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Abstract We discuss an algorithmic scheme, which we call the stabilized structured

Dantzig-Wolfe decomposition method, for solving large-scale structured linear pro-

grams. It can be applied when the subproblem of the standard Dantzig-Wolfe approach

admits an alternative master model amenable to column generation, other than the

standard one in which there is a variable for each of the extreme points and extreme

rays of the corresponding polyhedron. Stabilization is achieved by the same techniques

developed for the standard Dantzig-Wolfe approach and it is equally useful to improve

the performance, as shown by computational results obtained on an application to the

multicommodity capacitated network design problem.
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1 Introduction

The Dantzig-Wolfe (DW) decomposition method [14], inspired by an algorithm due

to Ford and Fulkerson [16] for optimal multicommodity flow computations, allows

dealing efficiently with linear programs (LP) having the following general and common

structure:
minx

{
cx : Ax = b , x ∈ conv(X)

}
. (1)

Provided that one can efficiently perform linear optimization over the closed set X ⊆
Rn, the idea of DW is that of forming the Lagrangian relaxation with respect to the

m constraints Ax = b and one generic vector π of Lagrange multipliers

f(π) = minx
{
L(x, π) = cx+ π(b−Ax) : x ∈ X

}
(2)

and solving the corresponding Lagrangian dual (equivalent to (1)):

maxπ
{
f(π) : π ∈ Rm

}
. (3)

DW decomposition solves the Lagrangian dual with Kelley’s cutting-plane approach

[20,27]. The benefit of DW decomposition is twofold. On the one hand, (1) is usually

solved as a relaxation of a difficult mixed-integer linear program (MILP), and under

appropriate hypotheses, the lower bound computed by the DW approach is stronger
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than that of the LP relaxation [3,8–10,21,22]. On the other hand, (2) often decomposes

into a number of smaller independent subproblems (Ax = b are linking constraints),

and the resulting approach can be faster than using ordinary LP technology [10,16,

18,21,25]. This is particularly so if stabilization [19] is used to devise variants of the

DW approach that are more effective in practice than the non-stabilized cutting-plane

approach [6,26].

We aim at improving the DW approach for the cases where conv(X) has an ap-

propriate structure: it is a polyhedron whose (possibly “large”) description can be

“conveniently generated piecemeal” with the information provided by solving (2) for

appropriately chosen π (see Assumptions 1–3 below). This is what happens with the

standard DW, which is nothing but a column generation procedure based on a refor-

mulation of conv(X) in a different space of variables, namely the convex (and conical)

multipliers that allow to express any point of conv(X) as a convex (conical) combina-

tion of its exponentially many extreme points (rays). However, different models may

be available which have a rather different structure; for our application (see Section

2) one has “only” pseudo-polynomially many constraints and variables, as opposed to

exponentially many variables, but very few constraints, as in the standard DW model.

Under these conditions, it is possible to construct a convergent algorithm that

closely mimics the DW approach; this has been done for specific applications (see [21]

and the references therein). In this article, we point out that one can develop this idea

in a general setting, which we call the Structured Dantzig-Wolfe (SDW) decomposition

approach. Furthermore, the same stabilization techniques that have shown to be useful

for the standard DW can be applied to SDW. This gives rise to stabilized structured

Dantzig-Wolfe (S2DW) algorithms, whose convergence can be analyzed with the help

of results in [19], and that can be significantly more efficient in practice. One interesting

feature of the S(2)DW approach is that the subproblem to be solved at each iteration

remains the same; only the master problem changes. Hence, if an implementation of the

DW approach is available for one problem for which an alternative model of conv(X) is

known, then implementing the S(2)DW approach for that problem requires relatively

minor changes to the existing code.

The structure of the paper is as follows. Section 2 presents the application moti-

vating our study, the multicommodity capacitated network design problem (MCND),

and reviews some of the different forms of decomposition that can be developed for

the problem. With the help of the ideas developed for the MCND, the general SDW

method is presented in Section 3, and its relationships with the original DW method

are discussed. Section 4 is devoted to describing how the SDW approach can be stabi-

lized. Section 5 then presents and discusses the results of extensive experiments that

demonstrate the computational interest of S2DW by comparing several decomposition

methods for the MCND. Finally, conclusions are drawn in Section 6. For the remainder

of the paper, v(·) denotes the optimal value of an optimization problem.

2 Decomposition for Multicommodity Capacitated Network Design

Given a directed network G = (N,E), where N is the set of nodes and E is the set of

arcs, we must satisfy the communication demands between several origin-destination

pairs, represented by the set of commodities H. Each h ∈ H is characterized by a

positive communication demand dh that must flow between the origin sh and the

destination th; this is represented by the deficit vector bh = [bhi ]i∈N with bhi = −1 if

i = sh, bhi = 1 if i = th, and bhi = 0 otherwise. While flowing along an arc (i, j), a
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communication consumes some of the arc capacity, which is originated by installing

on the arc any number of facilities. Installing one facility on arc (i, j) ∈ E provides a

positive capacity uij at a nonnegative cost fij ; a routing cost chij also has to be paid for

each unit of commodity h moving through (i, j). The problem consists of minimizing

the sum of all costs, while satisfying demand requirements and capacity constraints.

By defining flow variables whij , which represent the fraction of the flow of commodity

h on arc (i, j) ∈ E (i.e., dhwhij is the actual value of the flow), and design variables

yij , which define the number of facilities to install on arc (i, j), the MCND can be

formulated with the following model, denoted I:

min
∑
h∈H

∑
(i,j)∈E d

hchijw
h
ij +

∑
(i,j)∈E fijyij (4)∑

(j,i)∈E w
h
ji −

∑
(i,j)∈E w

h
ij = bhi i ∈ N, h ∈ H (5)∑

h∈H dhwhij ≤ uijyij (i, j) ∈ E (6)

0 ≤ whij ≤ 1 (i, j) ∈ E, h ∈ H (7)

yij ≥ 0 and integer (i, j) ∈ E (8)

The LP relaxation Ī of I, obtained by dropping the integrality requirements in (8),

provides rather weak lower bounds (see Section 5.3); hence, better formulations are

required to provide tighter bounds.

2.1 Dantzig-Wolfe Decomposition

There are different ways to apply decomposition techniques to the MCND (see [10] for

a related but different problem); here, we focus on the case where the flow conservation

equations (5) are relaxed, a choice motivated by the fact that the lower bound computed

by the corresponding DW approach improves upon v(Ī), the LP relaxation bound.

Thus, there is one Lagrange multiplier πhi for each h ∈ H and i ∈ N , and the objective

function in (2) is (4) with dhchij replaced with the Lagrangian cost c̄hij = dhchij−π
h
i +πhj

(plus a constant cost πb =
∑
i∈N

∑
h∈H πhi b

h
i ). Problem (2) then decomposes into |E|

subproblems, one for each arc (i, j):

min
∑
h∈H c̄hijw

h
ij + fijyij (9)∑

h∈H dhwhij ≤ uijyij (10)

0 ≤ whij ≤ 1 h ∈ H (11)

yij ≥ 0 and integer (12)

In other words, (2) is “easy” in this case because it is decomposable, i.e., x = [xk]k∈K
and X =

⊗
k∈K Xk for a finite set K, where K = E, k = (i, j) and

Xij =
{
xij =

[
[whij ]h∈H , yij

]
: (10)− (12)

}
, (13)

and each of the disjoint sets Xij has a single integer variable. If we relax the integrality

constraint (12), then the optimal continuous solution satisfies y∗ij =
∑
h∈H dhwhij/uij ,

the computation of the optimal [whij ]h∈H being obtained by solving the LP relaxation

of a 0-1 knapsack problem. Now, since the optimal value

vij(yij) = fijyij + minw

{ ∑
h∈H c̄hijw

h
ij : (10)− (11)

}
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is a convex function of yij (the partial minimization of a convex function is convex),

it is easy to show that the optimal integer solution is either dy∗ije or by∗ijc, whichever

provides the best value of vij(·) (see [2,21] for details). Despite being easy to solve, (9)–

(12) does not have the integrality property [20]; thus, DW provides a better bound than

the LP relaxation, i.e., v(1) ≥ v(Ī) and a strict inequality usually holds (see Section

5.3). Solving (1) by the DW approach corresponds to considering its reformulation

minθ

{
c
(∑

x∈X xθx
)

: A
(∑

x∈X xθx
)

= b , θ ∈ Θ
}

(14)

where Θ = { θ ≥ 0 :
∑
x∈X θx = 1 } is the unitary simplex of proper dimension.

Problem (14) can be assumed to be finite-dimensional because only the finite—although

extremely large—set of possible extreme optimal solutions x ∈ X of (2) need to be

associated a convex multiplier θx. Also, X is compact, for otherwise the extreme rays

would also have to be considered. Then, the DW algorithm is just column generation

in (14): a (small) subset B ⊆ X is selected, and the primal master problem

minx
{
cx : Ax = b , x ∈ XB = conv(B)

}
(15)

≡ minθ
{
c
(∑

x∈B xθx
)

: A
(∑

x∈B xθx
)

= b , θ ∈ ΘB
}

(16)

is solved. This is a restriction of (1) where the inner approximation XB is used instead

of the original set conv(X). Plugging into (2) the part π̃ of the dual optimal solution

to (15)/(16) associated to the constraints Ax = b generates a new solution x̄ ∈ X. It

is easy to prove that either inserting x̄ into B (generating the new variable θx̄) strictly

improves (enlarges) the inner approximation, or the optimal solution to the current

(15)/(16) is optimal for (14) ≡ (1); iterating this process with minimal care eventually

leads to convergence. In dual terms, the DW method can be described by saying that

the cutting-plane model

fB(π) = minx { cx+ π(b−Ax) : x ∈ B } (17)

is an outer approximation of the dual function, i.e., fB ≥ f . Solving (16) corresponds

to fB being minimized instead of f [20]; its optimum π̃ is then used as the next point

where to evaluate the “true” f , and the corresponding optimal solution x̄ to (2) either

proves that π̃ is optimal for (3), or produces a strictly improved model.

2.2 Disaggregated Dantzig-Wolfe Decomposition

It is well-known that in decomposable cases, such as the MCND, a different master

problem can be devised. Indeed, x̄ optimal for (2) means that x̄ = [x̄k]k∈K , where x̄k

is an optimal solution to the k-th subproblem. Thus, defining the sets Bk = { x̄k :

x̄ ∈ B } one can solve at each iteration a disaggregated master problem

minx

{ ∑
k∈K ckxk :

∑
k∈K Akxk = b , xk ∈ Xk

B = conv(Bk) k ∈ K
}

(18)

whose feasible region has the (much) larger X̄B =
⊗
k∈K conv(Bk) in place of conv(B).

This is written as (16) except that each x ∈ B is associated to |K| independent convex

multipliers θkx, and there are |K| constraints
∑
x∈B θ

k
x = 1, one for each k ∈ K,

instead of one concerning all θs. In other words, each Xk
B is an independent inner

approximation of conv(Xk), and it is easy to see that, for the same B ⊆ X, X̄B is a

better approximation of conv(X) than conv(B). Note that such a disaggregated DW

approach is solving the same Lagrangian dual (3) as the aggregated one, as testified by

the fact that the “oracle” computing the dual function f(π) is exactly the same. The

difference is that the disaggregated approach exploits the (cartesian product) structure
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of X to build a better master problem out of the same oracle information. The trade-off

is that (18) has |K| times more variables than (15)/(16); however, it also has much

sparser columns and is often less degenerate. Furthermore, (18) uses the available

information more efficiently, which often results in faster convergence, and ultimately

in better overall performances [25].

2.3 Binary Reformulation and “Structured Decomposition”

An alternative way to solve (1) for the MCND starts with the apparently unrelated

definition of a multiple choice [11,12] binary formulation of the problem. Since fij ≥ 0,

we have yij ≤ d
∑
h∈H dh/uije = Tij for each arc (i, j). Defining Sij = {1, . . . , Tij},

we can introduce two new sets of variables

ysij ∈ {0, 1} =

{
1 if yij = s

0 otherwise
s ∈ Sij , (i, j) ∈ E (19)

whsij ∈ [0, 1] =

{
whij if yij = s

0 otherwise
s ∈ Sij , (i, j) ∈ E, h ∈ H. (20)

A binary model for the MCND, which we will denote as B+, can be obtained by

replacing the whij and yij variables in (4) and (5) with the new ones by means of the

obvious equations

yij =
∑
s∈Sij

sysij (i, j) ∈ E whij =
∑
s∈Sij

whsij (i, j) ∈ E, h ∈ H

and by replacing (6), (7) and (8) with

(s− 1)uijy
s
ij ≤

∑
h∈H dhwhsij ≤ suijy

s
ij (i, j) ∈ E, s ∈ Sij (21)

whsij ≤ y
s
ij (i, j) ∈ E, h ∈ H, s ∈ Sij (22)∑

s∈Sij
ysij ≤ 1 (i, j) ∈ E (23)

Model B+ is stronger than model I, since its LP relaxation B̄+ satisfies v(B̄+) ≥ v(Ī).

In fact, for any (i, j) ∈ E, (21)–(23) is a description of conv(Xij) [12,21], which implies

that v(B̄+) = v(1). While B̄+ has a pseudo-polynomial number of variables and

constraints, it can be efficiently generated piecemeal using the very same Lagrangian

relaxation as in the (disaggregated or not) DW, and following the same basic scheme.

The idea is again to construct a restriction of the model where only a few of the ysij and

whsij variables, and the corresponding constraints, are present. This master problem is

solved, and, exactly as in DW, the dual optimal variables of the Ax = b constraints are

plugged into (2) to generate a new solution x̄ (= [w̄, ȳ]) ∈ X. The difference, analogous

to the difference between the aggregated and the disaggregated DW, lies in how x̄ is

used. In this case, one simply checks whether the variables ysij and whsij have already

been generated for the specific s = ȳij and the commodities h such that w̄hij > 0. If

this is true for all (i, j) ∈ E, then the current optimal solution to the master problem

is optimal for B̄+; otherwise, some of the missing variables and of their corresponding

constraints are added to the master problem and the process iterates (see [21] for

details). It is clear that the above approach is strongly related to the DW method.

In the next section, we describe a general algorithmic scheme that encompasses both,

with the aim to develop, in Section 4, more efficient stabilized versions.
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3 The Structured Dantzig-Wolfe Decomposition Method

The SDW method solves problem (1) provided that the same assumptions as in the DW

approach hold, and some extra knowledge about the structure of conv(X) is available.

Assumption 1 For a finite vector of variables θ and matrices C, Γ and γ of appro-

priate dimension, conv(X) = { x = Cθ : Γθ ≤ γ }.

In other words, one needs a proper reformulation of conv(X) in a different space of

variables θ. We expect the formulation to be “large,” so we require it to be amenable

to solution through column generation. This calls for the next two assumptions, which

use the following notation: B = (Bc,Br) is “the bundle”, where Bc is any subset of

(the index set of) the variables θ (columns of Γ and C), and Br is a subset of (the

index set of) the constraints (rows in Γ ) which impact at least one variable in Bc.
Then, θB [= θBc ] is the corresponding subvector of variables, ΓB is the sub-matrix of

Γ restricted to the columns in Bc and the rows in Br, γB [= γBr ] is the corresponding

restricted right-hand side, and CB [= CB
c

] is the restriction of the matrix (linear

mapping) C to the columns (variables) in B.

Assumption 2 ΓB θ̄B ≤ γB and θ =
[
θ̄B , 0

]
⇒ Γθ ≤ γ.

Assumption 3 Let x̄ be a point such that x̄ ∈ conv(X) \XB; then, it must be easy to

update B and the associated ΓB, γB and CB to a set B′ ⊃ B (which satisfies Assumption

2) such that there exists B′′ ⊇ B′ with x̄ ∈ XB′′ .

Assumption 2 means that we can always “pad” a partial solution with zeroes without

losing feasibility. Note that this assumption is automatically satisfied if Br contains all

rows which impact (at least one of) the variables in Bc; this is what happens in the

DW approach, where there is only one constraint, or at most one for each component

in the disaggregated case. In general, however, one does not want to impose such a

requirement, since the variables can appear in “many” constraints, and one does not

want to generate them all. For instance, in the MCND, each variable ysij is involved in

many constraints (22), and one wants to avoid to generate them all, as much as to avoid

generating all the corresponding flow variables whsij . Actually, one could also avoid to

generate some constraints in Br that are nominally necessary to obtain Assumption 2,

provided that when solving the master problem (see (25) below), one checks for their

violation, adds the violated constraints and re-solves. This is in fact done in [21] for

constraints (22). However, this is only a technical detail, as these constraints can be

counted as “present” in Br. The crucial fact is that Assumption 2 (which clearly holds

for the MCND) implies

XB =
{
x = CBθB : ΓBθB ≤ γB

}
⊆ conv(X) and therefore

fB(π) = minx { cx+ π(b−Ax) : x = CBθB , ΓBθB ≤ γB } ≥ f , (24)

i.e., fB is a model of f . In fact, (24) reduces to (17) when XB is defined as in (15)/(16).

This justifies the name “bundle” for B, since it can still be interpreted as a subset of the

whole information required to describe the behavior of f . Assumption 3 then requires

that, given a point x̄ ∈ conv(X) that cannot be expressed by means of a given B, it

must be easy to update B (CB, ΓB and γB) in order to incorporate at least some of

the information provided by x̄. This is purposely stated in a rather abstract form: one

just has to find out “why” x̄ is not feasible, that is, to find at least one variable that is

not in θB and that is needed to represent it. However, Assumption 3 does not require

x̄ ∈ XB′ , i.e., that enough variables are added to “capture” x̄. This might require
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“many” new variables (and constraints), but x̄ is unlikely to be the optimal solution

anyway. For the algorithm to work, one can as well be content with inserting in B at

least one of the “missing” variables; eventually, all the required ones will be generated.

Under Assumptions 1–3 above, the primal master problem (in “explicit” form)

minx,θ
{
cx : Ax = b , x = CBθB , ΓBθB ≤ γB

}
(25)

has the same “implicit form” (15) as in the standard DW, and can be similarly updated

once (2) is solved; indeed, (25) reduces to (15)/(16) when XB = conv(B). Thus, the

structured Dantzig-Wolfe decomposition method (SDW), as described by the pseudo-

code of Figure 1, is “just DW with (25) in place of (16).”

〈 initialize B 〉;
repeat
〈 solve (25) for x̃; let ṽ = cx̃ and π̃ be optimal dual multipliers of Ax = b 〉;
x̄ ∈ argminx { (c− π̃A)x : x ∈ X };
〈 update B as in Assumption 3 〉;

until ṽ ≤ cx̄+ π̃(b−Ax̄)

Fig. 1 The Structured Dantzig-Wolfe Algorithm

It is reasonably easy to show that, under appropriate assumptions, the algorithm is

correct and finitely terminates; this is due to the fact that at each iteration where the

algorithm does not stop, “new” information is added to B, and conv(X) only needs

a finite B to be completely described. Termination can be proven even if variables

and constraints are (carefully) removed from B. Furthermore, X does not need to be

compact as apparently required by the above notation. This requires that the master

problem (25) itself is not unbounded below, i.e., (x̃, π̃) exist in the first place, and then

a strengthened form of Assumption 3 to handle the case where f(π̃) = −∞ (see the

Appendix). We do not dwell further upon convergence of SDW, since is it basically

subsumed by the convergence theory discussed in Section 4 for its stabilized versions.

The basic ingredients of the SDW approach are the same as in DW: reformulation

and column generation. For DW, however, the reformulation part is standard, and

therefore tends to be overlooked; this is not the case for SDW, where one exploits

information about the structure of conv(X) to construct a better master problem

out of the same information. Clearly, the disaggregated DW (see Section 2.2) is the

special case of this approach for the very widespread (and simple) block-separable

structure. It is also useful to remark that similar ideas have been proposed in the

column generation community, where it is well-known that the master problem must

have very sparse columns (8 to 12 nonzeroes are usually considered the limit; see, for

instance, [15]) in order to avoid degeneracy, and therefore attain good performance.

Hence, it is usually beneficial to replace one dense column with several sparse ones.

Examples of this idea include replacing a single tree with all the paths from the root to

the leaves in multicommodity flows [25], and replacing long paths by shorter ones linked

by flow conservation constraints in the master problem of vehicle routing problems [29].

Another related approach is that of dual-optimal inequalities, described below. SDW

goes further in the direction of exploiting the data generated by solving (2) “at a

finer granularity” than just making each solution a column. This is confirmed by the

fact that, for the MCND, columns in the master problem of the standard DW can

have as many as 2|N ||H| + 1 nonzeroes (two for each whij > 0, corresponding to the

flow conservation constraints of i and j, plus one in the convexity constraint), while

those in the disaggregated DW can have at most 2|H|+ 1 nonzeroes. The ysij columns
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in the master problem of SDW have no more than |H| + 2 nonzeroes, and the whsij
columns have exactly 5 nonzeroes; thus SDW has significantly sparser columns than

DW, disaggregated or not.

Given the availability of efficient and well-engineered linear optimization software,

SDW is not significantly more difficult to implement than DW. However, as for the

latter, several nontrivial issues have to be addressed.

Initialization. In order to be well-defined, the SDW method needs a starting B such

that (25) has a solution. From the dual viewpoint, the infeasibility of (25) means that

no optimal multipliers π̃ exist: the dual is unbounded. Avoiding this is in general

nontrivial, and requires something akin a “Phase 0” approach where

minx
{
||Ax− b|| : x ∈ XB

}
(for a proper norm) is solved at each iteration instead of (25) until a B which provides

a feasible solution is found, or (1) is proved to be infeasible. This can sometimes be

avoided by exploiting the structure of X: for the MCND, one can simply find the

optimal solution of Ī (the LP relaxation of formulation (4)-(8)) and initialize B in such

a way that at least that solution is feasible for (25).

Instability. As in the standard DW case, the sequence of dual solutions {π̃} cannot be

expected to have—and does not have, in practice—good “locality” properties: even if a

good approximation of the dual optimal solution π∗ is obtained at some iteration, the

dual solution at the subsequent iteration may be arbitrarily far from optimal (see, for

instance, [6,20,27]). This instability is one of the main causes of its slow convergence

rate on many practical problems.

All this suggests to introduce some mean to “stabilize” the sequence of dual itera-

tions, exploiting ideas originally developed in the field of nondifferentiable optimization

[19] and recently applied to column generation [6]. It is interesting to remark that, while

perhaps the most straightforward, that approach—described in the next Section—is

not the only possible one. An alternative is that of dual-optimal inequalities [1,7], that

is, inequalities in the dual space (columns in the primal) cutting away parts of the

feasible region of (3) without eliminating all dual optimal solutions. The primal inter-

pretation of this process is particularly relevant for our discussion: what one does is to

reformulate the model adding “useless” columns. For instance, in cutting stock prob-

lems [7] dual-optimal inequalities correspond to columns which basically state that each

item i in a cutting pattern can be replaced by a given subset of items whose combined

weight is not larger than that of i. In multicommodity flow problems [1], dual-optimal

inequalities are cycles which allow to redirect the (aggregated) flow from one arc along

a different path. These columns are not necessary to build an optimal solution, if all

“normal” columns are present. However, in a master problem where the set of columns

is by definition (severely) restricted, the addition of a small set of these columns allow

to greatly increase the part of the feasible space of the original problem that can be

represented, thereby (hopefully) allowing to generate the optimal solution much faster.

Again, the concept is that it can be beneficial to modify the master problem in order

to allow the information carried by a given set of “normal” columns to be “mixed and

matched more freely” than it is possible in the standard DW approach; the increase in

the size of the master problem can be largely compensated by the improvement in the

convergence speed (note that dual-optimal columns are usually very sparse as well).



9

4 Stabilizing Structured Dantzig-Wolfe Decomposition

In order to avoid large fluctuations of the dual multipliers, a “stabilization device” is

introduced in the dual problem. This is done by choosing a current center π̄, a family

of proper convex stabilizing functions Dt : Rm → R ∪ {+∞} dependent on a real

parameter t > 0, and by solving the stabilized dual master problem

maxπ
{
fB(π)−Dt(π − π̄)

}
(26)

at each iteration. The optimal solution π̃ of (26) is then used to compute f(π̃) as in the

standard scheme. The stabilizing function Dt is meant to penalize points “too far” from

π̄; at a first reading a norm-like function can be imagined there, with more details to

be given soon. Other ways to stabilize the cutting-plane algorithm have been proposed;

a thorough discussion of the relationships among them can be found in [24,27].

Problem (26) is a generalized augmented Lagrangian of (15), using as augmenting

function the Fenchel conjugate of Dt. For any convex function ψ(π), its Fenchel conju-

gate ψ∗(z) = supπ { zπ−ψ(π) } characterizes the set of all vectors z that are support

hyperplanes to the epigraph of ψ at some point. The function ψ∗ is closed and convex,

and has several other properties [19,24]; here, we just recall that, from the definition,

ψ∗(0) = − infπ { ψ(π) }. In our case, we obtain the well-known result that the Fenchel

conjugate of a dual function is the value function of the original problem. In fact,

(−fB)∗(z) = supπ { zπ + fB(π) } =

= supπ
{

minx{ cx+ π(z + b−Ax) : x ∈ XB }
}

(27)

= minx
{
cx : z = Ax− b , x ∈ XB

}
(28)

where the last equality comes from standard results in Lagrangian duality [24]: (27) is

the Lagrangian dual of (28) with respect to the “perturbed” constraints z = Ax − b.
We can then compute the Fenchel dual [24] of (26), which is obtained by simply writing

down (−fB)∗(0); after some algebra, this can be shown to result in

minz
{

(−fB)∗(z)− π̄z +D∗t (−z)
}

which, plugging in the definition of f∗B, gives

minz,x
{
cx− π̄z +D∗t (−z) : z = Ax− b , x ∈ XB

}
. (29)

The stabilized primal master problem (29) is equivalent to (26); indeed, we can assume

that whichever of the two is solved, both an optimal primal solution (x̃, z̃) and an

optimal dual solution π̃ are simultaneously computed. For practical purposes, one would

more likely implement (29) rather than (26); however, the following proposition shows

how to recover all the necessary dual information once (29) is solved.

Theorem 4 Let (x̃, z̃) be an optimal primal solution to (29) and π̃ be optimal Lagrange

(dual) multipliers associated to constraints z = Ax− b; then, π̃ is an optimal solution

to (26), and fB(π̃) = cx̃+ π̃(b−Ax̃).

Proof Because π̃ are optimal dual multipliers, (x̃, z̃) is an optimal solution to

minz,x
{
cx− π̄z +D∗t (−z) + π̃(z −Ax+ b) : x ∈ XB

}
.

That is, z̃ ∈ argminz{ (π̃ − π̄)z + D∗t (−z) }, which is equivalent to 0 ∈ ∂[(π̃ − π̄) ·
+D∗t (−·)](z̃), which translates to 0 ∈ {π̃− π̄} − ∂D∗t (−z̃), which finally yields π̃− π̄ ∈
∂D∗t (−z̃). Furthermore, since x̃ ∈ argminx{ cx + π̃(b − Ax) : x ∈ XB }, one first

has fB(π̃) = cx̃ + π̃(b − Ax̃) as desired. Then, because x̃ is a minimizer, b − Ax̃ is a
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supergradient of the concave function fB; changing sign, −(b−Ax̃) = z̃ ∈ ∂(−fB)(π̃).

The desired results now follow from [19, Lemma 2.2, conditions (2.2) and (2.3)] after

minor notational adjustments (−fB in place of fB, π̃ − π̄ in place of d∗).

UsingDt = 1
2t‖·‖

2
2, which givesD∗t = 1

2 t‖·‖
2
2, one immediately recognizes in (29) the

augmented Lagrangian of (15), with a “first-order” Lagrangian term corresponding to

the current point π̄ and a “second-order” term corresponding to the stabilizing function

Dt. Using a different stabilizing term Dt in the dual corresponds to a nonquadratic

augmented Lagrangian. The “null” stabilizing term Dt = 0 corresponds to D∗t = I{0};
that is, with no stabilization at all, (29) collapses back to (15)/(25). This is the extreme

case of a general property, that can be easily checked for varying t in the quadratic

case; as f ≤ g ⇒ f∗ ≥ g∗, a “flatter” Dt in the dual corresponds to a “steeper” D∗t
in the primal, and vice-versa. Also, note that the above formulae work for XB = X as

well, i.e., for the original problems (1)/(3) rather than for their approximations.

The stabilized master problems provide means for defining a general stabilized

structured Dantzig-Wolfe algorithm (S2DW), such as that of Figure 2.

〈 Initialize π̄ and t ; solve Pπ̄ , initialize B with the resulting x̄ 〉
repeat
〈 solve (29) for x̃; let π̃ be optimal dual multipliers of z = Ax− b 〉;
if( cx̃ = f(π̄) & Ax̃ = b ) then STOP;
else x̄ ∈ argminx { (c− π̃A)x : x ∈ X }; f(π̃) = cx̄+ π̃(b−Ax̄);

〈 update B as in Assumption 3 〉;
if( f(π̃) is “substantially better” than f(π̄) )
then π̄ = π̃
〈 possibly update t 〉

until STOP

Fig. 2 The Stabilized Structured Dantzig-Wolfe Algorithm

The algorithm generates at each iteration a tentative point π̃ for the dual and a (pos-

sibly infeasible) primal solution x̃ by solving (29). If x̃ is feasible and has a cost equal

to the lower bound f(π̄), then x̃ and π̄ are clearly optimal for (1) and (3), respectively.

In pratice, one can stop the algorithm when cx̃+ π̄(b−Ax̃)− f(π̄) ≥ 0 and ||Ax̃− b||
(with any norm) are both “small” numbers; we use

cx̃+ π̄(b−Ax̃)− f(π̄) + t∗||Ax̃− b|| ≤ εf(π̄) (30)

where the norm is chosen to match the stabilizing term (see Section 4.2), ε > 0 is

the relative accuracy required to the function value (1e-6 in our tests), and t∗ is an

appropriately chosen factor, depending on the scaling of the dual function f , that

weights the relative contribution of the constraints violation. The rationale of (30) is

that it is usually fairly easy to find a value for t∗ which is both “reasonably small” and

correct, in the sense that π̄ is actually ε-optimal at termination; this value is typically

quite “stable” within instances of (1)/(3) generated in the same way.

If (30) is not satisfied, new elements of B are generated by using the primal solution

x̄ obtained by solving (2) at the tentative point π̃. If f(π̃) is “substantially better” than

f(π̄), then it is worth to update the current center; this is called a Serious Step (SS).

Otherwise, the current center is not changed, and we rely on the fact that B is improved

for producing, at the next iteration, a better tentative point π̃; this is called a Null

Step (NS). In either case, the stabilizing term can be changed, usually in different

ways according to the outcome of the iteration. If an SS is performed, i.e., the current

approximation fB of f was able to identify a point π̃ with better function value than π̄,

then it may be worth to “trust” the model more and lessen the penalty for moving far
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from π̄; this corresponds to a “steeper” penalty term in the primal. Conversely, a “bad”

NS might be due to an excessive trust in the model, i.e., an insufficient stabilization,

thereby suggesting to “steepen” Dt (⇒ “flatten” D∗t ).

When fB is the standard cutting-plane model (17), the above approach is exactly

a (generalized) bundle method [19]; thus, S2DW is a bundle method where the model

fB is “nonstandard.” Note that the bundle method exists in the disaggregated variant

for the decomposable case using the stabilized version of (18) as master problem [3,

9]; already in that case fB is not the cutting-plane model, but rather the sum of

|K| independent cutting-plane models, one for each independent Lagrangian function.

S2DW can be seen as only carrying this idea to its natural extension by using an “even

more disaggregated” (specialized) model in place of the standard cutting-plane one(s).

4.1 Convergence Conditions

The S2DW algorithm can be shown to finitely converge to a pair (π∗, x∗) of optimal

solutions to (3) and (1), respectively, under the following conditions:

i) Dt is a convex nonnegative function such that Dt(0) = 0, its level sets Sδ(Dt)
are compact and full-dimensional for all δ > 0; remarkably, these requirements are

symmetric in the primal, i.e., they hold for D∗t if and only if they hold for Dt [19].

ii) Dt is differentiable in 0 and strongly coercive, i.e., lim‖π‖→∞Dt(π)/‖π‖ = +∞;

equivalently, D∗t is strictly convex in 0 and finite everywhere.

iii) For some fixed m ∈ (0, 1], the condition

f(π̃)− f(π̄) ≥ m(fB(π̃)− f(π̄)) . (31)

is necessary for an SS to be declared. The condition is also sufficient at length; that

is, one can avoid to perform an SS if (31) holds, but only finitely many times.

iv) During an infinite sequence of consecutive NSs, f(π̃) must be computed and B
updated as in Assumption 3 infinitely many times.

v) t is bounded away from zero (t ≥ t > 0), and during a sequence of consecutive NSs,

t can change only finitely many times.

vi) Dt is nonincreasing as a function of t, and limt→∞Dt(π) = 0 for all π, i.e., it

converges pointwise to the constant zero function. Dually, D∗t is nondecreasing as

a function of t and converges pointwise to I{0}.

Under the above assumptions, global convergence of S2DW can be proven, mostly

relying on the results of [19]. The only delicate point is the treatment of B along the

iterations. In fact, the theory in [19] does not mandate any specific choice for the model

apart from fB ≥ f , thereby allowing the use of (24). However, the handling of B (called

“β-strategy” in [19]) requires some care. The basic requirement is that it is monotone

[19, Definition 4.6]: this means that at length, during a sequence of consecutive NSs

(−fB+)∗(z̃) ≤ (−fB)∗(z̃) (32)

where B+ is the bundle at the subsequent iteration. From (28), it is clear that (32) can

be obtained with some sort of monotonicity in B; trivially, by never removing anything.

One can do better, allowing removals from B as long as “the important variables” are

left in; this is stated in the following Lemma, whose proof is obvious.

Lemma 1 A sufficient condition for (32) to hold is that (for any sequence of NSs, at

length) the bundle B has the following property: the optimal solution x̃ to (29) at any

step is still feasible for (29) at the subsequent step, i.e., with bundle B+.
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Hence it is only necessary to look, at each iteration, at the optimal value θ∗B of the

“auxiliary” variables in the current definition of XB; all the variables with zero value

can be discarded. However, convergence requires more than just non-descent, which

in turn requires a slightly “stronger grip” on B (see Lemma 2). Furthermore, there

is one minor but noteworthy aspect that does not allow to use the results of [19]

directly. Indeed, a significant part of the convergence of bundle methods hinges on

the assumption that “frequently enough,” once f is computed at the trial point π̃,

the model fB+ at the following iteration must take into account the corresponding

subgradient b − Ax̄ = z̄ ∈ ∂f(π̃), in the sense that f∗B+(z̄) ≤ f∗(z̄) [19, (4.iv)]. In the

standard DW case, this is easily obtained by adding z̄ to B, but in our case, this is not,

in general, true. Indeed, in accordance with Assumption 3, iv) above is weaker than

[19, (4.iv)], in that it is not required for the model at the next iteration to be capable of

entirely representing x̄ (and hence z̄), but only to be “at least a little bit larger.” This is

discussed in some details in the Appendix, where a sketch of convergence results for the

method is presented. The concept is discussed here in order to be able to bring about

a related interesting point: that of aggregation. In general, monotonicity only requires

that the optimal solution (x̃, z̃) to (29) remains feasible at the subsequent iteration.

When using the standard cutting-plane model (17), there is a particularly simple way

of attaining this: it suffices to add x̃ to B, possibly removing every other point. Indeed,

the linear function fx̃(π) = cx̃ + π(b − Ax̃) is a model of f , since x̃ ∈ XB ⊆ X,

and therefore z̃ = b − Ax̃ is feasible to (29). While such a harsh approximation of f

is contrary in spirit to the S2DW approach, it is worth remarking that under mild

conditions, performing aggregation is possible even with a different model than the

cutting-plane one. The idea is to consider f̄B = min{ fB , fx̃ }, where fB is (24);

this is clearly a model, as f ≤ fx̃ and f ≤ fB imply f ≤ f̄B, and f̄B is “at least as

accurate” as fB. A little conjugacy calculus [24] then gives

epi (−f̄B)∗ = cl conv
(
epi (−fB)∗ , epi (−fx̃)∗

)
,

where it is easy to verify that (−fx̃)∗(z) = cx̃ if z = Ax̃ − b, and (−fx̃)∗(z) = +∞
otherwise. Thus, the epigraph of (−f̄B)∗ can be constructed by taking all points (in the

epigraphical space) (z′, (−fB)∗(z′)) and computing their convex hull with the single

point (Ax̃− b, cx̃), as z′′ = Ax̃− b is the only point at which (−fx̃)∗ is not +∞. The

function value is then the inf over all these possibilities for a fixed z, i.e.,

(−f̄B)∗(z) = minz′,ρ

{
ρ(−fB)∗(z′)+(1−ρ)cx̃ : z = ρz′+(1−ρ)(Ax̃−b) , ρ ∈ [0, 1]

}
.

Therefore, the stabilized primal master problem (29) using model f̄B is

minz,z′,x′,θ′B,ρ


ρcx′ + (1− ρ)cx̃− π̄z +D∗t (−z)
z′ = Ax′ − b , x′ = CBθ

′
B , ΓBθ

′
B ≤ γB

z = ρz′ + (1− ρ)(Ax̃− b) , ρ ∈ [0, 1].

We can apply simple algebra to eliminate z′, but this still leaves ungainly bilinear terms

ρx′ in the problem (the terms (1− ρ)cx̃ and (1− ρ)(Ax̃− b) pose no problem instead,

as x̃ is a constant). However, provided that { θB : ΓBθB ≤ γB } is compact, these can

be effectively eliminated by the variable changes x = ρx′ and θB = ρθ′B, which leads

to

minz,x,θB,ρ


cx+ (1− ρ)cx̃− π̄z +D∗t (−z)
x = CBθB , ΓBθB ≤ ργB
z = Ax+ (1− ρ)Ax̃− b , ρ ∈ [0, 1].

(33)

The problems are clearly equivalent: from the compactness assumption, { θB : ΓBθB ≤
0 } = { 0 }, and therefore ρ = 0⇒ θB = 0⇒ x = 0 as expected. When ρ > 0 instead,
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one simply has x′ = x/ρ and θ′B = θB/ρ, and the equivalence follows algebraically. The

master problem therefore needs very little and intuitive modification: the new variable

ρ is a “knob” that allows either picking the fixed solution x̃ (ρ = 0), or any solution in

XB (ρ = 1), or “anything in between”. Note that, for the purpose of finite termination,

performing aggregations is dangerous: if x̃ is allowed to change at each iteration, the

set of all possible models f̄B is not finite. Thus, one has (at least in theory) to resort

to something like a safe β-strategy [19, Definition 4.9], which is simply one where the

total number of aggregations is finite (however this is obtained).

Convergence can also be obtained under weaker conditions. For instance:

– Strong coercivity in ii) can be relaxed provided that, as in the non-stabilized case,

B is “sufficiently large” to ensure that (29) has at least one feasible solution. This

actually provides a possible use for (33) in case one knows some x̃ ∈ conv(X) such

that Ax̃ = b; this guarantees that ρ = 1, θB = 0, x = z = 0 is feasible for (33).

Dually, (26) is always bounded above since f̄B ≤ fx̃ = cx̃.

– Using stabilizing terms that are not smooth at zero is possible provided that Dt → 0

(pointwise) as the algorithm proceeds; basically, this turns S2DW into a penalty

approach to (1), as D∗t → I{0}. In this case, it is also possible to limit changes of

the center π̄, up to never changing it.

– Constraints on the handling of t can be significantly relaxed, up to allowing it

to converge to zero, provided that Dt is “regular enough” as a function of t; for

instance,Dt = (1/t)D for someD satisfying i) and ii) (see the Appendix for details).

– The descent test (31) can be weakened by using v(29) in place of fB(π̃) − f(π̄),

making it easier to declare a SS.

The reader interested in these details is referred to [19]. Although not the most general,

the above scheme is already flexible enough to accommodate many algorithmic variants

that have proven to be useful in some applications:

– iii) allows staying at π̄ even if a “sizable” ascent could be obtained (only provided

that this does not happen infinitely many times); this allows for alternative actions

to be taken in response to a “good” step, e.g., increasing t⇒ “flattening” Dt.
– iv) allows solving (2) at other points than π̃, or not adding the resulting items to

B, at some iterations; this is useful for instance to accomodate a further search on

the dual space “around” π̃, such as a linear or curved search.

– v) allows a great deal of flexibility in managing the stabilizing term; the only

requirement is that it “never becomes too steep” (but imposing a fixed lower bound

on t may not be necessary; see the Appendix) and that changes must be inhibited

at some point during very long sequences of NSs. This allows for many different

actual strategies for updating t, which are known to be important in practice.

4.2 Choice of the Stabilizing Terms

The S2DW algorithm does not depend on the choice of the stabilizing term Dt, provided

that the above weak conditions are satisfied. Indeed, (29) shows that the choice of Dt
only impacts the D∗t (−z) term in the objective function, allowing for many different

stabilizing functions to be tested at relatively low cost in the same environment. A

number of alternatives have been proposed in the literature for the stabilizing function

Dt or, equivalently, for the primal penalty term D∗t . In all cases, Dt is separable on the

dual, and therefore D∗t is such on the primal, that is,
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Dt(π) =
∑m
i=1 Ψt(πi) D∗t (z) =

∑m
i=1 Ψ

∗
t (zi)

where Ψt : R→ R∪{+∞} is a family of functions. We experimented with two simple

versions: Ψt = I[−t,t], which establishes a trust region of radius t around the current

point (“BoxStep”), and Ψt = 1
2t (·)

2 (“proximal bundle”). From the dual viewpoint,

these correspond respectively to the linear penalty Ψ∗t = t| · | and the quadratic penalty

Ψ∗t = 1
2 t(·)

2. Actually, the treatment could be easily extended to the case when the

stabilizing term depends on multiple parameters instead of just one, such as in [6], but

we kept one single parameter t for simplicity.

5 Computational Experiments

All experiments were performed on a single CPU of a computer with 16 Intel Xeon

X7350 CPUs running at 2.93GHz and 64 Gb of RAM, running Linux Suse 11.1. All

the LPs have been solved with CPLEX 11.1.

5.1 Residual Capacity Inequalities

We start by remarking that an entirely different approach for improving the lower

bound v(Ī) attains the same result as the decomposition ones. This is based on devising

valid inequalities which cut out some of the fractional solutions of Ī; in particular, the

residual capacity inequalities [2,28] consider separately any single arc (i, j) ∈ E. Thus,

in the derivation that follows, for notational simplicity, we drop the arc index. Let

ah = dh/u and, for any subset P ⊆ H of the commodities, define dP =
∑
h∈P d

h,

aP = dP /u, qP = daP e, and rP = aP − baP c; the corresponding residual capacity

inequalities can then be written as∑
h∈P a

h(1− wh) ≥ rP (qP − y). (34)

These inequalities are valid and easy to separate for any given [w̄, ȳ], where ȳ is frac-

tional: one simply defines P = { h ∈ H : w̄h > ȳ − bȳc } and checks if

bȳc < aP < dȳe and
∑
h∈P a

h(1− w̄h − dȳe+ ȳ) + bȳc(dȳe − ȳ) < 0.

If so, then (34) corresponding to this P is violated, otherwise there are no violated

residual capacity inequalities. Adding all the (exponentially many) inequalities (34) to

I produces a (much larger) model I+ whose continuous relaxation Ī+ is “equivalent”

to the DW (and therefore to the SDW and S2DW) approach(es) in the sense that

v(Ī+) = v(B̄+) = v(1) (see [21] for details). This approach can be easily implemented

using the current, efficient, off-the-shelf MILP solvers, and it has been proven to be

competitive with (the non-stabilized) SDW on some classes of instances [21].

5.2 Summary of Algorithmic Approaches

A remarkably large number of different algorithmic approaches exist for computing the

same lower bound:

1. the DW approach applied to the original model I, either in the aggregated or in

the disaggregated form;

2. the Stabilized DW (also known as bundle method) approach applied to the original

model I, again in the two possible aggregated or disaggregated forms;

3. the Structured DW approach applied to model B+;

4. the Stabilized Structured DW approach applied to model B+;
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5. the completely different cutting-plane algorithm in the primal space, using residual

capacity inequalities, applied to solve Ī+.

All these approaches provide the same lower bound, and all, except the last one, obtain

that by, in fact, maximizing the very same dual function defined by (9)–(12). Yet, while

being (almost) all based on the same idea, they have surprisingly little in common,

apart from the fact that all of them consider some “very large” reformulation of the

original problem. The underlying reformulations have either very many columns and a

few rows, or very many rows and relatively few columns, or an “intermediate” (albeit

still very large) number of both rows and columns. The problems to be solved at each

iteration may be either LPs or QPs, and be either very specially structured (so as

to allow specialized approaches [17]) or rather unstructured. Implementing them may

require little more than access to a general-purpose LP solver, such as in the case of

5 where the dynamic generation of rows can be handled by the standard callback

routines that are provided for the purpose. Other cases, such as 2, can be solved

by general-purpose bundle codes such as that already used with success in several

other applications [10,22,23]. Yet, other cases, such as 3 and 4, require development of

entirely ad-hoc approaches. The algorithms may either be basically “fire and forget,”

or require nontrivial setting of algorithmic parameters. In particular, for stabilized

approaches, the initial choice of π̄ and the management of t can have a significant

impact on performances. Regarding the first, π̄ = 0 is the standard choice at the first

iteration; however, for the MCND, better options exist. For instance, one may solve

the |H| separate shortest path problems corresponding to constraints (5) and (7), with

dhchij + fij/uij as flow costs; this corresponds to solving the LP relaxation Ī, and

produces node potentials π̄hi which can be used as starting point. Alternatively, or in

addition, a few iterations of a subgradient-like approach can be performed to quickly

get a better dual estimate. This has been tested, because for some applications the

choice of the starting point has been shown to have substantial effects on the impact

of stabilization on the performances of the algorithms. Indeed, for “simple” problems,

a good warm-start can make stabilization almost useless [6], and since the focus of this

paper is on stabilization, it is relevant to computationally test to what extent this is

(or not) the case.

For non-stabilized approaches, the choice of the initial point is known [6] to have

little impact on the performances. This is largely true also for the stabilized DW solved

by the standard bundle code, which typically requires many steps anyway, and can

usually recover a solution at least as good as the one provided by the initialization in

a small fraction of these. Furthermore, several sophisticated approaches for the critical

on-line tuning of t [18, I.5] have been devised which helps keep t “large,” thereby

allowing “long steps” and fast convergence, whenever π̄ is “far” from the optimum,

while t is reduced to enhance the locality properties as the optimum is approached.

By contrast, S2DW terminates in far fewer iterations, each one being significantly

more costly due to the larger master problem; therefore, the choice of the initial π̄ can

have a larger impact on performances. Hence, apart from the shortest path warm-start

(which can be used by default, since it is very inexpensive), we tested a two-level warm-

start where the shortest-path-produced π̄ is further enhanced by a few iterations of a

subgradient method. Furthermore, the t-strategies are not entirely straightforward to

implement within the S2DW setting, especially when the stabilizing term is not the

standard quadratic one; hence, for S2DW, we kept t fixed throughout to a hand-tuned

value depending on the choice of the initial point. The tuning was done among a few
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choices, and kept fixed for all instances in the same class. As expected, the “best” t is

typically smaller for the two-level warm-start than for the shortest path warm-start.

All the approaches compute the same lower bound to the optimal value of the

MCND, but of course this is mostly relevant as a step towards finding the optimal—

or at least a provably good—solution to the original integer problem. It is therefore

interesting to gauge “the quality” of the “partial” model generated by each approach

at termination. To do that, we heuristically solved each of the corresponding MILP

models by running CPLEX for one hour with the polishing option. This was done for

all models except the ones generated by the DW approaches, which anyway, as we will

see shortly, are not competitive with the others (see [30,31] for ways to derive integer

solutions from DW methods). Note that, of all partial models obtained by the different

approaches, only the MILP formulation derived from Ī+ is guaranteed to contain an

optimal solution to I; for all the others, some columns needed to represent any optimal

integer solution might not be in the model.

5.3 Computational Results

The experiments have been performed on 88 randomly generated problem instances,

already used in [21], to which the reader is referred for more details. The instances are

divided into three classes, “medium,” “large” and “huge,” with (|N |, |H|) respectively

equal to (30, 100), (20, 200), and (30, 400). For each class, 8 instances were generated,

each with 4 different values of the parameter C = |E|(
∑
h∈H dh)/(

∑
(i,j)∈E uij). When

C = 1 the average arc capacity equals the total demand and the network is lightly

capacitated, while it becomes more tightly capacitated as C increases.

We first ran an initial set of tests on a subset of the instances to get an assessment

of the effectiveness of each approach and to tune the algorithmic parameters where

necessary. From these tests, we could conclude that:

– As expected, due to its instability, the standard (non-stabilized) aggregated DW

method could not reach the relative precision of 1e-6 in reasonable time, dramati-

cally tailing off and effectively stopping to converge while still far from the expected

value. Unlike in other applications [25], turning to the disaggregated model did not

substantially change the outcome.

– Not even the stabilized aggregated DW approach could reach convergence in rea-

sonable time; while the method was indeed converging, the speed was exceedingly

slow. This could be expected in view of the results on a similar problem [10]. How-

ever, unlike in the non-stabilized case, the disaggregated variant improved things

very substantially, resulting in a workable solution.

– The SDW method was always workable, although rather slow for very large in-

stances. The S2DW worked well, but there was no clear dominance between the

quadratic stabilization (Ψt = 1/(2t)(·)2) and the linear stabilization (Ψt = I[−t,t]),
thus we had to experiment on both.

We then ran a complete set of tests on the remaining approaches, i.e., the primal

cutting-plane approach using residual capacity inequalities to solve model Ī+ (denoted

by “PCP”), the disaggregated stabilized DW method on the integer model I (denoted

by “StabDW”), the non-stabilized SDW method on the binary model B+ (denoted

by “StructDW”), and three versions of the S2DW method on the binary model B+:

with quadratic stabilization (denoted by “S2DW2”), with linear stabilization (denoted

by “S2DW∞”), and with linear stabilization and two-level warm-start using the sub-

gradient method (denoted by “S2DW∞–ws2”). In all approaches, the added columns
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(and the added rows, for PCP) are never removed, nor aggregated. The results are

shown in Tables 1 to 3. For each instance, we report the improvement (column “imp”),

in percentage, between the “weak” lower bound v(Ī) and the “strong” lower bound

v = v(Ī+) = v(1) = v(B̄+), computed as imp = 100 × (v − v(Ī))/v(Ī). To compare

the approaches, we report total CPU times (column “cpu”); we remark that all the

approaches spend basically all the time in the master problem, with the solution of the

Lagrangian subproblem always taking less than 1% of the time, and as little as 0.01%

for the largest instances. With the exception of StabDW, we also report the gap in per-

centage (column “gap”) between the upper bound, v̄, obtained by performing CPLEX

heuristics on the MILP model derived for each approach, and the lower bound: gap =

100× (v̄ − v)/v. For all approaches, we report the total number of iterations (column

“it”); for S2DW, we also report the number of SSs (column “ss”).

For the 32 medium instances (Table 1), the StabDW approach is the fastest for

eight instances (the easier ones to solve for all approaches), it is somewhat competitive

for six other instances, but loses badly—due to a very large number of iterations—for

all the others. The SDW approach is often the best for small values of C, but suffers

a significant degradation of performances (up to five-fold) as C grows from 1 to 16,

making it less competitive for the largest values of C. The quadratic stabilization in

S2DW does not always translate into fewer iterations than the non-stabilized method,

although this does indeed happen for C = 16; however, the cost of solving the quadratic

master problem with CPLEX is very high, especially for some instances, making it

very unattractive. We remark here that both the active-set (“simplex”) and interior-

point (“barrier”) algorithms of CPLEX have been tested, with the former proving (as

expected) more efficient due to its better reoptimization capabilities; yet, this was not

sufficient to achieve good performances. The linear S2DW is worse than the quadratic

one in iteration count, but much better in running time. Furthermore, it is much more

stable than the non-stabilized SDW as C grows; while the latter is usually faster for

C ≤ 4, the reverse happens for C ≥ 8. The effect of the two-stage warm-start is

somewhat erratic for these instances, seldom being of any use in terms of CPU time;

however, the gaps (where nonzero) are most often substantially reduced. The PCP

approach is generally comparable to S2DW∞ in performance, often (but not always)

being better; yet, in terms of gap, S2DW∞ clearly dominates, especially for the most

“difficult” instances where the final gaps are larger.

The trends seen for the medium instances are confirmed and amplified in the large

ones (Table 2). The (disaggregated) stabilized DW requires more than 100000 iterations

on average, and therefore is typically very slow. The non-stabilized SDW suffers the

same sharp degradation of performance as C increases, with almost an order of magni-

tude difference in one case. A completely opposite trend, barely discernible already for

the “hard” medium instances, reveals itself for PCP: the approach is significantly faster

for large C than for small C, with the ratio between C = 1 and C = 16 reaching almost

25 in one case. Thus, while StructDW is faster than PCP for C = 1, typically by more

than an order of magnitude, PCP wins in a few cases for C = 16, although at most by

50%. A similar trend is observed for gaps: StructDW is better (often considerably so)

for C ≤ 8, while in a few cases PCP attains a better gap for C = 16. The quadratic

S2DW now outperforms all other approaches in terms of iteration count; however, the

cost of solving the quadratic master problem with CPLEX attains intolerable levels.

Furthermore, the gaps are not quite as good as those of the linearly stabilized versions;

in particular, in four cases (marked with “****” in the Table), no feasible solution
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Problem StabDW StructDW S2DW∞ S2DW∞–ws2

|A| C imp cpu it cpu gap it cpu gap it ss cpu gap it ss
519 1 100.83 87695 248746 9839 9.96 157 2473 2.23 76 55 1857 2.31 53 38

4 92.54 88031 247864 9087 11.25 140 2140 2.33 68 54 2487 2.36 66 44
8 82.16 88918 258266 11613 8.47 143 2338 2.45 66 45 1813 2.30 52 30

16 65.53 85384 238945 38617 10.26 242 3403 2.66 77 39 2570 2.26 58 23
519 1 140.14 95890 267645 21405 18.41 115 8741 3.14 107 94 7576 3.39 80 67

4 121.46 103067 266754 25651 18.35 121 11101 3.17 118 94 7722 3.07 75 59
8 101.19 95873 273728 47618 20.57 160 10020 3.00 103 74 8904 3.03 75 49

16 73.67 92737 240947 60050 20.04 89 8245 3.00 72 52 8004 3.29 63 24
519 1 88.94 61543 187836 5153 5.75 128 1482 2.19 63 52 1139 1.91 49 32

4 82.77 60911 188733 8207 6.25 205 1320 1.87 60 41 1341 1.77 53 32
8 74.84 62377 187785 8490 4.87 163 1649 1.90 71 40 1262 1.84 47 30

16 61.42 75193 220169 17422 6.35 202 1636 1.99 59 33 1522 2.11 55 19
519 1 125.07 93065 258054 22246 14.90 165 4811 3.31 87 76 4668 3.06 66 55

4 111.02 90573 250854 17976 18.22 131 4324 2.57 77 64 4373 3.19 66 45
8 94.82 93418 256884 30460 18.18 159 5224 3.14 85 60 4209 2.86 57 36

16 71.31 93567 265663 74447 16.50 176 5532 3.14 67 46 5191 3.02 64 23
668 1 126.02 98789 246702 23771 11.89 149 9215 2.96 97 78 6815 3.01 69 56

4 115.29 99014 247620 28567 10.97 176 6766 2.99 79 63 6506 3.07 69 45
8 102.03 104481 258636 27871 12.07 130 7560 2.67 87 56 5765 2.78 61 37

16 80.96 103011 278905 58363 13.95 156 8626 3.14 83 45 3764 2.95 41 18
668 1 111.16 92855 243448 13119 8.69 120 4316 2.53 77 63 4301 2.52 71 44

4 103.21 94363 243804 12586 8.27 114 4117 2.36 79 51 2695 2.55 46 34
8 93.15 88587 250759 20560 9.20 164 6314 2.31 102 64 3203 2.54 59 21

16 76.10 101200 270216 38503 8.75 184 6360 2.30 95 44 3441 2.50 55 19
avg. 95.65 89606 246055 26317 12.17 154 5321 2.64 81 58 4214 2.65 60 37

Table 3 Results for huge instances

at all was found. Here, the linear S2DW outperforms the competition: only the non-

stabilized SDW is faster for small C, but S2DW is much less affected by the growth

of C (actually, most often than not it behaves better for large C than for small ones),

being a factor of two faster on average. Furthermore, the gap is substantially smaller

than for both StructDW and PCP, irrespective of C. Again, the two-level warm-start

has an erratic effect on running times, resulting in a very close average, but halves the

gap when compared to the already surprisingly good result of the standard warm-start;

this results in an average gap of 1.4%, which is a full order of magnitude less than the

14% gap obtained by PCP.

For huge instances (Table 3), we did not compute results for PCP and S2DW2, as it

is clear from the previous data that they have no hope to be competitive (for PCP, this

had already been shown in [21] when comparing it to StructDW alone). The stabilized

DW requires around 250000 iterations to converge, ending up being the slowest in all

cases. The non-stabilized SDW suffers from the same dramatic performance decline as

C grows, making even the stabilized DW on the original cutting-plane model compet-

itive for C = 16. However, S2DW is much more efficient in time, up to over one order

of magnitude, and still delivers much smaller gaps. The two-level warm-start does not

have the same uniform effect on gaps as for the medium and large instances, ending up

with very close results; however, the effect on running times is more noticeable, with a

reduction between 20% and 50% being the most common outcome.

The results in the previous tables are summarized in the performance profiles (over

CPU times) of the different algorithms shown in Figure 3 for medium and large in-

stances and in Figure 4 for huge instances.
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Fig. 4 CPU performance profiles for huge instances

These results confirm that using “even more disaggregated” models is typically very

beneficial: like moving from aggregated to disaggregated cutting-plane models [3,9,25],

the larger model of the SDW approach provides a much faster rate of convergence.

For loosely capacitated medium-to-large-scale instances, not stabilizing may be the

best choice; this has been reported before for column generation [6]. However, for

more tightly capacitated instances, especially as the size grows, stabilization becomes

instrumental, provided that care is exercised in choosing the right stabilizing term. The

effect on the gap is also noteworthy, since it suggests that stabilization seems capable of

helping the SDW approach to select “just the right parts” of the huge model, not only

in terms of the solution of the LP relaxation, but also in terms of the integer solution.

Exactly why this capability does not appear to be shared by the quadratically-stabilized

version, that is otherwise clearly superior in terms of convergence speed, is not clear

to us at this point in time, although one may speculate that the linear stabilization “is

a lesser change” to the original linear objective function of the master problem. Thus,

stabilization not only improves lower bound computation times, but it also appears—at

least in this application—useful for constructing actual solutions of the original MILP.

Since the non-stabilized SDW approach is a special case of the stabilized one with an

“infinitely weak” stabilization term, it is arguably convenient to approach any potential

new application with a “stabilize first, ask questions later” strategy.
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6 Conclusions and Future Research

We have analyzed and implemented an extension of the Dantzig-Wolfe decomposition

method which exploits the structure of the pricing problem, i.e., the existence of a

reformulation of the latter amenable to a column generation procedure. The SDW ap-

proach has similar convergence properties to the original DW approach; furthermore,

the subproblem that has to be solved in the two algorithms is the same—only the

master problem changes—and therefore only limited modifications to existing DW ap-

proaches are required to implement SDW methods. The SDW method can be stabilized

exactly like the original DW approach, leading to the stabilized structured Dantzig-

Wolfe method (S2DW); the convergence theory of [19] can be extended to the new

approach, providing a reasonably complete picture about what stabilizing terms can

be used, how the proximal parameter t and the “bundle” B can be handled, and so on.

We have tested the S2DW approach on the multicommodity capacitated network design

problem, obtaining quite encouraging results against a large set of possible alternative

approaches providing the same (strong) lower bound.

As far as future developments go, it will be interesting to test more applications

of the S2DW approach. For instance, the well-known Gilmore-Gomory formulation of

the cutting stock problem [8] is usually solved by DW approaches; there, X is the set

of all valid cutting patterns, that is, all feasible solutions to an integer knapsack prob-

lem. Owing to the well-known reformulation of integer knapsack problems in terms of

longest path problems on a directed acyclic network, one can devise the arc-flow model

of the cutting stock problem [5], that provides the same lower bound at the cost of a

pseudo-polynomial number of variables (one for each arc in the graph representing the

knapsack) and constraints (one for each node in the same graph). The arc-flow model

provides the alternative reformulation of Assumption 1, and each feasible cutting pat-

tern is a path in the directed graph underlying the arc-flow model; thus, one can easily

devise a restricted formulation XB corresponding to a (small) sub-graph of the (large)

full directed graph. It will be interesting to verify if the new approach is competitive

with existing solution methods, in this application or others. The implementation we

tested is also rather naive in terms of the handling of t (fixed) and of B (no removals,

no aggregation); finding appropriate rules for these important aspects has the potential

to further substantially improve the computational behavior of the approach.

Acknowledgments
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Appendix: Proof of the convergence results

We now rapidly sketch convergence results for the S2DW method, focusing only on certain
aspects where the theory of [19] cannot be directly used due to the above mentioned somewhat
weaker assumptions on the update of the model. The standing hypotheses here are i)—vi), a
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monotone and safe β-strategy, and, at least initially, that X is compact. A basic quantity in
the analysis is

∆f = fB(π̃)− f(π̃) ≥ 0,

i.e., the “approximation error” of the model fB with respect to the true function f in the
tentative point π̃. It can be shown that if ∆f = 0, then π̃ and (x̃, z̃) are the optimal solutions
to the “exact” stabilized problems

maxπ
{
f(π)−Dt(π − π̄)

}
minz,x

{
cx− π̄z +D∗t (−z) : z = Ax− b , x ∈ conv(X)

} (35)

(with fB = f , XB = conv(X)), respectively [19, Lemma 2.2]. This means that π̃ is the
best possible tentative point, in terms of improvement of the function value, that we can ever
obtain unless we change either t or π̄; in fact, it is immediate to realize that if ∆f = 0, then the
“sufficient ascent” condition (31) surely holds. The “inherent finiteness” of our dual function
f allows us to prove that this has to happen, eventually, provided that B is not “treated too
badly”.

Lemma 2 Assume that an asymptotically blocked β-strategy is employed, i.e., for any se-
quence of NSs, at length removals from the bundle B are inhibited; then, after finitely many
NSs, either a SS is performed, or the algorithm stops.

Proof By contradiction, assume that there exists a sequence of infinitely many consecutive NSs
(i.e., the algorithm never stops and no SS is done). If an asymptotically blocked β-strategy
is employed, during an infinite sequence of consecutive NSs, one has that (31) is (at length,
see iii)) never satisfied, and this clearly implies f(π̃) < fB(π̃). But, at length, t is fixed by v),
removals from B are inhibited, no aggregated pieces can be created because the β-strategy is
safe, and at least one item is added to B at every iteration by iv); thus, B grows infinitely
large, contradicting finiteness in Assumption 1.

Under the stronger version of Assumption 3 where x̄ ∈ XB′ , this result could be strength-
ened to allow reducing the size of B down to any predetermined value. This first requires the
further assumption that Dt is strictly convex (equivalently, D∗t is differentiable), that is sat-

isfied e.g. by the classic Dt = 1
2t
‖ · ‖22 but not by other useful stabilizing terms (cf. e.g. [6]).

Then, under the mere monotone β-strategy one can use [19, Lemma 5.6] to prove that the
sequence {z̃i} is bounded, and then [19, Theorem 5.7] to prove that the optimal value v(29)
of the stabilized primal master problem is actually strictly decreasing; since π̄ and (at length)
t are fixed, this means that no two iterations can have the same B, but the total number of
possible different bundles B is finite. A weaker version (that is sufficient in practice) showing
that v(29) → 0 even if infinitely many aggregations are performed is also possible: one could
then resort to employing the “poorman cutting-plane model” fx̃ (cf. §4.1) at all steps, which
basically makes the algorithm a subgradient-type approach with deflection [4,13] and results
in much slower convergence [10,23]. Thus, this kind of development seems to be of little in-
terest in our case. Instead, the strictly monotone β-strategy [19, Definition 4.8], which simply
requires suspending removals from B until v(29) strictly decreases, is likely to be an effective
way to reduce the size of B while ensuring the asymptotically blocked property.

Theorem 5 Under the assumptions of Lemma 2, the sequence {f(π̄i)} converges to the opti-
mal value of (3) (possibly +∞). If (3) is bounded above, then a subsequence of {x̃i} converges
to an optimal solution of (1). If, furthermore, m = 1 then the S2DW algorithm finitely ter-
minates.

Proof The standing assumption of [19, §6], i.e., that either the algorithm finitely stops with
an optimal solution or infinitely many SSs are performed, is guaranteed by Lemma 2. The
fundamental observation is that both f and fB, being value functions of linear programs, are
polyhedral. Then, the first statement is [19, Theorem 6.4] (being a polyhedral function, f
is ∗-compact). The second statement comes from [19, Theorem 6.2], which proves that the
sequence {z̃i} converges to 0; then, compactness of X implies that a convergent subsequence
exists. The third statement is [19, Theorem 6.6]. Note that the latter uses [19, Lemma 6.5],
which apparently requires that fB be the cutting-plane model. However, this is not actually
the case: the required property is that fB be a polyhedral function, and that there exists a
“large enough” B such that fB = f , which clearly happens here.
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The assumption that t is bounded away from zero can be relaxed somewhat if Dt = (1/t)D
for some D satisfying i) and ii). It may be useful to remark here that, as correctly pointed
out by K. Kiwiel in a private communication, there is a flaw in the treatment of this point in
[19]. In particular, the alternative to ti ≥ t > 0 proposed there is

∑
i→∞ ti = ∞ [19, (6.2)];

that assumption does not guarantee that the whole sequence {z̃i} converges to 0, but only
existence of a converging subsequence. As a consequence, in the hypothesis of Theorem 6.3
one should replace the “asymptotic complementary slackness” condition lim infi→∞ z̃iπ̄i = 0
with the stronger condition that z̃ik π̄ik → 0 for some subsequence {zik} → 0 (which do exist
under [19, (6.2)]), or more simply that lim infi→∞max{‖z̃i‖, z̃iπ̄i} = 0. Nonetheless, proof of
[19, Theorem 6.4]—which is of interest here—only requires convergence of a subsequence, and
is therefore valid under the weaker assumption [19, (6.2)].

Note that setting m = 1 as required by Theorem 5 to attain finite convergence may come at a
cost in practice. In fact, this turns the S2DW method into a “pure proximal point” approach,
where the “abstract” stabilized problems (35) have to be solved to optimality before π̄ can
be updated (it is easy to check that with m = 1 a SS can only be performed when ∆f = 0).
This is most often not the best choice, computationally [6], and for good reasons. The issue is
mostly theoretical; in practice, finite convergence is very likely even for m < 1. Furthermore, as
observed in the comments to [19, Theorem 6.6], the requirement can be significantly weakened;
what is really necessary is to ensure that only finitely many consecutive SSs are performed
with ∆f > 0. Thus, it is possible to use any m < 1, provided that some mechanism (such as
setting m = 1 after a while) ensures that sooner or later a SS with ∆f = 0 is performed; once
this happens (being m = 1 or not), the mechanism can be reset and m can be set back to a
value smaller than 1.

The extension to the case where X is not compact is relatively straightforward. Stabilization
(with the appropriate assumptions) considerably helps in ensuring that the master problems
attain optimal solutions even if their feasible regions (in particular, XB) are unbounded. Then,
as long as f(π̃) > −∞ Assumption 3 is enough to ensure convergence. If f(π̃) = −∞ instead,
one has to assume that the solution of (2) produces a feasible solution x̄ and an unbounded
descent direction ν for conv(X) as a “certificate of unboundedness”. Now, because clearly
fB(π̃) > −∞ = f(π̃), the algorithm cannot be stopped; furthermore, it cannot be that the
half-line { x = x̄ + αν, α ≥ 0 } is entirely contained in XB. Then, “some variables must be
missing”: as in the finite case, it must be easy to update B and the associated ΓB, γB and CB
to a B′ ⊃ B such that there exists a B′′ ⊇ B′ such that ν is an unbounded descent direction for
XB′′ . Once this assumption is satisfied, the theoretical analysis hardly changes. One may loose
the second point of Theorem 5 (asymptotic convergence of {x̃i}), but this is of no concern here;
finite convergence basically only relies on the fact that the total number of possible different
bundles B is finite, so we basically only need to ensure that the same triplet (B, π̄, t) is never
repeated. The fact that conv(X) (⇒ some variables θ in its definition) may not be bounded
has no impact, provided that the “set of pieces out of which the formulation of conv(X) is
constructed” is finite.
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24. J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms,
volume 306 of Grundlehren Math. Wiss. Springer-Verlag, New York, 1993.

25. K.L. Jones, I.J. Lustig, J.M. Farwolden, and W.B. Powell. Multicommodity Network
Flows: The Impact of Formulation on Decomposition. Mathematical Programming, 62:95–
117, 1993.
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