorithm for signomial programs.
Theoretical progress will probably be piecemeal and require problem-specific information.
A major difficulty is understanding the asymptotic nature of the objective function as
parameters approach 0 or ∞. Even in the absence of theoretical guarantees, the descent
property of the MM algorithm makes it an attractive solution technique and a diagnostic tool
for finding counterexamples. Some of our test problems expose the behavior of the MM
algorithm in non-standard situations. We welcome the help of the optimization community
in unraveling the mysteries of the MM algorithm in signomial programming.
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Fig. 1.
Upper left: The test function f6(x). Upper right: 558 MM iterates. Lower left: 30 accelerated
MM iterates (q = 1 secant conditions). Lower right: 12 accelerated MM iterates (q = 2 secant
conditions).
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Table 2

Iterates from the quadratic penalty method for the test function f10(x). The convergence criterion for the inner

loops is 10−9.

log2 λ Iters xλ

0 8 (0.9503,1.6464)

1 6 (0.8580,1.5164)

2 5 (0.8138,1.4461)

3 23 (0.7853,1.4067)

4 32 (0.7264,1.3702)

5 31 (0.6967,1.3518)

6 30 (0.6817,1.3426)

7 29 (0.6742,1.3380)

8 28 (0.6704,1.3356)

9 26 (0.6686,1.3345)

10 25 (0.6676,1.3339)

11 23 (0.6671,1.3336)

12 22 (0.6669,1.3335)

13 21 (0.6668,1.3334)

14 19 (0.6667,1.3334)

15 18 (0.6667,1.3334)

16 16 (0.6667,1.3333)

17 15 (0.6667,1.3333)
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Table 3

Iterates from the quadratic penalty method for the test function f11(x). The convergence criterion for the inner

loops is 10−16.

log2 λ Iters (q = 0) Iters (q = 1) xλ

0 18 5 (3.0000,1.8000)

1 2 2 (2.8571,1.7143)

2 56 6 (2.6667,1.6667)

3 97 5 (2.5455,1.6364)

4 167 5 (2.4762,1.6190)

5 312 5 (2.4390,1.6098)

6 541 6 (2.4198,1.6049)

7 955 5 (2.4099,1.6025)

8 1674 4 (2.4050,1.6012)

9 2924 3 (2.4025,1.6006)

10 4839 3 (2.4013,1.6003)

11 7959 4 (2.4006,1.6002)

12 12220 4 (2.4003,1.6001)

13 17674 4 (2.4002,1.6000)

14 21739 3 (2.4001,1.6000)

15 20736 3 (2.4000,1.6000)

16 8073 3 (2.4000,1.6000)

17 111 3 (2.4000,1.6000)

18 6 4 (2.4000,1.6000)

19 5 2 (2.4000,1.6000)

20 3 2 (2.4000,1.6000)

21 2 2 (2.4000,1.6000)
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