
ar
X

iv
:1

00
5.

47
33

v3
 [

m
at

h.
O

C
]

 6
 A

ug
 2

01
2

A UNIFIED APPROACH FOR MINIMIZING COMPOSITE NORMS

N. S. AYBAT∗ AND G. IYENGAR†

Abstract. We propose a first-order augmented Lagrangian algorithm (FALC) to solve the composite norm minimization
problem

minX∈Rm×n µ1‖σ(F(X) −G)‖α + µ2‖C(X) − d‖β ,
subject to A(X) − b ∈ Q,

where σ(X) denotes the vector of singular values of X ∈ R
m×n, the matrix norm ‖σ(X)‖α denotes either the Frobenius,

the nuclear, or the ℓ2-operator norm of X, the vector norm ‖.‖β denotes either the ℓ1-norm, ℓ2-norm or the ℓ∞-norm; Q is
a closed convex set and A(.), C(.), F(.) are linear operators from R

m×n to vector spaces of appropriate dimensions. Basis
pursuit, matrix completion, robust principal component pursuit (PCP), and stable PCP problems are all special cases of the
composite norm minimization problem. Thus, FALC is able to solve all these problems in a unified manner. We show that
any limit point of FALC iterate sequence is an optimal solution of the composite norm minimization problem. We also show
that for all ǫ > 0, the FALC iterates are ǫ-feasible and ǫ-optimal after O(log(ǫ−1)) iterations, which require O(ǫ−1) constrained
shrinkage operations and Euclidean projection onto the set Q. Surprisingly, on the problem sets we tested, FALC required only
O(log(ǫ−1)) constrained shrinkage, instead of the O(ǫ−1) worst case bound, to compute an ǫ-feasible and ǫ-optimal solution.
To best of our knowledge, FALC is the first algorithm with a known complexity bound that solves the stable PCP problem.

1. Introduction. In this paper we consider the class of composite norm minimization problems defined
in (1.1).

min
X∈Rm×n

µ1‖σ(F(X)−G)‖α + µ2‖C(X)− d‖β subject to A(X)− b ∈ Q, (1.1)

where µ1, µ2 ≥ 0, b ∈ R
q, A : Rm×n → R

q denotes a linear map, Q ⊂ R
q is a nonempty, closed convex

set, d ∈ R
p, C : Rm×n → R

p is a linear map, G ∈ R
r1×r2 , F : R

m×n → R
r1×r2 is a linear map, and

the function σ(Z) denotes the singular values of the matrix Z. The parameter β ∈ {1, 2,∞}, and ‖.‖β
denotes the ℓβ vector norm. The parameter α ∈ {1, 2,∞}, and for α = 1, 2,∞, the norm ‖σ(Z)‖α denotes,
respectively, the nuclear norm ‖X‖∗ = ‖σ(X)‖1, the Frobenius norm ‖X‖F = ‖σ(X)‖2, and the ℓ2-operator
norm ‖X‖2 = ‖σ(X)‖∞. Except for Section 6 we assume the following.

Assumption 1.1. The linear map A is surjective, and, at least, one of the linear maps C and F in the
objective function is injective.

Since at least one of the linear maps C and F are injective, it follows that the objective function
µ1‖σ(F(X) − G)‖α + µ2‖C(X)− d‖β of (1.1) goes to ∞ as ‖X‖F → ∞, i.e. Assumption 1.1 ensures that
the objective function of (1.1) is coercive, and hence, an optimal solution to (1.1) exists.

The composite norm minimization problem (1.1) appears in the context of “structured” or “sparse”
optimization where desired solution is “structured” in some form – the solution matrix may be sparse, i.e.
has very few non-zero components, or it may be low rank, or the indices of its non-zero coefficients may
all belong to a union of few given index sets, i.e. “groups”. We show in Section 1.2 that many well-known
“structured” optimization problems such as basis pursuit, matrix completion, robust principal component
pursuit (PCP), and stable PCP, are all special cases of (1.1). Moreover, Assumption 1.1 is satisfied in all
these special cases.

Composite norm minimization problem (1.1) can be reformulated as a semidefinite programming prob-
lem (SDP); hence, it can be solved efficiently in theory. However, instances of (1.1) that arise in practice
are very large and typically dense. Therefore, interior point based SDP solvers perform very poorly on these
instances.

1.1. New Results. We propose a first-order augmented Lagrangian algorithm (FALC) to solve (1.1).
The main results of this paper are as follows:
(a) We establish that every limit point X̄ of the sequence of FALC iterates {X(k)}k∈Z+ is an optimal solution

of (1.1), i.e.,

X̄ ∈ argmin
X∈Rm×n

{

µ1‖σ(F(X)−G)‖α + µ2‖C(X)− d‖β : A(X)− b ∈ Q
}

.

∗IEOR Department, Columbia University. Email: nsa2106@columbia.edu
†IEOR Department, Columbia University. Email: gi10@columbia.edu

1

http://arxiv.org/abs/1005.4733v3

(b) Let P ∗ denote the optimal value of (1.1). For all ǫ > 0, the FALC iterates X(k) are ǫ-feasible, i.e. there
exists y(k) ∈ Q such that

‖A(X(k))− y(k) − b‖2 ≤ ǫ,

and ǫ-optimal, i.e.

∣

∣

(

µ1‖σ(F(X(k))−G)‖α + µ2‖C(X(k))− d‖β
)

− P ∗∣
∣ ≤ ǫ,

after O(log(ǫ−1)) FALC iterations that requires O(ǫ−1) projections on to Q and O(ǫ−1) “constrained
shrinkage” operations in the worst case - see (3.41) and (3.42) for the definition and complexity of each
“constrained shrinkage” operation.

(c) FALC can be extended to solve the following more general optimization problem

minX∈Rm×n µ1‖σ(F(X)−G)‖α + µ2‖C(X)− d‖β + µ3H(X) s.t. A(X)− b ∈ Q, (1.2)

where H : Rm×n → R is a strongly convex function, with the same complexity guarantees.
(d) In our numerical tests we observed that FALC required only O(log(ǫ−1)) projection and shrinkage

operations as opposed to O(ǫ−1) the worst case theoretical bound proven in the paper to obtain an
ǫ-feasible and ǫ-optimal solution.

(e) We also observed that, although, FALC is a general-purpose algorithm for the composite norm mini-
mization problem (1.1), the numerical results show that FALC is competitive with the state-of-the-art
special purpose algorithms designed for all special cases that we tested.

1.2. Special Cases. We show below that many well studied “structured” optimization problems are
special cases of (1.1).

Nuclear norm-minimization. The nuclear norm minimization problem

min
X∈Rm×n

‖X‖∗ subject to (s.t.) A(X) = b. (1.3)

is a special case of (1.1) with Q = {0}, F(X) = X , G = 0, α = 1, i.e. ‖σ(X)‖1 = ‖X‖∗, µ1 = 1,
and µ2 = 0. The nuclear norm minimization problem is a convex approximation for the NP-hard rank
minimization problem minX∈Rm×n{rank(X) : A(X) = b}, where rank(X) denotes the rank of X ∈ R

m×n.
Rank minimization arises in many different contexts, e.g. system identification [32], optimal control [18, 19,
16], low-dimensional embedding in Euclidean space [31], and matrix completion [11].

Let X0 ∈ R
m×n be the unknown low-rank matrix such that A(X0) = b. Let r = rank(X0) and

n̄ = max{m,n}. When the linear operator A : Rm×n → R
q satisfies some regularity properties, and the

number of measurements q = O(r(m + n) log(mn)), Recht et al. [35] show that, with very high probability,
(1.3) has a unique optimal solution and this solution is also optimal for the rank minimization problem.

Another related special case is the matrix completion problem where the operator A picks a subset of
the matrix elements, i.e., the linear constraints are of the form: Xij = (X0)ij for (i, j) ∈ Ω, where Ω is
a given index set of observable entries of an unknown low rank matrix X0 ∈ R

m×n. When indices (i, j)
are sampled uniformly at random, and |Ω| = O(n̄1.2r log(n̄)) and the unknown matrix X0 satisfies some
regularity conditions, Candés et al. [11] show that, with high probability, X0 is the unique solution of the
matrix completion problem. The Netflix prize problem [34] is an example of the matrix completion problem.

(1.3) can be reformulated as an SDP; however, instances of (1.3) that arise in practice are so large
that standard SDP solvers are unable to solve them. For existing algorithmic methodologies for solving the
nuclear norm minimization problem, see [6, 22, 29, 30, 33, 36] and references therein.

Basis-pursuit problem. The basis pursuit problem

min
x∈Rn

‖x‖1 s.t. Ax = b, (1.4)

where A ∈ R
q×n and b ∈ R

q, is a special case of (1.1) with Q = {0}, C(x) = x ∈ R
n×1, d = 0, β = 1,

µ1 = 0 and µ2 = 1. The basis pursuit problem has attracted a lot of attention recently, since it appears in
the context of compressed sensing (CS) [7, 8, 9, 15]. The goal in CS is to recover a sparse signal x0 ∈ R

n

2

from a small set of linear measurements or transform values b = Ax0, or equivalently, to solve the NP-hard
ℓ0-minimization problem

min
x∈Rn

‖x‖0 s.t. Ax = b, (1.5)

where the ℓ0-norm ‖x‖0 =
∑n

i=1 1(xi 6= 0) and 1(·) is equal to 1 if the argument is true, 0 otherwise.
Recently, Candés, Romberg and Tao [7, 8, 9] and Donoho [15] have shown that, if the target signal x0 is
s-sparse, i.e. ‖x0‖0 = s, the matrix A ∈ R

q×n has q = O(s log(n)) and is chosen randomly according to a
specific set of distributions, then, with very high probability, the sparse target signal x0 is the unique optimal
solution of the basis pursuit problem (1.4). Thus, x0 can be recovered by solving a linear program (LP), and
therefore, in theory, signal recovery is very efficient. In practice, however, simplex and interior point based
general purpose LP solvers are unable to solve such LPs efficiently because the matrix A in (1.4) is large,
dense, and often ill-conditioned. The measurement matrix A in many CS applications has a lot of structure,
in particular, the matrix-vector multiplication Ax and AT y can be computed efficiently in O(n log(n)) time.
Recently, a number of different algorithms have been proposed to exploit this structural fact to efficiently
solve (1.4) [3, 2, 14, 21, 23, 24, 26, 38, 39, 41] . Note that the “noisy” basis pursuit problem

min
x∈Rn

‖x‖1 s.t. ‖Ax− b‖2 ≤ δ,

is a special case of (1.1) with Q = {y ∈ R
q : ‖y‖2 ≤ δ}.

Principal component pursuit. The principal component pursuit problem

min
X∈Rm×n

‖X‖∗ + µ2‖vec(X)− d‖1, (1.6)

is a special case of (1.1) with A = 0, b = 0, Q = {0}, F(X) = X , G = 0, α = 1, i.e. ‖σ(X)‖α = ‖X‖∗,
β = 1, and C(X) = vec(X), where vec(X) is the vector obtained by stacking the columns of X ∈ R

m×n

in order, and β = 1. Suppose the data matrix D ∈ R
m×n is of the form D = X0 + S0, where X0 is a low

rank matrix, S0 is a sparse matrix, and both satisfy some regularity conditions given in [10, 29]. Then the
low rank and sparse components of D can be recovered by solving (1.6) with d = vec(D) and µ2 = 1/

√
n̄,

where n̄ = max{m,n} [10, 29]. For existing algorithmic approaches for solving principal component pursuit,
see [10, 22, 29, 30, 42] and references therein.

In [42], it is shown that recovery is still possible even when the data matrix D is corrupted by a dense
error matrix. Suppose the data matrix D is of the form D = X0 + S0 + ζ0, where (ζ0)ij is independent and
identically distributed (i.i.d.) for all i, j such that ‖ζ0‖F ≤ δ. Then the optimal solution (X∗, S∗) of the
stable principal component pursuit problem

minX,S∈Rm×n ‖X‖∗ + 1√
n̄
‖vec(S)‖1,

s.t. ‖X + S −D‖F ≤ δ,
(1.7)

satisfies ‖X∗−X0‖2F + ‖S∗−S0‖2F ≤ c mnδ2 for some constant c with high probability. The stable principle
component pursuit is a special case of (1.1) with A(X,S) = vec(X + S), b = vec(D), Q = {y ∈ R

mn :
‖y‖2 ≤ δ}.

Composite norm minimization with conic constraints. The goal in the minimal system realiza-
tion problem is to design the lowest order discrete-time, linear time-invariant (LTI) dynamical system that
is consistent with the observed data. Let xi be the true (unknown) impulse response of the system at time i
for i = 1, . . . , n. Suppose that we observe noisy data x̃i = xi + εi, i = 1, . . . , n, where {εi} are i.i.d. uniform
over [−̺, ̺]. It is well-known [17, 20] that the minimum order system consistent with the observations can
be computed by solving

min
x∈R2n−1

rank(Hn(x)) s.t. ‖xn
1 − x̃n

1 ‖∞ ≤ δ,

where Hn(x) be the Hankel matrix formed by x ∈ R
2n−1 and xn

1 (resp. x̃n
1) denotes the vector formed by

the first n components of x (resp. x̃). This rank-minimization problem can be approximated by the nuclear
norm minimization problem

min
x∈R2n−1

‖Hn(x)‖∗ s.t. ‖xn
1 − x̃n

1‖∞ ≤ δ. (1.8)

3

Algorithm APG(p, f,S, x(0), ITERstop,GRADstop)

1: x
(0)
1 ← x(0), x

(1)
2 ← x(0), t(1) ← 1, ℓ← 0

2: while ITERstop(ℓ) and GRADstop(x
(ℓ)
1) are false do

3: ℓ← ℓ+ 1

4: x
(ℓ)
1 ← argmin

{

p(x) +
〈

∇f(x
(ℓ)
2), x− x

(ℓ)
2

〉

+ L
2
‖x− x

(ℓ)
2 ‖ : x ∈ S

}

5: t(ℓ+1) ←

(

1 +
√

1 + 4
(

t(ℓ)
)2

)

/2

6: x
(ℓ+1)
2 ← x

(ℓ)
1 +

(

t(ℓ)−1

t(ℓ+1)

)(

x
(ℓ)
1 − x

(ℓ−1)
1

)

7: end while

8: return x
(ℓ)
1

Fig. 2.1: Accelerated Proximal Gradient Algorithm

Since Hn(.) is injective, A(x) = [x1, . . . , xn]
T is surjective, and Q = {y ∈ R

n : ‖y‖∞ ≤ δ} is a closed convex
set, (1.8) is a special case of (1.1).

In the sparse PCA problem

min
x∈Rn

‖Σ− xxT ‖F s.t. ‖x‖0 ≤ s, (1.9)

the goal is to compute an s-sparse vector x that is “close” to the eigenvector corresponding to the largest
eigenvalue of the positive semidefinite matrix Σ. Let X = xxT . Then (1.9) is equivalent to

min
X∈Rm×n

‖X − Σ‖F s.t. ‖vec(X)‖0 ≤ s2, rank(X) = 1, X � 0.

Since ‖X‖∗ is the tightest convex upper bound for rank(X), and ‖X‖∗ = Tr(X) for positive semidefinite (psd)
matrices, the convex relaxation

minX∈Rn×n ‖X − Σ‖F + µ‖vec(X)‖1 + ν 〈I,X〉 ,
s.t. X � 0,

(1.10)

for (1.9), where µ and ν control the sparsity on the entries and the singular values of X , respectively, is a
special case of (1.1) with Q set as the cone of psd matrices (the linear term in the objective function over
psd cone can be handled easily). See [12, 13, 25] for existing approaches for solving the sparse PCA problem.

In Section 6, we show that FALC can be easily extended to solve problems of the form given in (1.2).
When F 6≡ 0, we do not require that C or F be injective. Thus, FALC is able to solve regularized conic
optimization problems of the form

min
X∈Rm×n

〈R,X〉+ ρ‖X‖2F s.t. B � A(X),

where A is a surjective map.
This paper is organized as follows. In Section 3 we prove the main convergence results for FALC and in

Section 4 we discuss all the implementation details. In Section 5 we report the results from our numerical
experiments comparing FALC with other algorithms to solve principle component pursuit problems. Finally,
in Section 6, we briefly discuss the general problem (1.2) and conclude.

2. Preliminaries. In this section we state and briefly discuss the details of a particular implementation
of Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [4] that we use as a subroutine in FALC. Let
E be a Hilbert space and ‖.‖ =

√

〈., .〉. FISTA computes an ǫ-optimal solution of

min
x∈E

p(x) + f(x), (2.1)

in O(1/ǫ) iterations, where p : E → R and f : E → R are continuous convex functions such that ∇f is
Lipschitz continuous on E with constant L. Later, Tseng [37] showed that this rate result for FISTA also
holds when p : E → (−∞,+∞] and f : E → (−∞,+∞] that are proper, lower semicontinuous, and convex
functions such that dom p is closed and ∇f is Lipschitz continuous on E . Moreover, for any given convex

4

set S ⊂ E such that S ∩ argminx∈E{p(x) + f(x)} 6= ∅, one can ensure that the iterate sequence lies in the
convex set S and all the iterates are ǫ-optimal after O(1/ǫ) iterations. We use this property later in the
paper to uniformly bound the FALC iterates.

Algorithm APG displayed in Figure 2.1 takes as input the functions f and p, the convex set S ⊂ E
such that S ∩ argminx∈E{p(x) + f(x)} 6= ∅, an initial iterate x(0) ∈ E and two stopping criteria ITERstop

and GRADstop. Algorithm APG is the same as Algorithm 2 in [37] where we have set Xℓ ≡ S (see [37]
for details). Indeed, Algorithm 2 in [37] is a modification of FISTA [4] and reduces to FISTA when S = E .
FISTA and Algorithm 2 in [37] do not use ITERstop and GRADstop – we include them in the definition
of Algorithm APG because we terminate the algorithm early when we call it as a subroutine in FALC.
ITERstop(ℓ) is a stopping criterion that only depends on the current iterate counter ℓ and GRADstop(x)
is a stopping criterion that only depends on its argument x. Lemma 2.1 gives the iteration complexity of
Algorithm APG.

Lemma 2.1. Let p and f be a proper, lower semicontinuous, convex functions such that dom p is

closed and ∇f is Lipschitz continuous on E with constant L. Fix ǫ > 0 and let {x(ℓ)
1 , x

(ℓ)
2 }ℓ∈Z+ denote the

Algorithm APG iterates when both ITERstop and GRADstop are disabled. Then p(x
(ℓ)
1) + f(x

(ℓ)
1) ≤

minX∈E{p(x) + f(x)}+ ǫ whenever ℓ ≥
√

2L
ǫ ‖x∗ − x(0)‖ − 1, where x∗ ∈ argminx∈E{p(x) + f(x)}.

Proof. See Corollary 3 in [37] and Theorem 4.4 in [4] for the details of proof.

Algorithm FALC
({(

λ(k), ǫ(k), τ (k), ξ(k)
)}

k∈Z+
, X(0)

)

1: y(0) ← A(X(0))− b, s(0) ← C(X(0))− d
2: η ← µ1‖σ(X(0))‖α + µ2‖C(X(0)) − d‖β

3: θ
(1)
1 ← 0, θ

(1)
2 ← 0, k ← 0

4: while (FALCstop is false) do

5: k ← k + 1
6: p(k)(X, s, y) := λ(k)(µ1‖σ(X)‖α + µ2‖s‖β)

7: f(k)(X, s, y) := 1
2
‖A(X) − y − b− λ(k)θ

(k)
1 ‖

2
2 + 1

2
‖C(X) − s− d− λ(k)θ

(k)
2 ‖

2
2

8: η
(k)
1 ← η + λ(k)

2

(

‖θ
(k)
1 ‖

2
2 + ‖θ

(k)
2 ‖

2
2

)

9: S(k) := {(X, s, y) ∈ R
m×n × R

p × R
q : µ1‖σ(X)‖α ≤ η

(k)
1 , µ2‖s‖β ≤ η

(k)
1 }

10: ITERstop(ℓ) := {ℓ ≥ ℓ
(k)
max}, where ℓ

(k)
max is defined in (3.12)

11: GRADstop1(X, s, y) :=
{

∃(G, g) ∈ ∂X,sP
(k)(., ., .)|(X,s,y) s.t.

√

‖G‖2
F

+ ‖g‖22 ≤ τ (k)
}

12: GRADstop2(X, s, y) :=
{

‖y −ΠQ

(

y − 1
L
∇yP (k)(X, s, y)

)

‖2 ≤ ξ(k)
}

13: GRADstop := GRADstop1 and GRADstop2

14: (X(k), s(k), y(k))← Algorithm APG(p(k), f(k),S(k),
(

X(k−1), s(k−1), y(k−1)
)

, ITERstop,GRADstop)

15: θ
(k+1)
1 ← θ

(k)
1 − A(X(k))−y(k)−b

λ(k)

16: θ
(k+1)
2 ← θ

(k)
2 −

C(X(k))−s(k)−d

λ(k)

17: end while

18: return (X(k), s(k), y(k))

Fig. 3.1: Outline of First-Order Augmented Lagrangian Algorithm (FALC)

3. FALC Algorithm. For the sake of notational simplicity, we focus on the following simpler problem
in this section.

min
X∈Rm×n

µ1‖σ(X)‖α + µ2‖C(X)− d‖β subject to A(X)− b ∈ Q. (3.1)

We give convergence results for FALC when µ1 > 0 and µ2 > 0. In Section 6 we briefly describe how to
modify the algorithm to solve (1.2).

The linear maps A and C in (3.1) can be represented as A(X) = Avec(X) and C(X) = C vec(X),
where A ∈ R

q×mn and C ∈ R
p×mn. Let σmin(A) and σmax(A) denote the smallest and the largest singular

values of A, respectively. Since we assume that A is surjective (see Assumption 1.1), A has full row rank;

consequently, AT has full column rank. We set M :=

(

−I 0 C
0 −I A

)

and L = σ2
max(M). Let X∗ denote

an optimal solution of (3.1) and ΠQ : Rq → Q denote the Euclidean projection onto Q ⊂ R
q.

5

To obtain separable and efficiently solvable subproblems, we introduce slack variables s ∈ R
p and y ∈ R

q,
and reformulate (3.1) as

minX,s,y µ1‖σ(X)‖α + µ2‖s‖β,
s.t. C(X) − s = d,

A(X) − y = b,
y ∈ Q.

(3.2)

We solve (3.2) by inexactly solving a sequence of optimization problems of the form

min
X∈Rm×n, s∈Rp, y∈Q⊂Rq

λ(k)(µ1‖σ(X)‖α + µ2‖s‖β)
− λ(k)(θ

(k)
1)T (A(X)− y − b) + 1

2‖A(X)− y − b‖22
− λ(k)(θ

(k)
2)T (C(X)− s− d) + 1

2‖C(X)− s− d‖22

, (3.3)

for an appropriately chosen sequence {(λ(k), θ
(k)
1 , θ

(k)
2)}k∈Z+ . By completing squares, it is easy to see that

(3.3) is equivalent to

min
X∈Rm×n, s∈Rp, y∈Q⊂Rq

P (k)(X, s, y), (3.4)

where

P (k)(X, s, y) := λ(k)(µ1‖σ(X)‖α + µ2‖s‖β) + f (k)(X, s, y),

f (k)(X, s, y) := 1
2‖A(X)− y − b− λ(k)θ

(k)
1 ‖22 + 1

2‖C(X)− s− d− λ(k)θ
(k)
2 ‖22.

(3.5)

Algorithm FALC displayed in Figure 3.1 is the outline of Algorithm FALC. The algorithm takes as
inputs the sequence

{(

λ(k), ǫ(k), τ (k), ξ(k)
)}

k∈Z+
and a starting point

(

X(0), s(0), y(0)
)

such that A(X(0))−b ∈
Q, y(0) := A(X(0))−b ∈ Q, and s(0) := C(X(0))−d. In Section 4.3 we describe how we set the input sequence.

Let (X
(k)
∗ , s

(k)
∗ , y

(k)
∗) denote an optimal solution of (3.4).

3.1. Algorithm APG for subproblems. In each iteration of FALC, we call Algorithm APG

displayed in Figure 2.1 to inexactly solve (3.4), which we call the “k-th subproblem”. Let 1Q denote the
indicator function of the closed convex set Q ⊂ R

q, i.e., if y ∈ Q, then 1Q(y) = 0; otherwise, 1Q(y) = ∞.
µ1‖σ(X)‖α+µ2‖s‖β +1Q(y) is a proper, lower semicontinuous (lsc), convex function of (X, s, y). Moreover,
f (k)(X, s, y) is a proper, lsc, convex function that has a Lipschitz continuous gradient, ∇f (k), defined on
R

m×n × R
p × R

q with Lipschitz constant equal to L for all k ≥ 1. Thus, (3.4) is of the form described in
(2.1). In each update step of Algorithm APG i.e. line 4 in Figure 2.1, we need to solve one problem of
the form

min
(X,s,y)∈S(k) : y∈Q

λ(k)(µ1‖σ(X)‖α + µ2‖s‖β) +

∇Xf (k)(X̃, s̃, ỹ)

∇sf
(k)(X̃, s̃, ỹ)

∇yf
(k)(X̃, s̃, ỹ)

T

X − X̃
s− s̃
y − ỹ

+L
2 ‖X − X̃‖2F + L

2 ‖s− s̃‖22 + L
2 ‖y − ỹ‖22

, (3.6)

for a given (X̃, s̃, ỹ). Note that (3.6) is separable in X , s and y variables. Solving (3.6) reduces to one
“constrained shrinkage” in X ∈ R

m×n, see (3.41); one “constrained shrinkage” in s ∈ R
p, see (3.42); and

one Euclidean projection onto Q in y ∈ R
q.

3.2. Convex set S(k) and the initial iterate for k-th subproblem. In the k-th FALC iteration,
we solve (3.4) over the convex set S(k) defined in Figure 3.1, using Algorithm APG starting from the
initial iterate (X(k−1), s(k−1), y(k−1)).

Let η := µ1‖σ(X(0))‖α + µ2‖C(X(0))− d‖β and η
(k)
1 := η+ λ(k)

2

(

‖θ(k)1 ‖22 + ‖θ(k)2 ‖22
)

. For all k ≥ 1, since

(X
(k)
∗ , s

(k)
∗ , y

(k)
∗) ∈ argminX∈Rm×n, s∈Rp, y∈Rq{P (k)(X, s, y) : y ∈ Q}, we have

µ1‖σ(X(k)
∗)‖α + µ2‖s(k)∗ ‖β ≤ P (k)(X

(k)
∗ , s

(k)
∗ , y

(k)
∗)

λ(k)
≤ P (k)(X(0), s(0), y(0))

λ(k)
= η

(k)
1 . (3.7)

Above inequality ensures that S(k) ∩ argmin{P (k)(X, s, y) : X ∈ R
m×n, s ∈ R

p, y ∈ Q} 6= ∅.
6

3.3. ITERstop and GRADstop: Stopping criteria for Algorithm APG. Next, we discuss the
stopping criteria set in Line 10 and Line 13 of Figure 3.1.

3.3.1. ITERstop. Let {(X(k,ℓ)
1 , s

(k,ℓ)
1 , y

(k,ℓ)
1)}ℓ∈Z+ denote the sequence of x1-iterates when Algorithm

APG is called to solve the k-th sub-problem. For the sake of notational simplicity, let h(k)(X, s, y) :=
‖X −X(k−1)‖2F + ‖s− s(k−1)‖22 + ‖y − y(k−1)‖22. Hence, Lemma 2.1 establishes that

P (k)(X
(k,ℓ)
1 , s

(k,ℓ)
1 , y

(k,ℓ)
1) ≤ inf

X,s,y
{P (k)(X, s, y) : y ∈ Q}+ ǫ(k) for ℓ ≥

√

√

√

√

2Lh(k)
(

X
(k)
∗ , s

(k)
∗ , y

(k)
∗
)

ǫ(k)
−1 (3.8)

where L = σ2
max(M) is the Lipschitz constant of ∇f (k) for all k ≥ 1. Triangular inequality implies that

√

h(k)
(

X
(k)
∗ , s

(k)
∗ , y

(k)
∗
)

≤ ‖X(k)
∗ ‖F + ‖X(k−1)‖F + ‖s(k)∗ ‖2 + ‖s(k−1)‖2 + ‖y(k)∗ ‖2 + ‖y(k−1)‖2. (3.9)

It is easy to show that

1

I(α∗)
‖σ(X)‖α ≤ ‖X‖F ≤ I(α)‖σ(X)‖α,

1

J(β∗)
‖x‖β ≤ ‖x‖2 ≤ J(β)‖x‖β , (3.10)

where

I(α) =

{ √

min{m,n}, α = ∞,
1, otherwise,

J(β) =

{ √
p, β = ∞,

1, otherwise,
(3.11)

and α∗ (resp. β∗) denotes the Hölder conjugate of the α (resp. β), i.e., 1
α + 1

α∗ = 1. In Lemma A.1 in
Appendix A we show that

η
(k)
2 := σmax(A)

I(α)

µ1
η
(k)
1 + ‖b+ λ(k)θ

(k)
1 ‖F + 2‖A(X(0))− b‖2

is an upper bound on ‖y(k)∗ ‖2. Note that when Q is a bounded set such that Q ⊆ {y : ‖y‖2 ≤ η2}. Then,

one can set η
(k)
2 := η2 for all k ≥ 1. Let

ℓ(k)max :=

√

2L

ǫ(k)

[(

I(α)

µ1
+

J(β)

µ2

)

η
(k)
1 + η

(k)
2 + ‖X(k−1)‖F + ‖s(k−1)‖2 + ‖y(k−1)‖2

]

. (3.12)

Then, clearly ℓ
(k)
max satisfies the following inequality

√

√

√

√

2Lh(k)
(

X
(k)
∗ , s

(k)
∗ , y

(k)
∗
)

ǫ(k)
≤ ℓ(k)max.

Thus, (3.8) implies that when Algorithm APG terminates due to ITERstop(ℓ), the iterate (X
(k,ℓ)
1 , s

(k,ℓ)
1 ,

y
(k,ℓ)
1) is ǫ(k)-optimal.

3.3.2. GRADstop. The stopping condition GRADstop in Line 13 of Figure 3.1 is used to terminate
the Algorithm APG when a certain set of perturbed first-order optimality conditions hold at the current
iterate. Specifically, Algorithm APG stops according to GRADstop, when we have

(1)
√

‖G‖2F + ‖g‖22 ≤ τ (k), for some (G, g) ∈ ∂X,sP
(k)(., ., .)|(X(k),s(k),y(k))

(2) ‖y(k) −ΠQ
(

y(k) − 1
L∇yP

(k)(X(k), s(k), y(k))
)

‖2 ≤ ξ(k),
(3.13)

where

∂X,sP
(k)(., ., .)|(X(k),s(k),y(k))

=

{

(G, g) ∈ R
m×n × R

p :
G ∈ λ(k)µ1 ∂‖σ(.)‖α|X(k) +∇Xf (k)(X(k), s(k), y(k)),

g ∈ λ(k)µ2 ∂‖.‖β|s(k) +∇sf
(k)(X(k), s(k), y(k)),

}

. (3.14)

7

denotes the projection of ∂P (k) at (X(k), s(k), y(k)) onto the X and s co-ordinates. Note that (3.13) would
indeed be the first-order optimality conditions if τ (k) and ξ(k) were both set to 0.

In our numerical experiments, we found that the calls to Algorithm APG were almost always termi-
nated by the gradient-based stopping condition GRADstop. This suggests that relying on only ITERstop

to terminate calls to Algorithm APG is likely to be very inefficient.

3.4. Convergence Results. Given ǫ > 0, let NFALC(ǫ) be the number of times Algorithm APG

is called within Algorithm FALC until an ǫ-feasible and ǫ-optimal solution to (3.1) is found. During
the k-th call, Algorithm APG inexactly solves the k-th subproblem (3.4). Let N (k) denote the number of
iterationsAlgorithm APG needs until one of the stopping criteria ITERstop, GRADstop or FALCstop

is met, where FALCstop is the stopping condition for Algorithm FALC. Finally, let Ninner be the total
number Algorithm APG iterations until an ǫ-optimal and ǫ-feasible solution to (3.1) is computed, i.e.

Ninner =
∑NFALC(ǫ)

k=1 N (k).

We begin by establishing bounds on the sequence of dual iterates {θ(k)1 }k∈Z+ and {θ(k)2 }k∈Z+ . In order to

establish this result, we need to bound the infeasibility of an ǫ(k)-optimal solution to the k-th sub-problem.
In each iteration of FALC we solve a sub-problem of the form: minX,s,y{P (X, s, y) : y ∈ Q}, where

P (X, s, y) = λ(µ1‖σ(X)‖α + µ2‖s‖β) +
1

2
‖A(X)− y − b− λθ1‖22 +

1

2
‖C(X)− s− d− λθ2‖22.

Suppose (X̄, s̄, ȳ) is ǫ-optimal, i.e., 0 ≤ P (X̄, s̄, ȳ) − minX,s,y{P (X, s, y) : y ∈ Q} ≤ ǫ. In Lemma A.2 in
Appendix A we establish that

‖C(X̄)− s̄− d− λθ2‖2 ≤ J(β∗)µ2λ+ σmax(M)
√
2ǫ,

‖A∗ (A(X̄)− ȳ − b− λθ1
)

+ C∗ (C(X̄)− s̄− d− λθ2
)

‖F ≤ I(α∗)µ1λ+ σmax(M)
√
2ǫ,

(3.15)

With this bound, we are now ready to show that the dual iterates are bounded.

Lemma 3.1. For all k > 1, the elements of {θ(k)1 }k∈Z+ and {θ(k)2 }k∈Z+ satisfy the following relation

‖θ(k)2 ‖2 ≤ max

{

σmax(M)

√

2ǫ(k−1)

(λ(k−1))2
,
τ (k−1)

λ(k−1)

}

+ J(β∗)µ2, (3.16a)

‖θ(k)1 ‖2 ≤ 1

σmin(A)

[

σmax(C)‖θ(k)2 ‖2 +max

{

σmax(M)

√

2ǫ(k−1)

(λ(k−1))2
,
τ (k−1)

λ(k−1)

}

+ I(α∗)µ1

]

. (3.16b)

Proof. Consider the following two cases:
(a) The k-th call to Algorithm APG terminates with ITERstop: Since the iterate is ǫ(k)-optimal, the

bound (3.15) implies that

‖C(X(k))− s(k) − d− λ(k)θ
(k)
2 ‖2 ≤ J(β∗)µ2λ

(k) + σmax(M)
√

2ǫ(k) , (3.17a)

‖A∗(A(X(k))− y(k) − b− λ(k)θ
(k)
1) + C∗(C(X(k))− s(k) − d− λ(k)θ

(k)
2)‖F

≤ I(α∗)µ1λ
(k) + σmax(M)

√

2ǫ(k). (3.17b)

(b) The k-th call to Algorithm APG terminates with GRADstop: In this case, there exists Q(k) ∈
∂‖σ(.)‖α|X(k) and q(k) ∈ ∂‖.‖β|s(k) such that

√

‖λ(k)µ1Q(k) +∇Xf (k)(X(k), s(k), y(k))‖2F + ‖λ(k)µ2q(k) +∇sf (k)(X(k), s(k), y(k))‖22 ≤ τ (k).

Since ‖q(k)‖β∗ ≤ 1 and ‖σ(Q(k))‖α∗ ≤ 1, from the definition of I(.) and J(.) in (3.10), it follows that
‖σ(Q(k))‖F ≤ I(α∗) and ‖q(k)‖2 ≤ J(β∗). Then we have

‖C(X(k))− s(k) − d− λ(k)θ
(k)
2 ‖2 ≤ J(β∗)µ2λ

(k) + τ (k), (3.18a)

‖A∗(A(X(k))− y(k) − b− λ(k)θ
(k)
1) + C∗(C(X(k))− s(k) − d− λ(k)θ

(k)
2)‖F

≤ I(α∗)µ1λ
(k) + τ (k). (3.18b)

8

Thus, combining (3.17) and (3.18), and using triangular inequality it follows that for all k ≥ 1

‖C(X(k))− s(k) − d− λ(k)θ
(k)
2 ‖2 ≤ J(β∗)µ2λ

(k) +max
{

σmax(M)
√

2ǫ(k), τ (k)
}

, (3.19a)

‖A∗(A(X(k))− y(k) − b− λ(k)θ
(k)
1)‖F ≤ I(α∗)µ1λ

(k) +max
{

σmax(M)
√

2ǫ(k), τ (k)
}

+ ‖C∗(C(X(k))− s(k) − d− λ(k)θ
(k)
2)‖F . (3.19b)

Since θ
(k+1)
1 = θ

(k)
1 − A(X(k))−y(k)−b

λ(k) and θ
(k+1)
2 = θ

(k)
2 − C(X(k))−s(k)−d

λ(k) , (3.19) is obtained by dividing (3.16)

into λ(k) and using the fact that Assumption 1.1 implies that A has full row rank, i.e. σmin(A) > 0. Thus,
{

(θ
(k)
1 , θ

(k)
2)
}

k∈Z
satisfies (3.16).

Next, we establish that the FALC iterate sequence {(X(k), s(k), y(k))}k∈Z+ is bounded.

Lemma 3.2. Let (X
(k)
∗ , s

(k)
∗ , y

(k)
∗) be an optimal solution to (3.4) and let {(X(k), s(k), y(k))}k∈Z+ denote

the sequence of FALC iterates corresponding to a parameter sequence {(λ(k), ǫ(k), τ (k), ξ(k))}k∈Z+ such that

(i) penalty multiplier, λ(k) ց 0,

(ii) approximate optimality parameter, ǫ(k) ց 0 such that ǫ(k)

(λ(k))2
≤ B for all k ≥ 1 for some B > 0,

(iii) subgradient tolerance parameters, τ (k) ց 0 and ξ(k) ց 0 such that τ (k)

λ(k) → 0 and ξ(k)

λ(k) → 0 as k → ∞.

Then {(X(k)
∗ , s

(k)
∗ , y

(k)
∗)}k∈Z+ and {(X(k), s(k), y(k))}k∈Z+ are bounded sequences.

Proof. In the k-th FALC iteration, the call to Algorithm APG terminates in at most ℓ
(k)
max iter-

ations. Since ℓ
(k)
max is finite for all k ≥ 1, the sequence {(X(k), s(k), y(k))}k∈Z+ exists. In order to show

{(X(k), s(k), y(k))}k∈Z+ is a bounded sequence, we first establish that {θ(k)1 }k∈Z+ and {θ(k)2 }k∈Z+ are bounded
sequences.

Because ǫ(k)

(λ(k))2
≤ B and τ (k)

λ(k) → 0, (3.16) implies that there exist constants Bθ1 > 0 and Bθ2 > 0 such

that

max
k≥1

{‖θ(k)1 ‖2} ≤ Bθ1 , and max
k≥1

{‖θ(k)2 ‖2} ≤ Bθ2 . (3.20)

From (3.20), it follows that for i = 1, 2,

lim
k→∞

λ(k)θ
(k)
i = 0, and lim

k→∞
λ(k)‖θ(k)i ‖22 = 0. (3.21)

Also, ǫ(k)

(λ(k))2
≤ B for all k ≥ 1 implies that limk→∞ ǫ(k)

λ(k) = 0.

Now we can prove that the iterate sequence is bounded. Trivially, the choice of S(k) ensures that

µ1 max{‖σ(X(k))‖α, ‖σ(X(k)
∗)‖α} ≤ η

(k)
1 and µ2 max{‖s(k)‖β , ‖s(k)∗ ‖β} ≤ η

(k)
1 . From the definition of η

(k)
1

in Line 8 of Figure 3.1 and (3.20), it follows that for all k ≥ 1

η
(k)
1 ≤ η + λ(k)

(

B2
θ1

+B2
θ2

2

)

≤ η + λ(1)

(

B2
θ1

+B2
θ2

2

)

:= Bη1 . (3.22)

Hence, for all k ≥ 1,

µ1 max{‖σ(X(k))‖α, ‖σ(X(k)
∗)‖α} ≤ Bη1 and µ2 max{‖s(k)‖β, ‖s(k)∗ ‖β} ≤ Bη1 . (3.23)

Next we show that {y(k)}k∈Z+ and {y(k)∗ }k∈Z+ are bounded. From the definition of θ
(k+1)
1 in Line 15 of

Figure 3.1, we have y(k) = λ(k)(θ
(k+1)
1 − θ

(k)
1) +A(X(k))− b for all k ≥ 1. Hence, ‖y(k)‖2 ≤ λ(k)‖(θ(k+1)

1 −
θ
(k)
1)‖2 + ‖A(X(k))− b‖2 for all k ≥ 1. From (3.20) and (3.23), it follows that there exists By > 0 such that

‖y(k)‖2 ≤ By, ∀ k ≥ 1. (3.24)

9

Moreover, Lemma A.1 in Appendix A guarantees that for all k ≥ 1, ‖y(k)∗ ‖2 ≤ η
(k)
2 , where η

(k)
2 is given in

(A.3) in Appendix A. Since η
(k)
1 ≤ Bη1 for all k ≥ 1, (3.21) and (A.3) imply that there exists a constant

Bη2 > 0 such that

‖y(k)∗ ‖2 ≤ Bη2 , ∀ k ≥ 1. (3.25)

Theorem 3.3. Let X = {X(k)}k∈Z+ denote the FALC iterate sequence corresponding to a parameter

sequence {(λ(k), ǫ(k), τ (k), ξ(k))}k∈Z satisfying the conditions in Lemma 3.2. Then any limit point X̄ of the
sequence X is an optimal solution of the composite norm minimization problem (3.1).

Proof. Since Lemma 3.2 guarantees that X is a bounded sequence, there exists a subsequence K ⊂ Z+

such that limk∈K X(k) = X̄ exists. We have previously shown that limk→∞ λ(k)θ
(k)
i = 0 for i ∈ {1, 2}.

Hence, (3.19a) guarantees that limk∈K s(k) = s̄ exists; similarly (3.19b) and the full row-rank assumption on
A together guarantee that limk∈K y(k) = ȳ exists. Then, taking the limit of both sides of (3.19a) for k ∈ K,
we have ‖C(X̄) − s̄ − d‖2 ≤ 0, i.e. s̄ = C(X̄) − d. Moreover, taking the limit of both sides of (3.19b) for
k ∈ K and using the fact that s̄ = C(X̄)− d, we have ‖A∗(A(X̄) − ȳ − b)‖2 ≤ 0. Since A has full row rank
and y(k) ∈ Q for all k ≥ 1, we have

A(X̄)− b = ȳ, ȳ ∈ Q. (3.26)

Therefore, we can conclude that X̄ is feasible, i.e. A(X̄)− b ∈ Q.
In the rest of the proof, we will show that X̄ ∈ argmin{µ1‖σ(X)‖α + µ2‖C(X)− d‖β : A(X)− b ∈ Q}.

We consider the following two cases:
(a) There exists a subsequence Ka ⊂ K such that for all k ∈ Ka, Algorithm APG terminates with

ITERstop; hence, the iterate (X(k), s(k), y(k)) computed in Step 14 of FALC satisfies

0 ≤ P (k)(X(k), s(k), y(k))− P (k)(X
(k)
∗ , s

(k)
∗ , y

(k)
∗) ≤ ǫ(k) ∀k ∈ Ka. (3.27)

Fix X∗ ∈ argminX∈Rm×n{µ1‖σ(X)‖α + µ2‖C(X) − d‖β : A(X) − b ∈ Q}, let s∗ := C(X∗) − d and

y∗ := A(X∗) − b. Since (X
(k)
∗ , s

(k)
∗ , y

(k)
∗) ∈ argminX∈Rm×n, s∈Rp, y∈Rq{P (k)(X, s, y) : y ∈ Q}, it follows

that P (k)(X
(k)
∗ , s

(k)
∗ , y

(k)
∗) ≤ P (k)(X∗, s∗, y∗) for k ≥ 1. Thus, (3.27) implies that P (k)(X(k), s(k), y(k)) ≤

P (k)(X∗, s∗, y∗) + ǫ(k). Hence, for all k ∈ Ka,

µ1‖σ(X(k))‖α + µ2‖s(k)‖β ≤ P (k)(X(k), s(k), y(k))

λ(k)
≤ P (k)(X∗, s∗, y∗) + ǫ(k)

λ(k)
,

= µ1‖σ(X∗)‖α + µ2‖C(X∗)− d‖β +
λ(k)

2

(

‖θ(k)1 ‖22 + ‖θ(k)2 ‖22
)

+
ǫ(k)

λ(k)
. (3.28)

Taking the limit of both sides of (3.28) along the subsequence Ka, and using the fact that s̄ = C(X̄)− d,
we get

µ1‖σ(X̄)‖α + µ2‖C(X̄)− d‖β = lim
k∈Ka

µ1‖σ(X(k))‖α + µ2‖s(k)‖β ,

≤ µ1‖σ(X∗)‖α + µ2‖C(X∗)− d‖β

+ lim
k∈Ka

{

λ(k)

2

(

‖θ(k)1 ‖22 + ‖θ(k)2 ‖22
)

+
ǫ(k)

λ(k)

}

,

= µ1‖σ(X∗)‖α + µ2‖C(X∗)− d‖β, (3.29)

where (3.29) follows from the fact that {θ(k)i } is uniformly bounded for i ∈ {1, 2}, λ(k) → 0, and
ǫ(k)/λ(k) → 0. Thus, from (3.26), (3.29) and the fact that X∗ is optimal, it follows that X̄ is also an
optimal solution for the composite norm minimization problem (3.1).

(b) There exists K ∈ K such that, for all k ∈ Kb := K ∩ {k ≥ K}, Algorithm APG terminates with
GRADstop; hence, (X(k), s(k), y(k)) satisfies (3.13).

10

For all k ∈ Kb, there exist Q(k) ∈ ∂‖σ(.)‖α|X(k) and q(k) ∈ ∂‖.‖β|s(k) such that (3.13) holds. Hence, we
have

‖λ(k)µ2q
(k) +∇sf

(k)(X(k), s(k), y(k))‖2 ≤ τ (k), (3.30a)

‖λ(k)µ1Q
(k) +∇Xf (k)(X(k), s(k), y(k))‖F ≤ τ (k), (3.30b)

‖y(k) −ΠQ

(

y(k) − 1

L
∇yf

(k)(X(k), s(k), y(k))

)

‖2 ≤ ξ(k). (3.30c)

For all k ∈ Kb, Q
(k) ∈ ∂‖σ(.)‖α|X(k) and q(k) ∈ ∂‖.‖β|s(k) , therefore, ‖σ(Q(k))‖α∗ ≤ 1 and ‖q(k)‖β∗ ≤ 1.

Hence, there exists a subsequence K′
b ⊂ Kb such that limk∈K′

b
(Q(k), q(k)) = (Q̄, q̄) exists. One can easily

show that Q̄ ∈ ∂‖σ(.)‖α|X̄ and q̄ ∈ ∂‖.‖β|s̄. Dividing both sides of (3.30a) by λ(k), we get

‖µ2q
(k) + θ

(k+1)
2 ‖2 ≤

τ (k)

λ(k)
, (3.31)

for all k ∈ Kb ⊃ K′
b. Since limk∈K′

b
q(k) = q̄ and limk∈Z+

τ (k)

λ(k) = 0, it follows that limk∈K′

b
θ
(k+1)
2 = θ̄2

exists and taking the limit of both sides of (3.31) along k ∈ K′
b, we have

θ̄2 = −µ2q̄.

Dividing both sides of (3.30b) by λ(k), we get

‖µ1Q
(k) −A∗(θ(k+1)

1)− C∗(θ(k+1)
2)‖F ≤ τ (k)

λ(k)
, (3.32)

for all k ∈ Kb ⊃ K′
b. Since limk∈K′

b
Q(k) = Q̄, limk∈Z+

τ (k)

λ(k) = 0 and A has full row rank, it follows

that limk∈K′

b
θ
(k+1)
1 = θ̄1 exists and taking the limit of both sides of (3.32) along k ∈ K′

b, we have

µ1Q̄+ µ2C∗(q̄) = A∗(θ̄1). Note that q̄ ∈ ∂‖.‖β|s̄ and s̄ = C(X̄) − d. Hence, C∗(q̄) ∈ ∂‖C(.)− d‖β |X̄ and
we have

A∗(θ̄1) = G∗ and G∗ ∈ ∂µ1‖σ(.)‖α + µ2‖C(.)− d‖β|X̄ , (3.33)

where G∗ := µ1Q̄+ µ2C∗(q̄).

Let y
(k)
p := y(k) − 1

L∇yf
(k)(X(k), s(k), y(k)) denote the gradient step. Since ξ(k) ց 0, taking the limit of

both sides of (3.30c) along k ∈ K′
b, we get

ȳ = lim
k∈K′

b

y(k) = lim
k∈K′

b

ΠQ(y
(k)
p) = ΠQ(lim

k∈K′

b

y(k)p), (3.34)

where the third equality follows from the fact that Euclidean projection ΠQ(.) is continuous when Q is

a nonempty, closed, convex set; and limk∈K′

b
y
(k)
p exists since ∇f (k) is Lipschitz continuous.

Dividing both sides of (3.30c) by λ(k) and taking the limit along k ∈ K′
b, we get

lim
k∈K′

b

‖y(k)/λ(k) −ΠQ/λ(k) (y(k)p /λ(k))‖2 = lim
k∈K′

b

‖y(k)/λ(k) −ΠQ(y
(k)
p)/λ(k)‖2 = 0, (3.35)

where the first equality follows from Lemma A.4.
For all k ∈ Kb, (3.36) follows from the definition of Euclidean projection:

〈

ΠQ/λ(k)(y(k)p /λ(k))− y(k)p /λ(k), y/λ(k) −ΠQ/λ(k)(y(k)p /λ(k))
〉

≥ 0, ∀y ∈ Q (3.36)

Since y
(k)
p /λ(k) = y(k)/λ(k) − θ

(k+1)
1 /L, multiplying the second term of the inner product in (3.36) by

λ(k) and using Lemma A.4, it follows that for all k ∈ Kb

〈

ΠQ/λ(k)(y(k)p /λ(k))− y(k)/λ(k) + θ
(k+1)
1 /L, y −ΠQ(y

(k)
p)
〉

≥ 0, ∀y ∈ Q (3.37)

11

Since limk∈K′

b
θ
(k+1)
1 = θ̄1, taking the limit of both sides of (3.37) along k ∈ K′

b ⊂ Kb and using (3.35),
we have

〈

θ̄1, y −ΠQ(lim
k∈K′

b

y(k)p)

〉

≥ 0, ∀y ∈ Q.

Thus, it follows from (3.34) and above inequality that

〈

θ̄1, y − ȳ
〉

≥ 0 ∀y ∈ Q. (3.38)

Consequently, (3.33) and (3.38) together imply that (X̄, ȳ) satisfies the first order optimality conditions
of the relaxed problem (3.39).

min
X∈Rm×n,y∈Rq

{

µ1‖σ(X)‖α + µ2‖C(X)− d‖β − (θ̄1)
T (A(X)− y − b) : y ∈ Q

}

. (3.39)

Since (3.39) is convex, it follows that (X̄, ȳ) is an optimal solution to the relaxed problem (3.39).
Moreover, from (3.26), (X̄, ȳ) is feasible to the composite normminimization problem, i.e. min{µ1‖X‖α+
µ2‖C(X)−d‖β : A(X)− y = b, y ∈ Q}. Therefore, X̄ ∈ argmin{µ1‖X‖α+µ2‖C(X)−d‖β : A(X)− b ∈
Q}.

Clearly, when (3.1) has a unique solution, the FALC iterates converge to this unique solution.
Corollary 3.4. Suppose the composite norm minimization problem (3.1) has a unique optimal so-

lution X∗. Let {X(k)}k∈Z+ denote the sequence of FALC iterates corresponding to a parameter sequence

{(λ(k), ǫ(k), τ (k), ξ(k))}k∈Z satisfying the conditions in Lemma 3.2. Then limk→∞ X(k) = X∗.
For most sparse optimization problems such as basis pursuit and the matrix completion problems,

the unknown signal can be recovered only if the corresponding convex relaxation has a unique solution.
Additionally, when the set of constraints for the basis pursuit or affine rank minimization problems are
defined by randomly generated Gaussian matrices, the unknown target signal is, with very high probability,
the unique solution to these optimization problems.

We next establish a bound on the iteration complexity of FALC. In Lemma 3.5 we prove a uniform bound
on the number of Algorithm APG iterations required to inexactly solve any subproblem encountered in
FALC.

Lemma 3.5. Suppose the parameter sequence {(λ(k), ǫ(k), τ (k), ξ(k))}k∈Z+ satisfies all the conditions in

Lemma 3.2. Then there exists constant N such that, for all k ≥ 1, the number of iterations N (k) required
by Algorithm APG to compute (X(k), s(k), y(k)) satisfies

N (k) ≤ N√
ǫ(k)

. (3.40)

Proof. The number of interations N (k) ≤ ℓ
(k)
max, where ℓ

(k)
max denotes the number of iterations required to

satisfy ITERstop. Since (X(k), s(k), y(k)) ∈ S(k), (3.12) and (3.10) imply that

ℓ(k)max ≤
√

2L

ǫ(k)

[(

I(α)

µ1
+

J(β)

µ2

)

(η
(k)
1 + η

(k−1)
1) + η

(k)
2 + ‖y(k−1)‖2

]

,

≤
√

8L

ǫ(k)

[(

I(α)

µ1
+

J(β)

µ2

)

Bη1 +
Bη2 +By

2

]

:= N 1√
ǫ(k)

,

where the second inequality follows from (3.22), (3.24) and (3.25).
In each iteration of Algorithm APG we need to solve one instance of each of the following problems.

(a) One constrained matrix shrinkage problem of the form

min
X∈Rm×n

{

λ‖σ(X)‖α +
1

2
‖X − X̃‖2F : ‖σ(X)‖α ≤ η̃

}

(3.41)

12

for a given X̃ ∈ R
m×n and η̃ > 0. When α ∈ {1,∞} the worst-case complexity of computing a solution

to (3.41) is the same as that of computing a full SVD, i.e. O(min{nm2, n2m}), and when α = 2, the
worst-case complexity is O(mn). See Lemma B.2 in Appendix B for details. Exact SVD computation is
not necessary – inexactly computing the SVD only adds a small additional error to (3.8).

(b) One constrained vector shrinkage problem of the form

min
s∈Rp

{

λ‖s‖β +
1

2
‖s− s̃‖22 : ‖s‖β ≤ η̃

}

(3.42)

for a given s̃ ∈ R
p and η̃ > 0. The complexity of solving the vector shrinkage problem is O(p log(p))

when β ∈ {1,∞} and O(p) when β = 2. See Lemma B.2 in Appendix B.
(c) One Euclidean projection problem of the form

min
y∈Rq

{1

2
‖y − ỹ‖22 : y ∈ Q

}

(3.43)

for a given ỹ ∈ R
q. The complexity of solving the Euclidean projection problem depends on Q.

In Theorem 3.6 we establish bounds on the infeasibility and sub-optimality of the FALC iterate. This result
leads to a convergence rate result in Theorem 3.7.

Theorem 3.6. Let {(X(k), s(k), y(k))}k∈Z+ denote the sequence of FALC iterates corresponding to a

parameter sequence {(λ(k), ǫ(k), τ (k), ξ(k))}k∈Z+ satisfying the conditions in Lemma 3.2. In addition, suppose

that, for all k ≥ 1, τ (k) = κ1ǫ
(k) and ξ(k) = κ2ǫ

(k) for some κi ∈ (0, 1) i = 1, 2. Then there exist positive
constants cj, j = 1, . . . , 3, such that for all k ≥ 1,

(i) y(k) ∈ Q such that ‖A(X(k))− y(k) − b‖2 ≤ c1λ
(k),

(ii)
∣

∣

(

µ1‖σ(X(k))‖α + µ2‖C(X(k))− d‖β
)

− P ∗∣
∣ ≤ c2λ

(k) + c3
√
ǫ(k),

where P ∗ denotes the optimal value of (3.1).

Proof. For all parameter sequences {(λ(k), ǫ(k), τ (k), ξ(k))}k∈Z+ satisfying the conditions in Lemma 3.2,

we show in (3.20) that ‖θ(k)i ‖2 ≤ Bθi for i ∈ {1, 2}. Therefore,

‖A(X(k))− y(k) − b‖2 ≤ ‖A(X(k))− y(k) − b− λ(k)θ
(k)
1 ‖2 + λ(k)‖θ(k)1 ‖2,

= λ(k)‖θ(k+1)
1 ‖2 + λ(k)‖θ(k)1 ‖2,

≤ 2Bθ1λ
(k).

This establishes (i).

In the rest of the proof, we establish (ii). Let (X∗, s∗, y∗) denote any optimal solution of (3.1), i.e.
P ∗ = µ1‖σ(X∗)‖α + µ2‖C(X∗) − d‖β . In (3.23) and (3.24) we establish that {(X(k), s(k), y(k))}k∈Z+ is a
bounded sequence. Therefore, there exists Γ < ∞ such that for all k ≥ 1

max
{

‖X∗‖F , ‖s∗‖2, ‖y∗‖2, ‖X(k)‖F , ‖s(k)‖2, ‖y(k)‖2
}

≤ Γ. (3.44)

Consider the following two cases:

(a) The k-th call to Algorithm APG terminates with ITERstop: From (3.28) it follows that

µ1‖σ(X(k))‖α + µ2‖s(k)‖β ≤ µ1‖σ(X∗)‖α + µ2‖C(X∗)− d‖β +
λ(k)

2

(

‖θ(k)1 ‖22 + ‖θ(k)2 ‖22
)

+
ǫ(k)

λ(k)
. (3.45)

(b) The k-th call to Algorithm APG terminates with GRADstop: Let (G, g) belong to the set of partial
subgradients ∂X,sP

(k)(., ., .)|(X(k),s(k),y(k)), defined in (3.14), and satisfy the stopping condition GRAD-

13

stop. Then from the convexity of P (k) and Lemma A.5, it follows that

P (k)(X(k), s(k), y(k))

≤ P (k)(X∗, s∗, y∗)−
〈

G,X∗ −X(k)
〉

− gT (s∗ − s(k))−∇yP
(k)(X(k), s(k), y(k))T (y∗ − y(k)),

≤ P (k)(X∗, s∗, y∗) + ‖G‖F‖X∗ −X(k)‖F + ‖g‖2‖s∗ − s(k)‖2 + Lξ(k)‖y∗ − y(k)‖2
+ξ(k)‖∇yf

(k)(X(k), s(k), y(k))‖2,
≤ P (k)(X∗, s∗, y∗) + τ (k)

(

‖X∗ −X(k)‖F + ‖s∗ − s(k)‖2
)

+ Lξ(k)‖y∗ − y(k)‖2
+ξ(k)‖∇yf

(k)(X(k), s(k), y(k))‖2. (3.46)

Dividing (3.46) by λ(k) and using the fact that θ
(k+1)
1 = ∇yf

(k)(X(k), s(k), y(k))/λ(k), it follows that

µ1‖σ(X(k))‖α + µ2‖s(k)‖β ≤ µ1‖σ(X∗)‖α + µ2‖C(X∗)− d‖β +
λ(k)

2

(

‖θ(k)1 ‖22 + ‖θ(k)2 ‖22
)

+ ξ(k)‖θ(k+1)
1 ‖2

+
τ (k)

λ(k)

(

‖X∗ −X(k)‖F + ‖s∗ − s(k)‖2
)

+
ξ(k)

λ(k)
L‖y∗ − y(k)‖2. (3.47)

From (3.44), the fact that ‖θ(k)i ‖2 ≤ Bθi for i ∈ {1, 2}, (3.45) and (3.47), it follows that

µ1‖σ(X(k))‖α + µ2‖s(k)‖β ≤ µ1‖σ(X∗)‖α + µ2‖C(X∗)− d‖β +

(

B2
θ1

+B2
θ2

2

)

λ(k)

+max

{

ǫ(k)

λ(k)
,
4Γτ (k)

λ(k)
+

ξ(k)

λ(k)
(2LΓ + λ(k)Bθ1)

}

. (3.48)

The bound (3.10) relating ‖σ(.)‖α to the Frobenius norm, (3.19a), bound ‖θ(k)2 ‖2 ≤ Bθ2 , together with
triangle inequality imply that

‖C(X(k))− d‖β ≤ ‖s(k)‖β + ‖λ(k)θ
(k)
2 ‖β + J(β∗)

(

max
{√

2ǫ(k)σmax(M), τ (k)
}

+ J(β∗)µ2λ
(k)
)

,

≤ ‖s(k)‖β + J(β∗) (Bθ2 + µ2 J(β∗))λ(k) + J(β∗)max
{√

2 σmax(M), κ1

√

ǫ(k)
} √

ǫ(k),

where the second inequality uses the relation τ (k) = κ1ǫ
(k). The above inequality and (3.48) imply that

µ1‖σ(X(k))‖α + µ2‖C(X(k))− d‖β ≤ µ1‖σ(X∗)‖α + µ2‖C(X∗)− d‖β

+

(

B2
θ1

+B2
θ2

2
+ µ2J(β

∗) (Bθ2 + µ2 J(β∗))

)

λ(k)

+max

{

ǫ(k)

λ(k)
,
4Γτ (k)

λ(k)
+

ξ(k)

λ(k)
(2LΓ + λ(k)Bθ1)

}

+µ2J(β
∗)max

{√
2 σmax(M), κ1

√

ǫ(k)
} √

ǫ(k). (3.49)

Since ǫ(k)

(λ(k))2
≤ B, τ (k) = κ1ǫ

(k) and ξ(k) = κ2ǫ
(k) for all k ≥ 1, (3.49) implies one side of the bound in (ii).

Next, we establish a lower bound for P (k)(X
(k)
∗ , s

(k)
∗ , y

(k)
∗) by comparing the following pairs of Lagrangian

duals

minX∈Rm×n µ1‖σ(X)‖α + µ2‖C(X)− d‖β,
s.t. A(X)− b ∈ Q.

(3.50a)

maxw∈Rq,v∈Rp −bTw − dT v − γQ(w),
s.t. ‖σ(A∗(w) + C∗(v))‖α∗ ≤ µ1,

‖v‖β∗ ≤ µ2,

(3.50b)

14

where γQ is the support function of Q, i.e., γQ(w) := supy∈Q wT y, and

minX∈Rm×n,s∈Rp,y∈Rq λ(µ1‖σ(X)‖α + µ2‖s‖β) + f(X, s, y),
s.t. y ∈ Q.

(3.51a)

maxw∈Rq,v∈Rp −λ(b+ λθ1)
Tw − λ(d + λθ2)

T v − λγQ(w)− λ2

2 (‖w‖22 + ‖v‖22),
s.t. ‖σ(A∗(w) + C∗(v))‖α∗ ≤ µ1,

‖v‖β∗ ≤ µ2.

(3.51b)

Above (w∗, v∗) denotes the optimal solution of the dual (3.50b) and f(X, s, y) := 1
2‖A(X) + y− b− λθ1‖22 +

1
2‖C(X)+s−d−λθ2‖22. Note that (w∗, v∗) is feasible for (3.51b). Therefore, by Lagrangian duality it follows
that

P (k)(X
(k)
∗ , s

(k)
∗ , y

(k)
∗)

≥ λ(k)

(

−bTw∗ − dT v∗ − γQ(w∗)−
λ(k)

2

(

‖w∗‖22 + ‖v∗‖22 + 2(θ
(k)
1)Tw∗ + 2(θ

(k)
2)T v∗

)

)

,

≥ λ(k) (µ1‖σ(X∗)‖α + µ2‖C(X∗)− d‖β)

− (λ(k))2

2

(

‖w∗‖22 + ‖v∗‖22 + 2‖θ(k)1 ‖2‖w∗‖2 + 2‖θ(k)2 ‖2‖v∗‖2
)

, (3.52)

where the first inequality follows from weak duality for primal-dual pair in (3.51), and (3.52) follows from
strong duality for primal-dual pair in (3.50) and the Cauchy-Schwartz inequality.

From the definition of {θ(k)i }k∈Z+ in Figure 3.1, it is clear that the FALC iterates {X(k)}k∈Z satisfy

P (k)(X(k), s(k), y(k))

λ(k)
=
(

µ1‖σ(X(k))‖α + µ2‖s(k)‖β
)

+
λ(k)

2

(

‖θ(k+1)
1 ‖22 + ‖θ(k+1)

2 ‖22
)

,

and it follows that

µ1‖σ(X(k))‖α + µ2‖s(k)‖β ≥ P (k)(X
(k)
∗ , s

(k)
∗ , y

(k)
∗)

λ(k)
− λ(k)

2

(

‖θ(k+1)
1 ‖22 + ‖θ(k+1)

2 ‖22
)

. (3.53)

Thus, the bound on ‖θ(k)i ‖2, i ∈ {1, 2} established in (3.20), and the inequalities (3.52) and (3.53),
together imply that

µ1‖σ(X(k))‖α + µ2‖s(k)‖β ≥ µ1‖σ(X∗)‖α + µ2‖C(X∗)− d‖β

−λ(k)

2

(

(Bθ1 + ‖w∗‖2)2 + (Bθ2 + ‖v∗‖2)2
)

. (3.54)

The bound ‖A∗(w∗) + C∗(v∗)‖F ≤ I(α∗)‖σ(A∗(w∗) + C∗(v∗))‖α∗ ≤ I(α∗)µ1 implies that

σmin(A)‖w∗‖2 ≤ ‖A∗(w∗)‖F ≤ I(α∗)µ1 + ‖C∗(v∗)‖F ≤ I(α∗)µ1 + σmax(C)‖v∗‖2,
and the bound ‖v∗‖β∗ ≤ µ2 implies that ‖v∗‖2 ≤ J(β∗) µ2. Hence, both ‖v∗‖2 and ‖w∗‖2 in (3.54) are
bounded.

The bound (3.10), the uniform bound ‖θ(k)2 ‖2 ≤ Bθ2 and triangle inequality together imply that

‖s(k)‖β ≤ ‖C(X(k))−d‖β+J(β∗) (Bθ2 + µ2 J(β∗))λ(k)+J(β∗)max
{√

2 σmax(M), κ1

√

ǫ(k)
} √

ǫ(k), (3.55)

where the second inequality uses the relation τ (k) = κ1ǫ
(k). From (3.54) and (3.55), it follows that

µ1‖σ(X(k))‖α + µ2‖C(X(k))− d‖β
≥ µ1‖σ(X∗)‖α + µ2‖C(X∗)− d‖β

−
(

(Bθ1 + ‖w∗‖2)2 + (Bθ2 + ‖v∗‖2)2
2

+ µ2J(β
∗) (Bθ2 + µ2 J(β∗))

)

λ(k)

− µ2J(β
∗)max

{√
2 σmax(M), κ1

√

ǫ(k)
} √

ǫ(k).

15

This establishes the result.
Now, we have all the estimates we need to prove the main convergence rate result in this paper.
Theorem 3.7. Fix κ1, κ2, ν ∈ (0, 1), and strictly positive parameters (λ(1), ǫ(1), τ (1), ξ(1)). For k ≥ 1,

set parameter sequence {(λ(k), ǫ(k), τ (k), ξ(k))}k∈Z+ as follows:

λ(k+1) = ν λ(k), ξ(k) = κ2 ǫ(k),

ǫ(k+1) = ν2 ǫ(k), τ (k) = κ1 ǫ(k).
(3.56)

Then, for all ǫ > 0, Algorithm FALC computes an ǫ-feasible and ǫ-optimal solution X̄ ∈ R
m×n to the

composite norm minimization problem (3.1), in Ninner = O
(

1
ǫ

)

Algorithm APG iterations.

Proof. For the specific choice of the parameter sequence in (3.56) we have that ǫ(k)

(λ(k))2
= ǫ(1)

(λ(1))2
, for all

k ≥ 1. Therefore, Theorem 3.6 guarantees that there exist c2 > 0 and c3 > 0 such that for all k ≥ 1,

∣

∣(µ1‖σ(X(k))‖α + µ2‖C(X(k))− d‖β)− (µ1‖σ(X∗)‖α + µ2‖C(X∗)− d‖β)
∣

∣ ≤
(

c2λ
(1) + c3

√

ǫ(1)
)

ν(k−1).

Thus,
∣

∣(µ1‖σ(X(k))‖α + µ2‖C(X(k))− d‖β)− (µ1‖σ(X∗)‖α + µ2‖C(X∗)− d‖β)
∣

∣ ≤ ǫ, for all

k > log 1
ν

(

c2λ
(1) + c3

√
ǫ(1)

ǫ

)

+ 1. (3.57)

Moreover, Theorem 3.6 also implies that there exists c1 > 0 such that ‖A(X(k))− y(k) − b‖2 ≤ c1λ
(1) νk−1,

for k ≥ 1, Thus, ‖A(X(k))− y(k) − b‖2 ≤ ǫ for all

k > log 1
ν

(

c1λ
(1)

ǫ

)

+ 1. (3.58)

Then (3.57) and (3.58) imply that for all ǫ > 0, the number of FALC iterations required to compute an
ǫ-feasible and ǫ-optimal solution

NFALC(ǫ) ≤
⌈

log 1
ν

(

U

ǫ

)⌉

+ 1, (3.59)

where U = max
{

c2λ
(1) + c3

√
ǫ(1), c1λ

(1)
}

.

From Lemma 3.5 it follows that there exists a constant N such that APG iteration to solve the k-th
FALC subproblem N (k) ≤ N√

ǫ(k)
. Therefore,

Ninner = N
NFALC(ǫ)
∑

k=1

1√
ǫ(k)

=
N√
ǫ(1)

NFALC(ǫ)−1
∑

k=0

ν−k =
N√
ǫ(1)

· ν

(1 − ν)
·
(

1

ν

)NFALC(ǫ)

≤
(

NU

ν(1− ν)
√
ǫ(1)

)

1

ǫ
,

where the last bound follows from (3.59).
Note that we do not explicitly specify the constant hidden in the O(1/ǫ) iteration complexity result

of Theorem 3.7. Moreover, the bound given in the proof is very crude. The main reason is that the
composite minimization problem (1.1) is very general and the constant strongly depends on the specific
problem structure. However, the proof technique used to establish Theorem 3.7 can be applied as is to
any special case of composite minimization problem to obtain much sharper constants. For instance, the
complexity result of FALC for the basis pursuit problem in (1.4) is given by

Ninner ≤ nκ(A)2
(

16‖x∗‖1
ν(1 − ν)

· 1
ǫ
+

9

ν
· log 1

ν

(

8nκ2(A)

ǫ

))

= O
(

1

ǫ

)

,

where κ(A) := σmax(A)/σmin(A) is the condition number of A. This is the same bound that was obtained
for this special case in [3].

16

The convergence rate result in Theorem 3.7 relies on the uniform bound established in Lemma 3.5.
This uniform bound in turn assumes that all calls to Algorithm APG are terminated by ITERstop.
On the other hand, in our numerical experiments almost all calls to Algorithm APG were terminated
by GRADstop. This suggests that the O(1ǫ) rate result has a lot of slack. Indeed, we find that early
terminating Algorithm APG iterations when the stopping condition GRADstop is satisfied reduces total
number of Algorithm APG iterations significantly: in our numerical tests, FALC required only O(log(1ǫ))
inner iterations to compute an ǫ-optimal, ǫ-feasible iterate. The augmented Lagrangian algorithm FAL
introduced in [3] is an implementation of FALC for the basis pursuit problem. In Figure 6.1 in [3] one can
clearly observe the O(log(1/ǫ)) empirical performance as opposed to the O(1/ǫ) worst case complexity. We
observe a similar empirical performance with FALC on the numerical problems tested in this paper.

4. Implementation details of Algorithm FALC. In this section we describe all the details of FALC.

Let {(X(k,ℓ)
i , s

(k,ℓ)
i , y

(k,ℓ)
i)}ℓ∈Z+ denote the sequence of x

(ℓ)
i -iterates of Algorithm APG in Figure 2.1 for

i ∈ {1, 2} when Algorithm APG is called in Line 14 of Figure 3.1 to solve the k-th subproblem.

4.1. Subgradient selection. We used the following slightly modified version of GRADstop in our
implementation.

GRADstop1 :=
{

∃(G, g) ∈ ∂X,sP
(k)(., ., .)|(X(k),s(k),y(k)) s.t. ‖G‖F ≤ τ

(k)
X and ‖g‖2 ≤ τ (k)s

}

(4.1)

for some tolerance values τ
(k)
X and τ

(k)
s such that {τ (k)X }k∈Z+ and {τ (k)s }k∈Z+ are decreasing sequences. Clearly,

if (4.1) holds, the original GRADstop1 given in Line 11 of Algorithm FALC holds for τ (k) = τ
(k)
X + τ

(k)
s .

We check the stopping condition GRADstop1 in each Algorithm APG iteration. Let Z̆(k,ℓ) =
(

X̆
(k,ℓ)
1 , s̆

(k,ℓ)
1 , y̆

(k,ℓ)
1

)

denotes the unconstrained solution to the optimization problem in Line 4 of Figure 2.1,

i.e. when the contraint (X, s, y) ∈ S(k) is not enforced. A subgradient (G, g) ∈ ∂X,sP
(k)(., ., .)|Z̆(k,ℓ) can be

computed as follows

G = λ(k)µ1Q+∇Xf (k)
(

Z̆(k,ℓ)
)

and g = λ(k)µ2q +∇sf
(k)
(

Z̆(k,ℓ)
)

,

where

Q =
L

λ(k)µ1

(

X
(k,ℓ)
2 − 1

L
∇Xf (k)(X

(k,ℓ)
2 , s

(k,ℓ)
2 , y

(k,ℓ)
2)− X̆

(k,ℓ)
1

)

,

q = argmin
{

‖λ(k)µ2r +∇sf
(k)
(

Z̆(k,ℓ)
)

‖2 : r ∈ ∂‖.‖β|s̆(k,ℓ)
2

}

.

From the first order optimality condition, it can be easily shown that Q ∈ ∂‖σ(.)‖α|X̆(k,ℓ)
1

. Moreover, given

∇sf
(k) at Z̆(k,ℓ) the complexity of computing q ∈ ∂‖.‖β|s̆(k,ℓ)

1
⊂ R

p is O(p) when β ∈ {1, 2} and O(p log(p))

when β = ∞.

4.2. Stopping criterion for FALC. In our numerical experiments, we terminate Algorithm FALC

either the distance between successive inner iterates are below a threshold ̺ for each component, i.e. ‖X(k,ℓ)
1 −

X
(k,ℓ−1)
1 ‖F ≤ ̺, ‖s(k,ℓ)1 − s

(k,ℓ−1)
1 ‖2 ≤ ̺ or there exist partial subgradients with sufficiently small norm for

each component, i.e. ‖G‖F ≤ ςX , ‖g‖2 ≤ ςs for some (G, g) ∈ ∂X,sP
(k)(., ., .)|Z̆(k,ℓ) and

‖y̆(k,ℓ)1 −ΠQ

(

y̆
(k,ℓ)
1 − 1

L
∇yP

(k)(Z̆(k,ℓ))

)

‖2 ≤ ςy.

In our numerical experiments we set ̺, ςX , ςs and ςy by experimenting with a small instance of the problem.

4.3. Multiplier selection. Given c̄τ ∈ (0, 1), c̄ξ ∈ (0, 1), c̄λ > 0, cτ ∈ (0, 1), cξ ∈ (0, 1), cλ ∈ (0, 1), for

all k ≥ 1 the approximate optimality parameters τ
(k)
X , τ

(k)
s , ξ(k) and the penalty parameter λ(k) are set as

17

follows:

X̆(1) = argminX∈Rm×n
1
2‖X −

(

X(0) − 1
L∇Xf (1)(X(0), s(0), y(0))

)

‖2F + λ(1)µ1

L ‖σ(X)‖α,
s̆(1) = argmins∈Rp

1
2‖s−

(

s(0) − 1
L∇sf

(1)(X(0), s(0), y(0))
)

‖22 + λ(1)µ2

L ‖s‖β,
y̆(1) = argminy∈Q⊂Rq ‖y −

(

y(0) − 1
L∇yf

(1)(X(0), s(0), y(0))
)

‖22,
G(1) = L

(

X(0) − 1
L∇Xf (1)(X(0), s(0), y(0))− X̆(1)

)

+∇Xf (1)(X̆(1), s̆(1), y̆(1)),

g(1) = argming∈Rp{‖g‖2 : g = λ(1)µ2p+∇sf
(1)(X̆(1), s̆(1), y̆(1)), p ∈ ∂‖.‖β|s̆(1)},

τ
(1)
X = c̄τ‖G(1)‖F ,
τ
(1)
s = c̄τ‖g(1)‖2,
ξ(1) = c̄ξ‖y̆(1) −ΠQ

(

y̆(1) − 1
L∇yf

(1)(X̆(1), s̆(1), y̆(1))
)

‖2,
λ(1) = c̄λ‖X(0)‖2,
X̆(k) = argminX∈Rm×n

1
2‖X −

(

X(k−1) − 1
L∇Xf (k)(X(k−1), s(k−1), y(k−1))

)

‖2F + λ(k)µ1

L ‖σ(X)‖α,
s̆(k) = argmins∈Rp

1
2‖s−

(

s(k−1) − 1
L∇sf

(k)(X(k−1), s(k−1), y(k−1))
)

‖22 + λ(k)µ2

L ‖s‖β,
y̆(k) = argminy∈Q⊂Rq ‖y −

(

y(k−1) − 1
L∇yf

(k)(X(k−1), s(k−1), y(k−1))
)

‖22,
G(k) = L

(

X(k−1) − 1
L∇Xf (k)(X(k−1), s(k−1), y(k−1))− X̆(k)

)

+∇Xf (k)(X̆(k), s̆(k), y̆(k)),

g(k) = argming∈Rp{‖g‖2 : g = λ(k)µ2p+∇sf
(k)(X̆(k), s̆(k), y̆(k)), p ∈ ∂‖.‖β|s̆(k)},

τ
(k)
X = min

{

cτ τ
(k−1)
X , c̄τ‖G(k)‖F

}

,

τ
(k)
s = min

{

cτ τ
(k−1)
s , c̄τ‖g(k)‖2

}

,

ξ(k) = min{cξ ξ(k−1), ‖y̆(k) −ΠQ
(

y̆(k) − 1
L∇yf

(k)(X̆(k), s̆(k), y̆(k))
)

‖2}
λ(k) = cλ λ

(k−1),

for all k ≥ 2. In all our experiments, c̄τ = 0.999 and c̄ξ = 0.999.

We initialize FALC with
(

X(0), s(0), y(0)
)

such that A(X(0)) − b ∈ Q, s(0) = C(X(0)) − d and y(0) =

A(X(0))− b. In first iteration of FALC, we solve the problem

min
(X,s,y)∈S(1), y∈Q

P (1)(X, s, y) = min
(X,s,y)∈S(1), y∈Q

λ(1)(µ1‖σ(X)‖α + µ2‖s‖β) + f (1)(X, s, y),

where S(1) = {(X, s, y) : µ1‖σ(X)‖α + µ2‖s‖β ≤ η(1)} and η(1) = µ1‖σ(X(0))‖α + µ2‖s(0)‖β . Since
X(0) is feasible, f (1)(X(0), s(0), y(0)) = 0 and P (1)(X(0), s(0), y(0)) = λ(1)η(1). Then P (1)(X, s, y) ≥ 0 for
all X ∈ R

m×n implies that the initial duality gap is less than or equal to λ(1)η(1). Hence, we initialize
ǫ(1) = 0.99λ(1)η(1) and then set ǫ(k+1) = c2λǫ

(k) for all k ≥ 1.

5. Numerical experiments. In our numerical experiments, we focused on problems where both µ1 > 0
and µ2 > 0. Two important problems of this form are the principal component pursuit and stable principal
component pursuit problems, given in (1.6) and (1.7), respectively. In the first set of experiments we solved
a set of randomly generated instances of principal component pursuit problems. In this setting, we compare
FALC with another augmented Lagrangian algorithm I-ALM [29], a proximal gradient algorithm APG [30]
and a soft-thresholding algorithm SVT [6]. In the second set of experiments, we solved a set of randomly
generated instances of stable principal component pursuit problem. Since I-ALM, APG and SVT are not able
to solve this problem, we only report statistics for FALC. In Section 5.1, we describe the methodology we have
used in both experimental settings for generating random problem instances. All the numerical experiments
were conducted on an IBM Thinkpad laptop with a Intel Core 2 CPU T7200 @2.0 GHz processor, 3GB
SDRAM running MATLAB 7.2 on Windows XP Professional operating system.

The augmented Lagrangian algorithm FAL introduced in [3] is an implementation of FALC for the
basis pursuit problem. The numerical results reported in [3] show that FAL was 2-7 times faster than the
specialized algorithms NESTA [5], FPC and FPC-BB [23, 24], FPC-AS [39], YALL1 [40] and SPGL1 [38].
See Tables 6.8, 6.9, 6.10, 6.11, 6.13 in [3] for details.

The numerical results in this paper and those in [3] clearly show that FALC is very competitive with
the state-of-the-art algorithms for the special cases of the composite norm minimization problem.

18

5.1. Data generation. We tested FALC on randomly generated data matrices D = X0 + S0 + ζ0,
where
i. X0 = UV T , such that U ∈ R

n×r, V ∈ R
n×r for r = 0.05n and Uij ∼ N (0, 1), Vij ∼ N (0, 1) for all i, j

are independent standard Gaussian variables,
ii. Λ ⊂ {(i, j) : 1 ≤ i, j ≤ n} such that cardinality of Λ, |Λ| = p for p = 0.05n2,
iii. (S0)ij ∼ U [−1, 1] for all (i, j) ∈ Λ are independent uniform random variables between −1 and 1,
iv. (ζ0)ij ∼ δU [−1, 1] for all i, j are independent Gaussian variables.

5.2. Principal Component Pursuit Problem. In this section we solve the problem

minX,S∈Rm×n ‖X‖∗ + µ2‖vec(S)‖1,
subject to X + S = D,

(5.1)

and report the results of our numerical experiments comparing FALC with I-ALM [29], APG [30] and SVT [6].
All the codes for I-ALM, APG and SVT, can be found at http://perception.csl.uiuc.edu/matrix-rank/home.html.
Note that SVT [6] algorithm was originally proposed for solving the matrix completion problem. The al-
gorithm we used in our numerical study is an adaptation of the SVT algorithm by Wright and Rao at
the Perception and Decision Laboratory in University of Illinois, Urbana-Champaign to solve robust PCA
problem.

We created 10 random problems of size n = 500, i.e. D ∈ R
500×500 using the procedure described in

Section 5.1, where δ is set to 0, i.e. ζ0 = 0. We chose parameter values for each of the four algorithms
so that they produce a solution Xsol and Ssol with relative-infeasibility approximately equal to 5 × 10−9,

i.e. ‖Xsol+Ssol−D‖F

‖D‖F
≈ 5 × 10−9. For each algorithm we set the parameters by solving a set of small size

problems and these parameter values were fixed throughout the experiments, all other parameters are set to
their default values. The termination criteria are not directly comparable due to different formulations of
the problem solved by different solvers. For FALC we attempted to set the stopping parameter ̺ such that
on average the stopping criterion for FALC is tighter than the stopping criteria of all the other algorithms
we tested.
1. FALC: Problem (5.1) is a special case of problem (1.1) with δ = 0, α = 1 and β = 1. Therefore,

f (k)(X, s, y) defined in (3.5) simplifies to f (k)(X,S) = 1
2‖vec(X + S) − vec(D) − λ(k)θ

(k)
1 ‖22 (note that

for all k ≥ 1, θ
(k)
2 = 0). We set cτ = 0.4, cǫ = 0.4, cλ = 0.4, c̄τ = 0.999, c̄ǫ = 0.999, c̄λ = 2 and initialize

θ
(1)
1 as in [29], i.e.

θ
(1)
1 =

1

max{‖sign(D)‖2,
√
n‖vec(sign(D))‖∞} vec(sign(D)). (5.2)

Finally, we set ̺ = 1 × 10−5 and terminate FALC when the distance between successive inner iterates

are below the threshold ̺ for each component, i.e. ‖X(k,ℓ)
1 −X

(k,ℓ−1)
1 ‖F ≤ ̺ and ‖s(k,ℓ)1 − s

(k,ℓ−1)
1 ‖2 ≤ ̺

for any k ≥ 1. We used PROPACK [27] for computing partial singular value decompositions. In order
to estimate the rank of X0, we followed the scheme proposed in Equation (17) in [29]. The code for
PROPACK is available at [http://soi.stanford.edu/~rmunk/PROPACK/].

2. I-ALM: I-ALM solves min{‖X‖∗ + 1√
n
‖vec(S)‖1 : X + S = D}. Let (X(k),S(k)) be the k-th iterate.

I-ALM terminates when ‖X(k)+S(k)−D‖F

‖D‖F
≤ 1× 10−8.

3. APG: For some λ̄ > 0, APG solves min
{

λ̄
(

‖X‖∗ + 1√
n
‖vec(S)‖1

)

+ 1
2‖X + S −D‖2F

}

. Stopping

tolerance is set to 5× 10−11 (the definition of stopping criteria is complicated, for details see partial APG
code at [http://perception.csl.uiuc.edu/matrix-rank/home.html]. In the code, by default λ̄ is set
to σmax(D)× 10−9.

4. SVT: SVT solves a relaxation of the robust PCA problem,

min

{

λ̄

(

‖X‖∗ +
1√
n
‖vec(S)‖1

)

+
1

2
(‖X‖2F + ‖S‖2F) : X + S = D

}

.

Let (X(k),S(k)) be the k-th iterate when λ̄ is set to 1× 103. SVT terminates ‖X(k)+S(k)−D‖F

‖D‖F
≤ 5× 10−4.

Note that we have chosen a weaker stopping criterion for SVT.

19

http://perception.csl.uiuc.edu/matrix-rank/home.html
http://soi.stanford.edu/~rmunk/PROPACK/
http://perception.csl.uiuc.edu/matrix-rank/home.html

The results of the experiments are displayed in Table 5.1. In Table 5.1, the row labeled CPU lists the
running time of each algorithm in seconds and all other rows are self-explanatory. The column labeled
average lists the average taken over the 10 random instances, the columns labeled min (resp. max) list
the minimum (resp. maximum) over the 10 instances. The experimental results in Table 5.1, show that
FALC is competitive with the state of the art algorithms, e.g. I-ALM, APG and SVT, specialized for solving
robust PCA problem. Even though FALC is not special purpose algorithm for robust PCA, in our numerical
experiments, FALC required fewer singular value decompositions when compared to APG and SVT. In
addition, for all 10 randomly created problems in the test set, only FALC and I-ALM accurately identified
the zero-set of the sparse component S0, i.e. I0 = {(ij) ∈ {1, 2, ..., n}×{1, 2, ..., n} : (S0)ij = 0} without any
thresholding. This feature of FALC is very appealing in practice. For signals with a large dynamic range,
almost all of the state-of-the-art efficient algorithms produce a solution with many small non zeros terms,
and it is often hard to determine the threshold.

FALC I-ALM

Average Min Max Average Min Max

svd # 40 39 44 31.6 30 33
‖Xsol −X0‖F/‖X0‖F 3.5E-09 2.7E-09 4.5E-09 1.9E-09 5.9E-10 3.4E-09
‖Ssol − S0‖F/‖S0‖F 1.3E-07 1.0E-07 1.8E-07 1.9E-07 4.8E-08 3.8E-07

| ‖Xsol‖∗ − ‖X0‖∗|/‖X0‖∗ 1.6E-10 2.4E-11 3.6E-10 1.1E-11 3.7E-12 2.1E-11
max{|σi − σ0

i
| : σ0

i
> 0} 2.1E-07 1.0E-07 4.0E-07 8.7E-08 2.3E-08 2.5E-07

max{|σi| : σ
0
i
= 0} 1.2E-13 7.2E-14 1.9E-13 1.5E-13 5.9E-14 3.7E-13

| ‖vec(Ssol)‖1 − ‖vec(X0)‖1|/‖vec(X0)‖1 1.4E-08 4.1E-09 2.6E-08 2.2E-09 4.1E-10 5.1E-09
max{|(Ssol)ij − (S0)ij| : |(S0)ij| > 0} 8.0E-07 5.0E-07 1.4E-06 1.1E-05 2.3E-06 2.5E-05

max{|(Ssol)ij| : (S0)ij = 0} 0 0 0 0 0 0
rank 25 25 25 25 25 25

‖Xsol + Ssol −D‖F/‖D‖F 3.5E-09 2.6E-09 4.5E-09 4.7E-09 1.1E-09 9.6E-09
CPU 22.9 19.6 27.8 16.8 13.5 24.3

APG SVT

Average Min Max Average Min Max

svd # 187.7 187 188 833.9 819 857
‖Xsol −X0‖F/‖X0‖F 4.1E-09 4.0E-09 4.4E-09 1.8E-04 1.8E-04 1.8E-04
‖Ssol − S0‖F/‖S0‖F 1.6E-07 1.6E-07 1.7E-07 2.0E-02 2.0E-02 2.1E-02

| ‖Xsol‖∗ − ‖X0‖∗|/‖X0‖∗ 4.0E-09 3.8E-09 4.2E-09 1.7E-05 1.5E-05 1.9E-05
max{|σi − σ0

i
| : σ0

i
> 0} 2.0E-06 1.9E-06 2.1E-06 1.5E-02 1.2E-02 1.7E-02

max{|σi| : σ
0
i
= 0} 1.3E-13 6.8E-14 1.9E-13 2.4E-13 7.6E-14 6.8E-13

| ‖vec(Ssol)‖1 − ‖vec(X0)‖1|/‖vec(X0)‖1 1.8E-07 1.8E-07 1.9E-07 5.0E-03 4.9E-03 5.1E-03
max{|(Ssol)ij − (S0)ij| : |(S0)ij| > 0} 2.0E-07 1.8E-07 2.3E-07 1.2E-01 1.1E-01 1.3E-01

max{|(Ssol)ij| : (S0)ij = 0} 3.7E-08 2.1E-08 6.6E-08 5.5E-03 3.6E-03 8.5E-03
rank 25 25 25 25 25 25

‖Xsol + Ssol −D‖F/‖D‖F 5.4E-09 5.2E-09 5.8E-09 5.0E-04 5.0E-04 5.0E-04
CPU 87.7 71.6 101.6 265.2 252.0 273.1

Table 5.1: FALC vs I-ALM, APG, SVT: Numerical Test Results for PCP problem with n = 500, r = 0.05n2 ,
p = 0.05n

5.3. Stable Principal Component Pursuit Problem. In this section, we solve the problem

minX,S∈Rm×n ‖X‖∗ + µ2‖vec(S)‖1,
subject to ‖vec(X + S −D)‖∞ ≤ δ,

(5.3)

and report the results of our numerical experiments using FALC. To best of our knowledge, there are no
publicly available code specialized for solving problem in (5.3), other than general purpose SDP solvers.

We created 10 random problems of size n = 500, i.e. D ∈ R
500×500 using the procedure described in

Section 5.1, where δ is set to 1×104, i.e. each entry of the noise term ζ0 is coming from a uniform distribution
between [−δ, δ]. We chose the value of the stopping parameter so that FALC produces a solution Xsol and

Ssol with
‖Xsol+Ssol−D‖F

‖D‖F
≈ 1× 10−5.

Problem in (5.3) is a special case of (1.1) and f (k)(X, s, y) defined in (3.5) simplifies to f (k)(X,S, y)

= 1
2‖vec(X + S)− y− vec(D)− λ(k)θ

(k)
1 ‖22 (note that for all k ≥ 1, θ

(k)
2 = 0). We set the parameter values

20

FALC

Average Min Max

svd # 59.3 55 64
‖Xsol −X0‖F/‖X0‖F 1.7E-05 1.7E-05 1.7E-05
‖Ssol − S0‖F/‖S0‖F 3.7E-04 3.0E-04 4.4E-04

| ‖Xsol‖∗ − ‖X0‖∗|/‖X0‖∗ 1.6E-05 1.6E-05 1.6E-05
max{|σi − σ0

i
| : σ0

i
> 0} 9.9E-03 9.7E-03 1.0E-02

max{|σi| : σ
0
i
= 0} 1.6E-13 3.6E-14 3.1E-13

| ‖vec(Ssol)‖1 − ‖vec(X0)‖1|/‖vec(X0)‖1 2.3E-04 2.2E-04 2.4E-04
max{|(Ssol)ij − (S0)ij| : |(S0)ij| > 0} 3.9E-03 3.0E-03 4.6E-03

max{|(Ssol)ij| : (S0)ij = 0} 6.4E-05 0.0E+00 2.3E-04
rank 25 25 25

‖Xsol + Ssol −D‖F/‖D‖F 2.1E-05 2.0E-05 2.2E-05
CPU 34.6 26.1 48.3

Table 5.2: FALC: Numerical Test Results for SPCP problem with n = 500, r = 0.05n2 , p = 0.05n, δ = 1× 10−4

for FALC by solving a set of small size problems and these parameter values were fixed throughout the
experiments, all other parameters are set to their default values, i.e. cτ = 0.4, cǫ = 0.4, cξ = 0.4, cλ = 0.4,

c̄τ = 0.999, c̄ǫ = 0.999, c̄ξ = 0.999. We set c̄λ = 1.5 and initialize θ
(1)
1 as in [29], i.e. as in (5.2).

Finally, We set ̺ = 1×10−5, ς = 1×10−3 and terminate FALC when either the distance between succes-

sive inner iterates are below a threshold ̺ for each component, i.e. ‖vec
(

X
(k,ℓ)
1

)

− vec
(

X
(k,ℓ−1)
1

)

‖∞ ≤ ̺,

‖vec
(

s
(k,ℓ)
1

)

−vec
(

s
(k,ℓ−1)
1

)

‖∞ ≤ ̺ for any k ≥ 1 or there exist partial subgradients with sufficiently small

norm for each component, i.e.

‖G‖F ≤ ς/2, ‖g‖2 ≤ ς for some (G, g) ∈ ∂X,sP
(k)(., ., .)|Z̆(k,ℓ)

and

‖y̆(k,ℓ)1 − ΠQ

(

y̆
(k,ℓ)
1 − 1

L
∇yP

(k)(Z̆(k,ℓ))

)

‖2 ≤ ς,

where Z̆(k,ℓ) =
(

X̆
(k,ℓ)
1 , s̆

(k,ℓ)
1 , y̆

(k,ℓ)
1

)

is defined at the beginning of Section 4.

We have used PROPACK [27] for computing partial singular value decompositions. In order to estimate
the rank of X0, we followed the scheme proposed in Equation (17) in [29]. The results of the experiments
are displayed in Table 5.2.

6. Extension to general composite norm problem. The algorithmic framework proposed in this
paper extends to the following much more general class of problems given in (1.2). By introducing slack
variables, (1.2) can be reformulated as follows.

min µ1‖σ(S)‖α + µ2‖s‖β + µ3H(X),
subject to F(X)− S = G,

C(X)− s = d,
A(X)− y = b, y ∈ Q,

(6.1)

where the decision variables X ∈ R
m×n, S ∈ R

r1×r2 , s ∈ R
p, and y ∈ R

q. H(.) is a strongly convex function
with convexity parameter ς . We continue to assume that A is surjective; however, when µ3 > 0, we no longer
require that at least one of that at least one of F and C is an injective linear map

In this more general setting, the FALC inexactly solves subproblems of the form:

min
X, S, s, y∈Q

P (k)(X,S, s, y), (6.2)

where

P (k)(X,S, s, y) := λ(k)
(

µ1‖σ(S)‖α + µ2‖s‖β + µ3H(X)
)

+ f (k)(X,S, s, y),

f (k)(X,S, s, y) :=
1
2‖F(X)− S −G− λ(k)θ

(k)
3 ‖2F + 1

2‖C(X)− s− d− λ(k)θ
(k)
2 ‖22

+ 1
2‖A(X)− y − b− λ(k)θ

(k)
1 ‖22.

21

Let (X
(k)
∗ , S

(k)
∗ , s

(k)
∗ , y

(k)
∗) ∈ argminP (k)(X,S, s, y). Suppose the initial iterate X(0) is feasible, i.e. A(X(0))−

b ∈ Q. Let S(0) := F(X(0))−G, s(0) := C(X(0))− d, y(0) := A(X(0))− b, and η := µ1‖σ(F(X(0))−G)‖α +
µ2‖C(X(0))− d‖β.

The particular implementation of FALC depends on the nature of the objective function. In all cases we
need to ensure that the iterate sequence {X(k)}k∈Z+ is bounded so that it has a limit point. First consider
the case where µ3 > 0. Strong convexity property of H(.) implies that

µ1‖σ(S(k)
∗)‖α + µ2‖s(k)∗ ‖β +

ς

2
‖X(k)

∗ −
(

X(0) − ∇H(X(0))

ς

)

‖2F

≤ η +
1

2ς
‖∇H(X(0))‖2F +

λ(k)

2

3
∑

i=1

‖θ(k)i ‖2F .

Therefore, we can define S(k) in line 9 in Figure 3.1 as follows:

S(k) :=

{

(X,S, s, y) : µ1‖σ(S)‖α + µ2‖s‖β ≤ η
(k)
1 ,

∥

∥

∥

∥

X −
(

X(0) − ∇H(X(0))

ς

)∥

∥

∥

∥

F

≤
√

2

ς
η
(k)
1

}

,

where

η
(k)
1 := η +

1

2ς
‖∇H(X(0))‖2F +

λ(k)

2

3
∑

i=1

‖θ(k)i ‖2F . (6.3)

The only change in the algorithm is that we need to compute ∇H at every iteration of Algorithm APG

additional to one ∇f computation per iteration.
When µ3 = 0, we set

S(k) := {(X,S, s, y) : µ1‖σ(S)‖α + µ2‖s‖β ≤ η
(k)
1 }.

ensuring that the iterates {(S(k), s(k), y(k))}k∈Z+ are bounded, see Lemma 3.2 for details. Since at least one

of F and C is injective, this implies that {X(k)}k∈Z+ is a bounded sequence. Note that without the injectivity

assumption, the sequence {X(k)}k∈Z+ may not have a limit point.
The general formulation (1.2) subsumes a number of different problems as special cases – see Section 1.2

for details. And, our experience with FALC leads us to believe that this algorithm is likely to be very
competitive for solving all these special cases. However, the assumption that the operator A, defining the
constraints, be surjective can be restrictive. In some applications, the feasible region is the intersection of
cones of the form: {X : A1(X) − b1 ∈ Q1,A2(X) − b2 ∈ Q2}. While, it is often the case that each Ai,
i = 1, 2, is surjective, the product operator A(X) = [A1(X),A2(X)] is not. Thus, FALC cannot be used
for these problems. The extension to intersection of cones is non-trivial and one would have to design a
completely new set of techniques.

The main contribution of this paper is an efficient first-order augmented Lagrangian algorithm (FALC)
for the composite norm minimization problem (1.1) and for its extension (1.2). FALC solves the composite
norm minimization problem by solving a sequence of augmented Lagrangian subproblems, where each sub-
problem is solved using Algorithm APG in Figure 2.1. Algorithm APG is essentially Algorithm 2 in [37]
(see also FISTA [4]) with early termination. We show that the continuation scheme on penalty parameter
λ used in FALC guarantees that the iterate sequence provably converges to the solution and we are also
able to compute a convergence rate. The performance of FALC in our numerical experiments has been very
promising. To best of our knowledge, for the stable PCA problem, FALC is the first algorithm with a known
complexity bound.

REFERENCES

[1] N. S. Aybat and A. Chakraborty, Fast reconstruction of CT images from parsimonious angular measurements via

compressed sensing, tech. report, Siemens Corp. Research, 2009.

22

[2] N. S. Aybat and G. Iyengar, A first-order smoothed penalty method for compressed sensing, SIAM Journal on Opti-
mization, 21 (2011), pp. 287–313.

[3] , A first-order augmented Lagrangian method for compressed sensing, SIAM Journal on Optimization, 22 (2012),
pp. 429–459.

[4] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal
on Imaging Sciences, 2 (2009), pp. 183–202.

[5] S. Becker, J. Bobin, and E. Candès, Nesta: a fast and accurate first-order method for sparse recovery, SIAM J. Imaging
Sci., 4 (2011), pp. 1–39.

[6] J. Cai, E. Candès, and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM Journal on
Optimization, 20 (2008), pp. 1956–1982.

[7] E. Candès and J. Romberg, Quantitative robust uncertainty principles and optimally sparse decompositions, Foundations
of Computational Mathematics, 6 (2006), pp. 227–254.

[8] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete

frequency information, IEEE Trans. Info. Th., 52 (2006).
[9] E. Candès and T. Tao, Near optimal signal recovery from random projections: universal encoding strategies?, IEEE

Trans. Info. Th., 52 (2006), pp. 5406–5425.
[10] E. J. Candès, X. Li, Y. Ma, and Wright J., Robust principle component analysis?, submitted for publication, (2009).
[11] E. J. Cands and B. Recht, Exact matrix completion via convex optimization, Foundations of Computational Mathe-

matics, 9 (2008), pp. 717–772.
[12] A. d’Aspremont, F. R. Bach, and L. El. Ghaoui, Optimal solutions for sparse principle component analysis, Journal

of Machine Learning Research, 9 (2008), pp. 1269–1294.
[13] A. d’Aspremont, L. El. Ghaoui, M. I. Jordan, and G. R. G. Lanckriet, A direct formulation for sparse pca using

semidefinite programming, SIAM Review, 49 (2007), pp. 434–448.
[14] I. Daubechies, M. Fornasier, and I. Loris, Accelerated projected gradient method for linear inverse problems with

sparsity constraints, Journal of Fourier Analysis and Applications, 14 (2008), pp. 764–792.
[15] D. Donoho, Compressed sensing, IEEE Trans. Info. Th., 52 (2006), pp. 1289–1306.
[16] L. El Ghaoui and P. Gahinet, Rank minimization under lmi constraints: A framework for output feedback problems,

in Proceedings of the European Control Conference, 1993.
[17] M. Fazel, H. Hindi, and S. Boyd, Log-det heuristic for matrix rank minimization with applications to hankel and

euclidean distance matrices, in Proceedings of American Control Conference, Denver, Colorado, June 2003.
[18] , A rank minimization heuristic with application to minimum order system approximation, in Proceedings of the

American Control Conference, 2003, pp. 2156–2162.
[19] , Rank minimization and applications in system theory, in American Control Conference, 2004, pp. 3273–3278.
[20] M. Fazel, T. K. Pong, D. Sun, and P. Tseng, Hankel matrix rank minimization with applications in system identifi-

cation and realization. Submitted for publication, 2012.
[21] M. A. Figueiredo, R. Nowak, and S. J. Wright, Gradient projection for sparse reconstruction: Application to com-

pressed sensing and other inverse problems, IEEE Journal of Selected Topics in Signal Processing, 1 (2007), pp. 586–
597.

[22] D. Goldfarb, S. Ma, and K. Scheinberg, Fast alternating linearization methods for minimizing the sum of two convex

functions. arXiv:0912.4571v2, October 2010.
[23] E. T. Hale, W. Yin, and Y. Zhang, A fixed-point continuation for ℓ1-regularized minimization with applications to

compressed sensing, tech. report, Rice University, 2007.
[24] , Fixed-point continuation for ℓ1-minimization: Methodology and convergence, SIAM Journal on Optimization, 19

(2008), pp. 1107–1130.
[25] M. Journée, Y. Nesterov, P. Richtárik, and Sepulchre R., Generalized power method for sparse principle component

analysis, Journal of Machine Learning Research, 11 (2010), pp. 517–553.
[26] K. Koh, S. J. Kim, and S. Boyd, Solver for ℓ1-regularized least squares problems, tech. report, Stanford University, 2007.
[27] R.M. Larsen, Lanczos bidiagonalization with partial reorthogonalization, Technical report DAIMI PB-357, Department

of Computer Science, Aarhus University, 1998.
[28] A. S. Lewis, The convex analysis of unitarily invariant matrix norms, Journal of Convex Analysis, 2 (1995), pp. 173–183.
[29] Z. Lin, M. Chen, L. Wu, and Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank

matrices, arXiv:1009.5055v2, (2011).
[30] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma, Fast convex optimization algorithms for exact recovery

of a corrupted low-rank matrix, tech. report, UIUC Technical Report UILU-ENG-09-2214, 2009.
[31] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combina-

torica, 15 (1995), pp. 215–245.
[32] Z. Liu and L. Vandenberghe, Interior-point method for nuclear norm approximation with application to system identi-

fication, SIAM. J. Matrix Anal. & Appl., 31 (2009), pp. 1235–1256.
[33] S. Ma, D. Goldfarb, and L. Chen, Fixed point and bregman iterative methods for matrix rank minimization, Mathe-

matical Programming Series A, 128 (2011), pp. 321–353.
[34] Netflix prize. http://www.netflixprize.com/.
[35] B. Recht, M. Fazel, and P. Parrilo, Guaranteed minimum rank solutions of matrix equations via nuclear norm

minimization, SIAM Review, 52 (2010), pp. 471–501.
[36] K.C. Toh and S. Yun, An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems.

preprint, 2010.
[37] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization. 2008.

23

[38] E. Van den Berg and M. P. Friedlander, Probing the pareto frontier for basis pursuit solutions, SIAM Journal on
Scientific Computing, 31 (2008), pp. 890–912.

[39] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, A fast algorithm for sparse reconstruction based on shrinkage, subspace

optimization and continuation, To appear in SIAM Journal on Scientific Computing, (2009).
[40] J. Yang and Y. Zhang, Alternating direction algorithms for l1-problems in compressive sensing, Tech. Report TR09-37,

CAAM, Rice University, 2009.
[41] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for ℓ1 minimization with applications

to compressed sensing, SIAM Journal on Imaging Sciences, 1 (2008), pp. 143–168.
[42] Z. Zhou, X. Li, J. Wright, E. Candès, and Y. Ma, Stable principle component pursuit, in Proceedings of International

Symposium on Information Theory, 2010.

Appendix A. Proofs of technical results.

Lemma A.1 and proof.

Lemma A.1. Let Q ⊂ R
q be nonempty closed convex set such that {X ∈ R

m×n : A(X) − b ∈ Q} 6= ∅,
where A is surjective; and let (X

(k)
∗ , s

(k)
∗ , y

(k)
∗) is an optimal solution to (3.4). Then, for all k ≥ 1,

‖y(k)∗ ‖2 ≤ σmax(A)‖X(k)
∗ ‖F + ‖b+ λ(k)θ

(k)
1 ‖2 + 2 min

ỹ∈Q
{‖ỹ‖2}. (A.1)

Proof. From the first order optimality conditions for (3.4), we have y
(k)
∗ = ΠQ(A(X

(k)
∗)− b − λ(k)θ

(k)
1).

Since Euclidean projection is nonexpansive, we have

‖y(k)∗ − ỹ‖2 ≤ ‖A(X
(k)
∗)− b− λ(k)θ

(k)
1 − ỹ‖2 ∀ỹ ∈ Q. (A.2)

The result now follows from the triangular inequality.

This result implies several simple bounds on ‖y(k)∗ ‖2. Since the initial iterate X(0) is feasible, i.e.
A(X(0))− b ∈ Q, it follows that

‖y(k)∗ ‖2 ≤ η
(k)
2 := σmax(A)‖X(k)

∗ ‖F + ‖b+ λ(k)θ
(k)
1 ‖2 + 2‖A(X(0))− b‖2. (A.3)

Suppose 0 ∈ Q. Then ‖y(k)∗ ‖2 ≤ η
(k)
2 := σmax(A)‖X(k)

∗ ‖F + ‖b + λ(k)θ
(k)
1 ‖2. When Q is bounded with

Q ⊆ {y : ‖y‖2 ≤ η2}. Then, one can set η
(k)
2 := η2 for all k ≥ 1.

Lemma A.2 and proof.

Lemma A.2. Fix α, β ∈ {1, 2,∞}. Let

P (X, s, y) = λ(µ1‖σ(X)‖α + µ2‖s‖β) + f(X, s, y)

where

f(X, s, y) =
1

2
‖A(X)− y − b− λθ1‖22 +

1

2
‖C(X)− s− d− λθ2‖22.

Suppose (X̄, s̄, ȳ) is ǫ-optimal for the problem minX,s,y{P (X, s, y) : y ∈ Q}, i.e.

0 ≤ P (X̄, s̄, ȳ)− min
X∈Rm×n, s∈Rp, y∈Q⊂Rq

P (X, s, y) ≤ ǫ.

Then we have

‖C(X̄)− s̄− d− λθ2‖2 ≤ J(β∗)µ2λ+ σmax(M)
√
2ǫ,

‖A∗ (A(X̄)− ȳ − b − λθ1
)

+ C∗ (C(X̄)− s̄− d− λθ2
)

‖F ≤ I(α∗)µ1λ+ σmax(M)
√
2ǫ,

where M =

(

−I 0 C
0 −I A

)

, 1
α∗ + 1

α = 1 (resp. 1
β∗ + 1

β = 1) is the Hölder conjugate of α (resp. β) and

the functions I(·) and J(·) are defined in (3.10).
In order to prove for Lemma A.2, we need the following result.

24

Theorem A.3. Let f : Rm×n × R
p × R

q → R denote a convex function with a Lipschitz continuous
gradient ∇f with a Lipschitz constant L with respect to the norm ‖(X, s, y)‖ =

√

‖X‖2F + ‖s‖22 + ‖y‖22. Let
(X∗, s∗, y∗) ∈ argminX,s,y{λ(µ1‖σ(X)‖α+µ2‖s‖β)+f(X, s, y) : y ∈ Q}. Suppose (X̄, s̄, ȳ) ∈ R

m×n×R
p×R

q

such that ȳ ∈ Q satisfies

λ
(

µ1‖σ(X̄)‖α + µ2‖s̄‖β
)

+ f(X̄, s̄, ȳ) ≤ λ
(

µ1‖σ(X∗)‖α + µ2‖s∗‖β
)

+ f(X∗, s∗, y∗) + ǫ

for some ǫ > 0. Then

‖∇Xf(X̄, s̄, ȳ)‖F ≤
(
√
2Lǫ+ I(α∗)λµ1

)

, ‖∇sf(X̄, s̄, ȳ)‖2 ≤
(
√
2Lǫ+ J(β∗)λµ2

)

where 1
α∗ + 1

α = 1 (resp. 1
β∗ + 1

β = 1) is the Hölder conjugate of α (resp. β) and the functions I(·) and J(·)
are defined in (3.11).

Proof. Since ∇f is Lipschitz continuous with constant L, the triangular inequality for ‖σ(.)‖α and ‖.‖β
implies that for any X ∈ R

m×n, s ∈ R
p and y ∈ R

q

λ(µ1‖σ(X)‖α + µ2‖s‖β) + f(X, s, y)

≤ λ(µ1‖σ(X̄)‖α + µ2‖s̄‖β) + f(X̄, s̄, ȳ) + λ(µ1‖σ(X − X̄)‖α + µ2‖s− s̄‖β)
+
〈

∇Xf(X̄, s̄, ȳ), (X − X̄)
〉

+∇sf(X̄, s̄, ȳ)T (s− s̄) +∇yf(X̄, s̄, ȳ)T (y − ȳ)

+
L

2
‖X − X̄‖2F +

L

2
‖s− s̄‖22 +

L

2
‖y − ȳ‖22,

where 〈X,Y 〉 = Tr(XTY) ∈ R denotes the usual Euclidean inner product of X ∈ R
m×n and Y ∈ R

m×n.
Since X , s and y are arbitrary, it follows that

λ(µ1‖σ(X∗)‖α + µ2‖s∗‖β) + f(X∗, s∗, y∗)

≤ λ(µ1‖σ(X̄)‖α + µ2‖s̄‖β) + f(X̄, s̄, ȳ)

+ min
X∈Rm×n

{

〈

∇Xf(X̄, s̄, ȳ), X − X̄
〉

+
L

2
‖X − X̄‖2F + λµ1‖σ(X − X̄)‖α

}

+ min
s∈Rp

{

∇sf(X̄, s̄, ȳ)T (s− s̄) +
L

2
‖s− s̄‖22 + λµ2‖s− s̄‖β

}

+ min
y∈Q⊂Rq

{

∇yf(X̄, s̄, ȳ)T (y − ȳ) +
L

2
‖y − ȳ‖22

}

. (A.4)

The first minimization problem on the right hand side of (A.4) can be simplified as follows:

min
X∈Rm×n

{

〈

∇Xf(X̄, s̄, ȳ), X − X̄
〉

+
L

2
‖X − X̄‖2F + λµ1‖σ(X − X̄)‖α

}

= max
W :‖σ(W)‖α∗≤λµ1

min
X∈Rm×n

{

L

2
‖X − X̄‖2F +

〈

∇Xf(X̄, s̄, ȳ) +W, X − X̄
〉

}

, (A.5)

= max
W :‖σ(W)‖α∗≤λµ1

{

L

2
‖X∗(W)− X̄‖2F +

〈

∇Xf(X̄, s̄, ȳ) +W, X∗(W)− X̄
〉

}

,

=− min
W :‖σ(W)‖α∗≤λµ1

‖∇Xf(X̄, s̄, ȳ) +W‖2F
2L

, (A.6)

X∗(W) = X̄ − ∇Xf(X̄,s̄,ȳ)+W
L is the minimizer of the inner minimization problem in (A.5).

25

The second minimization problem on the right hand side of (A.4) can be simplified as follows:

min
s∈Rp

{

∇sf(X̄, s̄, ȳ)T (s− s̄) +
L

2
‖s− s̄‖22 + λµ2‖s− s̄‖β

}

= max
u:‖u‖β∗≤λµ2

min
s∈Rp

{

L

2
‖s− s̄‖22 + (∇sf(X̄, s̄, ȳ) + u)T (s− s̄)

}

, (A.7)

= max
u:‖u‖β∗≤λµ2

{

L

2
‖s∗(u)− s̄‖22 + (∇sf(X̄, s̄, ȳ) + u)T (s∗(u)− s̄)

}

,

=− min
u:‖u‖β∗≤λµ2

‖∇sf(X̄, s̄, ȳ) + u‖22
2L

, (A.8)

s∗(u) = s̄− ∇sf(X̄,s̄,ȳ)+u
L is the minimizer of the inner minimization problem in (A.7).

Since ȳ ∈ Q, the following is true for the third minimization problem on the right hand side of (A.4).

min
y∈Q⊂Rq

{

∇yf(X̄, s̄, ȳ)T (y − ȳ) +
L

2
‖y − ȳ‖22

}

≤ 0. (A.9)

Thus, (A.4), (A.6), (A.8) and (A.9) together imply that

λ(µ1‖σ(X∗)‖α + µ2‖s∗‖β) + f(X∗, s∗, y∗) ≤ λ(µ1‖σ(X̄)‖α + µ2‖s̄‖β) + f(X̄, s̄, ȳ)

− min
W :‖σ(W)‖α∗≤λµ1

‖∇Xf(X̄, s̄, ȳ) +W‖2F
2L

− min
u:‖u‖β∗≤λµ2

‖∇sf(X̄, s̄, ȳ) + u‖22
2L

.

Since
(

λ(µ1‖σ(X̄)‖α+µ2‖s̄‖β)+f(X̄, s̄, ȳ)
)

−
(

λ(µ1‖σ(X∗)‖α+µ2‖s∗‖β)+f(X∗, s∗, y∗)
)

≤ ǫ, we have that

min
W :‖σ(W)‖α∗≤λµ1

‖∇Xf(X̄, s̄, ȳ) +W‖2F + min
u:‖u‖β∗≤λµ2

‖∇sf(X̄, s̄, ȳ) + u‖22 ≤ 2Lǫ. (A.10)

From (3.10), it follows that ‖W‖F ≤ I(α∗)‖σ(W)‖α∗ . Thus, (A.10) implies that

min
W :‖W‖F≤I(α∗)λµ1

‖∇Xf(X̄, s̄, ȳ) +W‖2F ≤ 2Lǫ. (A.11)

Suppose ‖∇Xf(X̄, s̄, ȳ)‖F > I(α∗)λµ1. Then the optimal solution of the optimization problem in (A.11) is

W ∗ = −I(α∗)λµ1 ·
∇Xf(X̄, s̄, ȳ)

‖∇Xf(X̄, s̄, ȳ)‖F
.

Then (A.10) implies that (‖∇Xf(X̄, s̄, ȳ)‖F − I(α∗)λµ1)
2 ≤ 2Lǫ, i.e. ‖∇Xf(X̄, s̄, ȳ)‖F ≤

√
2Lǫ+ I(α∗)λµ1.

This is trivially true when ‖∇Xf(X̄, s̄, ȳ)‖F ≤ I(α∗)λµ1. Therefore, we can conclude that always

‖∇Xf(X̄, s̄, ȳ)‖F ≤
√
2Lǫ+ I(α∗)λµ1.

A similar analysis establishes that ‖∇sf(X̄, s̄, ȳ)‖2 ≤
√
2Lǫ+ J(β∗)λµ2.

Now we are ready to prove Lemma A.2.

Proof. Let f(X, s, y) = 1
2‖A(X) − y − b − λθ1‖22 + 1

2‖C(X) − s − d − λθ2‖22 and let ‖(X, s, y)‖ =

26

√

‖X‖2F + ‖s‖22 + ‖y‖22, then for any X1, X2 ∈ R
m×n, s1, s2 ∈ R

p and y1, y2 ∈ R
q, we have

‖∇f(X1, s1, y1)−∇f(X2, s2, y2)‖2

=

∥

∥

∥

∥

∥

∥

∇Xf(X1, s1, y1)−∇Xf(X2, s2, y2)
∇sf(X1, s1, y1)−∇sf(X2, s2, y2)
∇yf(X1, s1, y1)−∇yf(X2, s2, y2)

∥

∥

∥

∥

∥

∥

2

,

= ‖∇Xf(X1, s1, y1)−∇Xf(X2, s2, y2)‖2F + ‖∇sf(X1, s1, y1)−∇sf(X2, s2, y2)‖22
+ ‖∇yf(X1, s1, y1)−∇yf(X2, s2, y2)‖22,

= ‖A∗(A(X1 −X2)− y1 + y2) + C∗(C(X1 −X2)− s1 + s2)‖2F
+ ‖C(X1 −X2)− s1 + s2‖22 + ‖A(X1 −X2)− y1 + y2‖22,

= ‖AT (A vec(X1 −X2)− y1 + y2) + CT (C vec(X1 −X2)− s1 + s2)‖22
+ ‖C vec(X1 −X2)− s1 + s2‖22 + ‖A vec(X1 −X2)− y1 + y2‖22,

=

∥

∥

∥

∥

∥

∥

MTM

s1 − s2
y1 − y2

vec(X1 −X2)

∥

∥

∥

∥

∥

∥

2

2

.

Hence,

‖∇f(X1, s1, y1)−∇f(X2, s2, y2)‖ ≤ σ2
max(M)

∥

∥

∥

∥

∥

∥

s1 − s2
y1 − y2

vec(X1 −X2)

∥

∥

∥

∥

∥

∥

2

,

= σ2
max(M)

√

‖X1 −X2‖2F + ‖s1 − s2‖22 + ‖y1 − y2‖22,
= σ2

max(M) ‖(X1, s1, y1)− (X2, s2, y2)‖,

where σmax(M) is the maximum singular-value of M . Thus, f : Rm×n × R
p × R

q → R is a convex function
and ∇f is Lipschitz continuous with respect to ‖.‖ with Lipschitz constant L = σ2

max(M).
Since (X̄, s̄, ȳ) is an ǫ-optimal solution to the problem min{P (X, s, y) : X ∈ R

m×n, s ∈ R
p, y ∈ Q ⊂ R

q},
Theorem A.3 guarantees that

‖∇Xf(X̄, s̄, ȳ)‖F = ‖A∗(A(X̄)− ȳ − b − λθ1) + C∗(C(X̄)− s̄− d− λθ2)‖F
≤

√
2ǫ σmax(M) + I(α∗)λµ1, (A.12)

‖∇sf(X̄, s̄, ȳ)‖2 = ‖C(X̄)− s̄− d− λθ2‖2 ≤
√
2ǫ σmax(M) + J(β∗)λµ2. (A.13)

Lemma A.4 and proof.

Lemma A.4. Let Q ⊂ R
q be a nonempty, closed, and convex set. Then for all ỹ ∈ R

q and λ > 0, we
have ΠQ(λỹ) = λ ΠQ/λ(ỹ), or equivalently, ΠQ(ỹ) = λ ΠQ/λ(ỹ/λ), where Q/λ = {x : λx ∈ Q}.

Proof. Fix ỹ ∈ R
q and λ > 0. Then

ΠQ(λỹ) = argmin
x∈Q

‖x− λỹ‖2 = λ argmin
y∈Q/λ

‖y − ỹ‖2 = λ ΠQ/λ(ỹ). (A.14)

Lemma A.5 and proof.

Lemma A.5. Let (X∗, s∗, y∗) be an optimal solution to (3.2) and suppose that ‖ΠQ
(

y
(k)
p

)

−y(k)‖2 ≤ ξ(k)

for some k ≥ 1, where y
(k)
p := y(k) − 1

L∇yf
(k)(X(k), s(k), y(k)). Then we have

−
〈

∇yf
(k)(X(k), s(k), y(k)), y∗ − y(k)

〉

≤ Lξ(k)‖y∗ − y(k)‖2 + ξ(k)‖∇yf
(k)(X(k), s(k), y(k))‖2. (A.15)

27

Proof. From the definition of ΠQ(.), we have

〈

ΠQ(y
(k)
p)− y(k)p , y −ΠQ(y

(k)
p)
〉

≥ 0, ∀ y ∈ Q,

⇒
〈

ΠQ(y
(k)
p)− y(k), y − y(k)

〉

+
〈

ΠQ(y
(k)
p)− y(k), y(k) −ΠQ(y

(k)
p)
〉

+
〈

y(k) − y(k)p , y − y(k)
〉

+
〈

y(k) − y(k)p , y(k) −ΠQ(y
(k)
p)
〉

≥ 0, ∀ y ∈ Q. (A.16)

Since y∗ ∈ Q, y(k) − y
(k)
p = 1

L∇yf
(k)(X(k), s(k), y(k)) and ‖ΠQ

(

y
(k)
p

)

− y(k)‖2 ≤ ξ(k), (A.15) follows from

(A.16).

Appendix B. Auxiliary results for simple optimization problems.

Lemma B.1. Let (E , ‖.‖) be a normed vector space, f : E → R be a strictly convex function and χ ⊂ E
be a closed, convex set with a non-empty interior. Let x̄ = argminx∈χ f(x) and x∗ = argminx∈E f(x). If
x∗ 6∈ χ, then x̄ ∈ bdχ, where bdχ denotes the boundary of χ.

Proof. We will establish the result by contradiction. Assume x̄ is in the interior of χ, i.e. x̄ ∈ int(χ).
Then ∃ ǫ > 0 such that B(x̄, ǫ) = {x ∈ E : ‖x − x̄‖ < ǫ} ⊂ χ. Since f is strictly convex and x∗ 6= x̄,
f(x∗) < f(x̄). Choose 0 < λ < ǫ

‖x̄−x∗‖ < 1 so that λx∗ + (1− λ)x̄ ∈ B(x̄, ǫ) ⊂ χ. Since f is strictly convex,

f(λx∗ + (1− λ)x̄) < λf(x∗) + (1 − λ)f(x̄) < f(x̄). (B.1)

However, λx∗ + (1− λ)x̄ ∈ B(x̄, ǫ) ⊂ χ and f(λx∗ + (1− λ)x̄) < f(x̄) contradicts the fact that f(x̄) < f(x)
for all x ∈ χ. Therefore, x̄ 6∈ int(χ). Since x̄ ∈ χ, it follows that x̄ ∈ bdχ.

Next, we collect together complexity results for optimization problems of the form

min
X∈Rm×n

{λ‖σ(X)‖α +
1

2
‖X − X̃‖2F : ‖σ(X)‖α ≤ η}

min
s∈Rp

{λ‖s‖β +
1

2
‖s− s̃‖22 : ‖s‖β ≤ η}

that need to be solved in each Algorithm APG update step, displayed in Figure 2.1.
Lemma B.2. Let X̄ = argminX∈Rm×n

{

λ‖σ(X)‖α + 1
2‖X − X̃‖2F : ‖σ(X)‖α ≤ η

}

of the constrained
matrix shrinkage problem. Then

X̄ = U diag(s̄)V T ,

where U diag(σ)V T denotes the SVD of X̃ such that σ ∈ R
r
+ and r = rank(X̃); and s̄ denotes the optimal

solution of the constrained vector shrinkage problem

min
s∈Rr

{

λ‖s‖α +
1

2
‖s− σ‖22 : ‖s‖α ≤ η

}

.

Since the worst case complexity of computing the SVD of X̃ is O(min{n2m,m2n}) the complexity of the com-
puting X̄ is O(min{n2m,m2n}+ Tv(r, α)), where Tv(r, α) denotes the complexity of computing the solution
of an r-dimensional constrained vector shrinkage problem with norm ‖.‖α. The function

Tv(p, α) =

{

O(p log(p)) α = 1,∞,
O(p), α = 2,

(B.2)

Proof. The standard results in non-linear convex optimization over matrices implies that X̄ is of the
form X̄ = U diag(s̄)V T (see Corollary 2.5 in [28]).

Now, consider the vector constrained shrinkage problem

min
s∈Rp

{

λ‖s‖β +
1

2
‖s− s̃‖22 : ‖s‖β ≤ η

}

.

28

(i) β = 1: First considered the unconstrained case, i.e. η = ∞. The unconstrained solution s∗ has a closed
form s∗ = sign(s̃) ⊙ max{|s̃| − λ1,0} and can be computed with O(p) complexity, where ⊙ denotes
componentwise multiplication and 1 is a vector of ones.
When η < ∞, the constrained optimal solution, s̄, can be computed with O(p log(p)) complexity. See
Lemma A.4 in [1].

(ii) β = 2: First considered the unconstrained case, i.e. η = ∞. Since ℓ2-norm is self dual, λ‖s‖2 =
max{uT s : ‖u‖2 ≤ 1}. Thus,

min
s∈Rp

{

λ‖s‖2 +
1

2
‖s− s̃‖22

}

= min
s∈Rp

max
u: ‖u‖2≤λ

{

uT s+
1

2
‖s− s̃‖22

}

,

= max
u: ‖u‖2≤λ

min
s∈Rp

{

uT s+
1

2
‖s− s̃‖22

}

,

= max
u: ‖u‖2≤λ

{

uT (s̃− u) +
1

2
‖u‖22

}

, (B.3)

=
1

2
‖s̃‖22 − min

u: ‖u‖2≤λ

1

2
‖u− s̃‖22,

where (B.3) follows from the fact that s∗(u) := argmins∈Rp{uT s+ 1
2‖s− s̃‖22} = s̃− u.

Define

u∗ := argmin
u: ‖u‖2≤λ

1

2
‖u− s̃‖22 = s̃ min

{

λ

‖s̃‖2
, 1

}

.

Then the unconstrained optimal solution s∗ = s∗(u∗) = s̃max
{

1− λ
‖s̃‖2

, 0
}

and the complexity of

computing s̄ is O(p).
Next, consider the constrained optimization problem, i.e. η < ∞. The constrained optimum s̄ = s∗,
whenever s∗ is feasible, i.e. ‖s∗‖2 ≤ η. Since f(s) := λ‖s‖2 + 1

2‖s− s̃‖22 is strongly convex, Lemma B.1
implies that ‖s̄‖2 = η whenever ‖s∗‖2 > η. Thus,

min
{

λ‖s‖2 +
1

2
‖s− s̃‖22 : ‖s‖2 ≤ η

}

= λη +min
{1

2
‖s− s̃‖22 : ‖s‖22 = η2

}

.

The unique KKT point for the optimization problem min
{

1
2‖s−s̃‖22 : 1

2‖s‖22 =
η2

2

}

, is given by s̄ = η s̃
‖s̃‖

and KKT multiplier for the constraint 1
2‖s‖22 = η2

2 is ϑ = ‖s̃‖2

η − 1. It is easy to check that ϑ > 0

whenever ‖s∗‖2 > η. Thus, s̄ is optimal for the convex optimization problem min
{

1
2‖s− s̃‖22 : ‖s‖22 ≤

η2
}

; consequently, optimal for equality constrained optimization problem min
{

1
2‖s− s̃‖22 : ‖s‖2 = η

}

.

Hence, the complexity of computing s̄ is O(p)
(iii) β = ∞: First consider the unconstrained problem. Since ℓ1-norm is the dual norm of the ℓ∞-norm, we

have that

min
s∈Rp

{

λ‖s‖∞ +
1

2
‖s− s̃‖22

}

= min
s∈Rp

max
u: ‖u‖1≤λ

{

uT s+
1

2
‖s− s̃‖22

}

,

= max
u: ‖u‖1≤λ

min
s∈Rp

{

uT s+
1

2
‖s− s̃‖22

}

,

= max
u: ‖u‖1≤λ

{

uT (s̃− u) +
1

2
‖u‖22

}

, (B.4)

=
1

2
‖s̃‖22 − min

u: ‖u‖1≤λ

1

2
‖u− s̃‖22,

where (B.4) follows from the fact that s∗(u) := argmins∈Rp{uT s + 1
2‖s − s̃‖22} = s̃ − u. The result

in (i) implies that complexity of computing u∗ = minu: ‖u‖1≤λ
1
2‖u − s̃‖22 is O(p log(p)). Thus, the

unconstrained optimal solution s∗ = s∗(u∗) = s̃− u∗ can be computed in O(p log(p)) operations.

29

Next, consider the constrained optimization problem. The constrained optimum, s̄ = s∗ whenever s∗

is feasible, i.e. ‖s∗‖∞ ≤ η. Since f(s) = λ‖s‖∞ + 1
2‖s− s̃‖22 is strictly convex, Lemma B.1 implies that

‖s̄‖∞ = η, whenever ‖s∗‖∞ > η. Therefore,

min
{

λ‖s‖∞ +
1

2
‖s− s̃‖22 : ‖s‖∞ ≤ η

}

= λη +min
{1

2
‖s− s̃‖22 : ‖s‖∞ = η

}

.

Then, it is easy to check sign(s̄i) = sign(s̃i) for all i = 1, . . . , p. Moreover, ‖s∗‖∞ > η implies that
‖s̃‖∞ > η. These two facts imply that

min
{1

2
‖s− s̃‖22 : ‖s‖∞ = η

}

= min
{1

2
‖s− |s̃| ‖22 : 0 ≤ si ≤ η

}

.

For 1 ≤ i ≤ p, we have min{|s̃i| , η} = argminsi∈R

{

1
2 (si − |s̃i|)2 : 0 ≤ si ≤ η

}

. Thus, it follows that
s̄ = sign(s̃)⊙min{|s̃|, η1}. Hence the complexity of computing s̄ is O(p log(p)).

30

