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GRAVER BASIS AND PROXIMITY TECHNIQUES FOR

BLOCK-STRUCTURED SEPARABLE CONVEX

INTEGER MINIMIZATION PROBLEMS

RAYMOND HEMMECKE, MATTHIAS KÖPPE, AND ROBERT WEISMANTEL

Dedicated to the memory of Uri Rothblum

Abstract. We consider N-fold 4-block decomposable integer programs, which
simultaneously generalize N-fold integer programs and two-stage stochastic in-
teger programs with N scenarios. In previous work [R. Hemmecke, M. Köppe,
R. Weismantel, A polynomial-time algorithm for optimizing over N-fold 4-
block decomposable integer programs, Proc. IPCO 2010, Lecture Notes in Com-
puter Science, vol. 6080, Springer, 2010, pp. 219–229], it was proved that for
fixed blocks but variable N , these integer programs are polynomial-time solv-
able for any linear objective. We extend this result to the minimization of
separable convex objective functions. Our algorithm combines Graver basis
techniques with a proximity result [D.S. Hochbaum and J.G. Shanthikumar,
Convex separable optimization is not much harder than linear optimization,
J. ACM 37 (1990), 843–862], which allows us to use convex continuous opti-
mization as a subroutine.

Keywords: N-fold integer programs, Graver basis, augmentation algo-
rithm, proximity, polynomial-time algorithm, stochastic multi-commodity flow,
stochastic integer programming

1. Introduction

We consider a family of nonlinear integer minimization problems over block-
structured linear constraint systems in variable dimension. The objective is to
minimize a separable convex objective function f : Rn → R, defined as

f(x1, . . . , xn) =

n
∑

i=1

fi(xi),

with convex functions fi : R → R of one variable each.
Hochbaum and Shanthikumar [13] present a general technique for transforming

algorithms for linear integer minimization to algorithms for separable convex integer
minimization. The key ingredients of this transformation technique are scaling
techniques and proximity results between optimal integer solutions and optimal
solutions of the continous relaxation. This technique leads directly to polynomial
time algorithms if all the subdeterminants of the constraint matrix are bounded
polynomially.

Of course, this is quite a restrictive hypothesis, but an important corollary of
this work is a polynomial time algorithm for minimizing a separable convex function
over systems of inequalities associated with a unimodular matrix. This generalizes,
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in particular, earlier work of Minoux [14] on minimum cost flows with separable
convex cost functions.

An impossibility result on the existence of a strongly polynomial algorithm for
minimizing a general separable convex function over network flow constraints has
been shown in [12].

In the present paper, we study a certain family of block-structured separable
convex integer minimization problems over polyhedra, which does not satisfy the
hypothesis of polynomially bounded subdeterminants. The constraint matrix of
these problems is N -fold 4-block decomposable as follows:

(

C D

B A

)(N)

:=















C D D · · · D

B A O O

B O A O
...

. . .

B O O A















for some given N ∈ Z+ and N copies of A, B, and D. This problem type was
studied recently in [8].

N -fold 4-block decomposable matrices arise in many contexts and have been
studied in various special cases, three of which are particularly relevant. We denote
by O a zero matrix of compatible dimensions and by · a matrix with no columns
or no rows.

(i) For C = · and D = · we recover the problem matrix ( · ·

B A ) (N) of a two-stage
stochastic integer optimization problem. Then, B is the matrix associated with the
first stage decision variables and A is associated with the decision on stage 2. The
number of occurences of blocks of the matrix A reflect all the possible scenarios
that pop up once a first stage decision has been made. We refer to [11] for a survey
on state of the art techniques to solve this problem.

(ii) For B = · and C = · we recover the problem matrix ( · D
· A ) (N) of a so-called

N -fold integer problem. Here, if we let A be the node-edge incidence matrix of
the given network and set D to be the identity, then the resulting N -fold IP is a
multicommodity network flow problem. Separable convex N -fold IPs can be solved
in polynomial time, provided that the matrices A and D are fixed [2, 10].

(iii) For totally unimodular matrices C,A their so-called 1-sum (C O
O A ) is totally

unimodular. Similarly, total unimodularity is preserved under the so-called 2-sum
and 3-sum composition [21, 24]. For example, for matrices C and A, column vector
a and row vector b⊺ of appropriate dimensions, the 2-sum of (C a ) and

(

b⊺

A

)

gives
(

C ab⊺

O A

)

. The 2-sum of
(

C ab⊺ a
O A O

)

and
(

b⊺

B

)

creates the matrix

(

C ab⊺ ab⊺

O A O
O O A

)

,

which is the 2-fold 4-block decomposable matrix
(

C ab⊺

O A

)(2)
. Repeated application

of certain 1-sum, 2-sum and 3-sum compositions leads to a particular family of N -
fold 4-block decomposable matrices with special structure regarding the matrices
B and D.

(iv) The general case appears in stochastic integer programs with second order
dominance relations [4] and stochastic integer multi-commodity flows. See [8] for
further details of the model as an N -fold 4-block decomposable problem. To give
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Figure 1. Modeling a two-stage stochastic integer multi-
commodity flow problem as an N -fold 4-block decomposable prob-
lem. Without loss of generality, the number of commodities and
the number of scenarios are assumed to be equal.

one example consider a stochastic integer multi-commodity flow problem, intro-
duced in [15, 20]. Let M integer (in contrast to continuous) commodities to be
transported over a given network. While we assume that supply and demands are
deterministic, we assume that the upper bounds for the capacities per edge are un-
certain and given initially only via some probability distribution. In a first stage we
have to decide how to transport the M commodities over the given network without
knowing the true capacities per edge. Then, after observing the true capacities per
edge, penalties have to be paid if the capacity is exceeded. Assuming that we have
knowledge about the probability distributions of the uncertain upper bounds, we
wish to minimize the costs for the integer multi-commodity flow plus the expected
penalties to be paid for exceeding capacities. To solve this problem, we discretize
as usual the probability distribution for the uncertain upper bounds into N sce-
narios. Doing so, we obtain a (typically large-scale) (two-stage stochastic) integer
programming problem as shown in Figure 1. Herein, A is the node-edge incidence
matrix of the given network, I is an identity matrix of appropriate size, and the
columns containing −I correspond to the penalty variables.

2. Main results and proof outline

In [8], the authors proved the following result.

Theorem 2.1. Let A ∈ ZdA×nA , B ∈ ZdA×nB , C ∈ ZdC×nB , D ∈ ZdC×nA be fixed
matrices. For given N ∈ Z+ let l ∈ (Z ∪ {−∞})nB+NnA , u ∈ (Z∪ {+∞})nB+NnA ,
b ∈ ZdC+NdA , and let f : RnB+NnA → R be a separable convex function that takes

integer values on ZnB+NnA and denote by f̂ an upper bound on the maximum
of |f | over the feasible region of the N -fold 4-block decomposable convex integer
minimization problem

(IP)N,b,l,u,f : min
{

f(z) : ( C D
B A ) (N)z = b, l ≤ z ≤ u, z ∈ ZnB+NnA

}

.

We assume that f is given only by a comparison oracle that, when queried on z and
z′ decides whether f(z) < f(z′), f(z) = f(z′) or f(z) > f(z′). Then the following
holds:
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(a) There exists an algorithm with input N , l,u, b that computes a feasible solution
to (IP)N,b,l,u,f or decides that no such solution exists and that runs in time
polynomial in N and in the binary encoding lengths 〈l,u,b〉.

(b) There exists an algorithm with input N , l,u, b and a feasible solution z0 to
(IP)N,b,l,u,f that decides whether z0 is optimal or finds a better feasible solu-
tion z1 to the problem (IP)N,b,l,u,f with f(z1) < f(z0) and that runs in time

polynomial in N and in the binary encoding lengths 〈l,u,b, f̂〉.
(c) For the restricted problem where f is linear, there exists an algorithm with input

N , l,u, b that finds an optimal solution to the problem (IP)N,b,l,u,f or decides
that (IP)N,b,l,u,f is infeasible or unbounded and that runs in time polynomial

in N and in the binary encoding lengths 〈l,u,b, f̂〉.
This theorem generalizes a similar statement for N -fold integer programming

and for two-stage stochastic integer programming. In these two special cases, one
can even prove claim (c) of Theorem 2.1 for all separable convex functions and
for a certain class of separable convex functions, respectively. In [8], it was posed
as an open question whether Theorem 2.1 can be extended, for the full class of
N -fold 4-block decomposable problems, from linear f to general separable convex
functions f .

In the present paper, we settle this question, proving the following result for
separable convex functions f , for which we assume that the following approximate
continuous convex optimization oracle is available:

Problem 2.2 (Approximate continuous convex optimization). Given the data A,
B, C, D, N , l,u, b and a number ǫ ∈ Q>0, find a feasible solution rǫ ∈ QnB+NnA

for the continuous relaxation

(CP)N,b,l,u,f : min
{

f(r) : (C D
B A ) (N)r = b, l ≤ r ≤ u, r ∈ RnB+NnA

}

.

such that there exists an optimal solution r̂ to (CP)N,b,l,u,f with

‖r̂− rǫ‖∞ ≤ ǫ,

or report Infeasible or Unbounded.

Theorem 2.3. For the problem of Theorem 2.1, we assume that the objective
function f is given by an evaluation oracle and an approximate continuous convex
optimization oracle for (CP)N,b,l,u,f .

Then there exists an algorithm that finds an optimal solution to (IP)N,b,l,u,f or
decides that (IP)N,b,l,u,f is infeasible or unbounded and that runs in time polynomial

in N and in the binary encoding lengths 〈l,u,b, f̂〉.
The main new technical contribution of the present paper is to combine Graver

basis techniques with a proximity result developed by Hochbaum and Shanthiku-
mar [13] in the context of their so-called proximity-scaling technique.

This allows us to first use the approximate continuous convex optimization oracle
to find a point, in whose proximity the optimal integer solution has to lie. The
integer problem restricted to this neighborhood is then efficiently solvable with
primal (augmentation) algorithms using Graver bases, which will find the optimal
integer solution in a polynomial number of steps.

We now briefly explain the Graver basis techniques; we refer the reader to the
survey paper [18] or the monograph [17] for more details. Let E ∈ Zd×n be a
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matrix. We associate with E a finite set G(E) of vectors with remarkable properties.
Consider the set ker(E) ∩ Zn. Then we put into G(E) all nonzero vectors v ∈
ker(E) ∩ Zn that cannot be written as a sum v = v′ + v′′ of nonzero vectors
v′,v′′ ∈ ker(E)∩Zn that lie in the same orthant (or equivalently, have the same sign
pattern in {≥ 0,≤ 0}n) as v. The set G(E) has been named the Graver basis of E,
since Graver [5] introduced this set G(E) in 1975 and showed that it constitutes an
optimality certificate (test set) for the family of integer linear programs that share
the same problem matrix, E. By this we mean that G(E) provides an augmenting
vector for any non-optimal feasible solution and hence allows the design of a simple
augmentation algorithm to solve the integer linear program in a finite number of
augmentations.

The augmentation technique can also be used to efficiently construct a feasi-
ble solution in the first place, in a procedure similar to phase I of the simplex
algorithm [7].

More recently, it has been shown in [16] that G(E) constitutes an optimality
certificate for a wider class of integer minimization problems, namely for those
minimizing a separable convex objective function over a feasible region of the form

{ z : Ez = b, l ≤ z ≤ u, z ∈ Zn }.

Moreover, several techniques have been found to turn the augmentation algo-
rithm into an efficient algorithm, bounding the number of augmentation steps
polynomially. Three such speed-up techniques are known in the literature: For
0/1 integer linear problems, a simple bit-scaling technique suffices [22]. For general
integer linear problems, one can use the directed augmentation technique [23], in
which one uses Graver basis elements v ∈ G(E) that are improving directions for
the nonlinear functions c⊺v++d⊺v−, which are adjusted during the augmentation
algorithm. For separable convex integer problems, one can use the Graver-best aug-
mentation technique [10], where one uses an augmentation vector v that is at least
as good as the best augmentation step of the form γg with γ ∈ Z+ and g ∈ G(E).

In [8], the authors found a way to implement the directed augmentation technique
efficiently for N -fold 4-block decomposable integer programs, despite the exponen-
tial size of the Graver basis. This gives an efficient optimization algorithm for the
case of linear objective functions, proving Theorem 2.1. It is still an open question
whether the Graver-best augmentation technique can be implemented efficiently.
This would give an alternative proof of Theorem 2.3.

The paper [8] and the present paper crucially rely on the following structural
result about G

(

(C D
B A ) (N)

)

, which was proved in [8].

Theorem 2.4. If A ∈ ZdA×nA , B ∈ ZdA×nB , C ∈ ZdC×nB , D ∈ ZdC×nA are fixed
matrices, then max

{

‖v‖1 : v ∈ G
(

( C D
B A ) (N)

) }

is bounded by a polynomial in N .

We note that in the special case of N -fold IPs, the ℓ1-norm is bounded by a
constant (depending only on the fixed problem matrices and not on N), and in the
special case of two-stage stochastic IPs, the ℓ1-norm is bounded linearly in N . This
fact demonstrates that N -fold 4-block IPs are much richer and more difficult to
solve than the two special cases.
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3. Proof of the results

3.1. Aggregation technique. We will use an aggregation/disaggregation tech-
nique, which is based on the following folklore fact on Graver bases (see, for exam-
ple, Corollary 3.2 in [6]):

Lemma 3.1 (Aggregation). Let G = (F f f) be a matrix with two identical
columns. Then the Graver bases of (F f ) and G are related as follows:

G(G) = { (u, v, w) : vw ≥ 0, (u, v + w) ∈ G((F f )) } ∪ {±(0, 1,−1)}.
Thus, the maximum ℓ1-norm of Graver basis elements does not change if we

repeat columns.

Corollary 3.2. Let G be a matrix obtained from a matrix F by repeating columns.
Then

max{ ‖v‖1 : v ∈ G(G) } = max{2,max{ ‖v‖1 : v ∈ G(F ) }}.
3.2. Bounds for Graver basis elements. Let us start by bounding the ℓ1-norm
of Graver basis elements of matrices. The following result can be found, for instance,
in [17, Lemma 3.20].

Lemma 3.3 (Determinant bound). Let A ∈ Zm×n be a matrix of rank r and
let ∆(A) denote the maximum absolute value of subdeterminants of A. Then
max{ ‖v‖1 : v ∈ G(A) } ≤ (n − r)(r + 1)∆(A). Moreover, ∆(A) ≤ (

√
mM)m,

where M is the maximum absolute value of an entry of A.

As a corollary of Lemma 3.3 and the aggregation technique (Corollary 3.2), we
obtain the following result:

Corollary 3.4 (Determinant bound, aggregated). Let A ∈ Zm×n be a matrix of
rank r and let d be the number of different columns in A and M the maximum
absolute value of an entry of A. Then

max{ ‖v‖1 : v ∈ G(A) } ≤ (d− r)(r + 1)(
√
mM)m.

For matrices with only one row (m = r = 1), there are only 2M + 1 different
columns, and so this bound simplifies to 4M2. However, a tighter bound is known
for this special case. The following lemma is a straight-forward consequence of
Theorem 2 in [3].

Lemma 3.5 (PPI bound). Let A ∈ Z1×n be a matrix consisting of only one row
and let M be an upper bound on the absolute values of the entries of A. Then we
have max{ ‖v‖1 : v ∈ G(A) } ≤ 2M − 1.

Let us now prove some more general degree bounds on Graver bases that we will
use in the proof of the main theorem below.

Lemma 3.6 (Graver basis length bound for stacked matrices). Let L ∈ Zd×n and
let F ∈ Zm×n. Moreover, put E := ( FL ). Then we have

max{‖v‖1 : v ∈ G(E)} ≤ max{‖λ‖1 : λ ∈ G(F · G(L))} ·max{‖v‖1 : v ∈ G(L)}.
Proof. Let v ∈ G(E). Then v ∈ ker(L) implies that v can be written as a non-
negative integer linear sign-compatible sum v =

∑

λigi using Graver basis vectors
gi ∈ G(L). Adding zero components if necessary, we can write v = G(L)λ. We now
claim that v ∈ G(E) implies λ ∈ G(F · G(L)).
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First, observe that v ∈ ker(F ) implies Fv = F · (G(L)λ) = (F · G(L))λ = 0

and thus, λ ∈ ker(F · G(L)). If λ 6∈ G(F · G(L)), then it can be written as a
sign-compatible sum λ = µ+ ν with µ,ν ∈ ker(F · G(L)). But then

v = (G(L)µ) + (G(L)ν)
gives a sign-compatible decomposition of v into vectors G(L)µ,G(L)ν ∈ ker(E),
contradicting the minimality property of v ∈ G(E). Hence, λ ∈ G(F · G(L)).

From v =
∑

λigi with gi ∈ G(L) and λ ∈ G(F · G(L)), the desired estimate
follows. �

We will employ the following simple corollary.

Corollary 3.7. Let L ∈ Zd×n and let a⊺ ∈ Zn be a row vector. Moreover, put
E :=

(

a⊺

L

)

. Then we have

max{‖v‖1 : v ∈ G(E)} ≤ (2 ·max {|a⊺v| : v ∈ G(L)} − 1) ·max{‖v‖1 : v ∈ G(L)}.
In particular, if M := max{|a(i)| : i = 1, . . . , n} then

max{‖v‖1 : v ∈ G(E)} ≤ 2nM (max{‖v‖1 : v ∈ G(L)})2 .
Proof. By Lemma 3.6, we already get

max{‖v‖1 : v ∈ G(E)} ≤ max{‖λ‖1 : λ ∈ G(a⊺ · G(L))} ·max{‖v‖1 : v ∈ G(L)}.
Now, observe that a⊺ · G(L) is a 1 × |G(L)|-matrix. Thus, the degree bound of
primitive partition identities, Lemma 3.5, applies, which gives

max{‖λ‖1 : λ ∈ G(a⊺ · G(L))} ≤ 2 ·max {|a⊺v| : v ∈ G(L)} − 1,

and thus, the first claim is proved. The second claim is a trivial consequence of the
first. �

Let us now extend this corollary to a form that we need to prove Theorem 2.4.

Corollary 3.8. Let L ∈ Zd×n and let F ∈ Zm×n. Let the entries of F be bounded
by M in absolute value. Moreover, put E := ( FL ). Then we have

max{‖v‖1 : v ∈ G(E)} ≤ (2nM)2
m
−1 (max{‖v‖1 : v ∈ G(L)})2

m

.

Proof. This claim follows by simple induction, adding one row of F at a time, and
by using the second inequality of Corollary 3.7 to bound the sizes of the intermediate
Graver bases in comparison to the Graver basis of the matrix with one row of F
fewer. �

In order to give a proof of Theorem 2.4, let us consider the submatrix ( · ·

B A ) (N).
A main result from [11] is the following.

Theorem 3.9 (Graver basis for stochastic IPs). Let A ∈ ZdA×nA and B ∈ ZdA×nB ,
and let G = G

(

( · ·

B A ) (N)
)

. There exist numbers g, ξ, η ∈ Z+ depending only on A

and B but not on N such that the following holds:

(a) For every N ∈ Z+ and for every v ∈ G, we have ‖v‖∞ ≤ g, i.e., the components
of v are bounded by g in absolute value.

(b) As a corollary, ‖v‖1 ≤ (nB +NnA)g for all v ∈ G.
(c) More precisely, there exists a finite set X ⊆ ZnB of cardinality |X | ≤ ξ and for

each x ∈ X a finite set Yx ⊆ ZnA of cardinality |Yx| ≤ η such that the elements
v ∈ G take the form v = (x,y1, . . . ,yn), with x ∈ X and y1, . . . ,yn ∈ Yx.



8 RAYMOND HEMMECKE, MATTHIAS KÖPPE, AND ROBERT WEISMANTEL

Remark 3.10. The finiteness of the numbers g, ξ, η comes from a saturation result
in commutative algebra. Concrete bounds on these numbers are unfortunately
not available. However, for given matrices A and B, the finite sets X and Yx for
x ∈ X can be computed using the Buchberger-type completion algorithm in [11,
section 3.3]. Thus, the numbers g, ξ, η are effectively computable.

Combining this result with Corollary 3.8, we get a bound for the ℓ1-norms of the
Graver basis elements of ( C D

B A ) (N).

Proposition 3.11 (Graver basis length bound for 4-block IPs). Let A ∈ ZdA×nA ,
B ∈ ZdA×nB , C ∈ ZdC×nB , D ∈ ZdC×nA be given matrices. Moreover, let M be
a bound on the absolute values of the entries in C and D, and let g ∈ Z+ be the
number from Theorem 3.9. Then for any N ∈ Z+ we have

max
{

‖v‖1 : v ∈ G
(

( C D
B A ) (N)

)}

≤ (2(nB +NnA)M)2
dC−1

(

max
{

‖v‖1 : v ∈ G
(

( · ·

B A ) (N)
)})2dC

≤ (2(nB +NnA)M)2
dC−1 ((nB +NnA)g)

2dC
.

If A, B, C, D are fixed matrices, then max
{

‖v‖1 : v ∈ G
(

( C D
B A ) (N)

)}

is bounded

by O(N2dC+1), a polynomial in N .

Proof. The first claim is a direct consequence of Theorem 3.9 and Corollary 3.8 with
L = ( · ·

B A ) (N), F = (C D
· ·

) (N), and E = ( C D
B A ) (N). The polynomial bound for fixed

matrices A, B, C, D and varying N follows by observing that nA, nB, dC ,M, g are
constants as they depend only on the fixed matrices A, B, C, D. �

The above result has appeared before in [8]; we included the proof to make the
present paper more self-contained. We now complement it with a useful alternative
bound, which is given by the following new result.

Proposition 3.12 (Alternative length bound for 4-block IPs). Let A ∈ ZdA×nA ,
B ∈ ZdA×nB , C ∈ ZdC×nB , D ∈ ZdC×nA be given matrices. Moreover, let M be
a bound on the absolute values of the entries in C and D, and let g, ξ, η ∈ Z+ be
the numbers, depending on A and B, from Theorem 3.9. Then for any N ∈ Z+ we
have

max
{

‖v‖1 : v ∈ G
(

(C D
B A ) (N)

)}

≤ ξ · (N + η)η · dC ·
(

√

dC(nB +NnA)M
)dC

· (nB +NnA)g.

If A, B, C, D are fixed matrices, then max
{

‖v‖1 : v ∈ G
(

( C D
B A ) (N)

)}

is bounded

by O(NdC+η), a polynomial in N .

Either of the two results implies Theorem 2.4.

Remark 3.13. Comparing the two results is difficult because bounds for the finite
number η(A,B) are unknown. However, one should expect that the bound of
Proposition 3.12 is better for matrices with large upper blocks ( C D

· ·
), whereas the

bound of Proposition 3.11 is better for matrices with large lower blocks ( · ·

B A ).
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Proof of Proposition 3.12. Let L = ( · ·

B A ) (N) and F = (C D
· ·

) (N) = (C,D, . . . , D).
First of all, Theorem 3.9 (b) gives the bound

‖v‖1 ≤ (nB +NnA)g for v ∈ G(L), (3.1)

where g is a constant that only depends on A and B.
We now consider the matrix F · G(L). Each column of it is given by

Fv = Cx+D

N
∑

i=1

yi with v = (x,y1, . . . ,yN ) ∈ G(L).

By Theorem 3.9 (c), there are at most ξ = O(1) different vectors x and for each x

at most η = O(1) different vectors yi. We now determine the number σ of different

sums s =
∑N

i=1 y
i that can arise from these choices. This number is bounded

by the number of weak compositions of N into η non-negative integer parts: σ ≤
(

N+η−1
η−1

)

≤ (N + η)η = O(Nη). Thus FG(L) has at most d := ξ ·σ ≤ ξ · (N + η)η =

O(Nη) different columns.
Using the bound on the entries of C and D, we find that the maximum absolute

value of the entries of FG(L) is bounded by (nB +NnA)M .
We now determine a length bound for the elements λ of G(F · G(L)). By Corol-

lary 3.4, we find that

‖λ‖1 ≤ d · dC ·
(

√

dC(nB +NnA)M
)dC

≤ ξ · (N + η)η · dC ·
(

√

dC(nB +NnA)M
)dC

. (3.2)

Combining the two bounds (3.1) and (3.2) using Corollary 3.6 then gives the
result. �

3.3. Constructing a feasible solution. For constructing a feasible solution to
the problem (IP)N,b,l,u,f , we will use the algorithm of Theorem 2.1 (a), first intro-
duced in [8]. For sake of completeness, we describe the algorithm here and thus
give the proof of Theorem 2.1 (a).

Proof of Theorem 2.1 (a). Let N ∈ Z+, l,u ∈ ZnB+NnA , b ∈ ZdC+NdA . First,
construct an integer solution to the system ( C D

B A ) (N)z = b. This can be done in

polynomial time using the Hermite normal form of (C D
B A ) (N). Then we turn it

into a feasible solution (satisfying l ≤ z ≤ u) by a sequence of at most O(NdA)
many integer linear programs (with the same problem matrix ( C D

B A ) (N), but with

bounds l̃, ũ adjusted so that the current solution is feasible) with auxiliary objective
functions that move the components of z into the direction of the given original
bounds l,u, see [7]. This step is similar to phase I of the simplex method in linear
programming.

In order to solve these auxiliary integer linear programs with polynomially many
augmentation steps, we use the speed-up provided by the directed augmentation
procedure [23]. This procedure requires us to repeatedly find, for certain vectors c
and d that it constructs, an augmentation vector v with respect to the (separable
convex) piecewise linear function h(v) = c⊺v+ + d⊺v−.

Consequently, we only need to show how to find, for a given solution z0 that
is feasible for (IP)N,b,̃l,ũ,h, an augmenting Graver basis element v ∈ G

(

( C D
B A ) (N)

)
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for a separable convex piecewise linear function h(v) in polynomial time in N and
in the binary encoding lengths of z0 and of c,d.

Let us now assume that we are given a solution z0 = (x0,y
1
0, . . . ,y

N
0 ) that is

feasible for (IP)N,b,̃l,ũ,h and that we wish to decide whether there exists another

feasible solution z1 with h(z1 − z0) < 0. By [5, 16], it suffices to decide whether
there exists some vector v = (x̄, ȳ1, . . . , ȳN ) in the Graver basis of (C D

B A ) (N) such
that z0 + v is feasible and h(v) < 0. By Proposition 3.11 or Proposition 3.12, the
ℓ1-norm of v is bounded polynomially inN . Thus, since nB is constant, there is only
a polynomial number of candidates for the x̄-part of v. Since the bounds given by
Proposition 3.11 and Proposition 3.12 are effectively computable (cf. Remark 3.10),
we can actually list all possible vectors x̄ that satisfy these bounds.

For each such candidate x̄, we can find a best possible choice for ȳ1, . . . , ȳN by
solving the following N -fold IP:

min







h (v) :
( C D
B A ) (N) (z0 + v) = b,

l̃ ≤ (z0 + v) ≤ ũ,

v = (x̄, ȳ1, . . . , ȳN ) ∈ ZnB+NnA







= min







































h





x̄
ȳ1

...
ȳN



 :

( · D
· A ) (N)





ȳ
1

...
ȳN



 = b− (C D
B A ) (N)z0 − ( C ·

B ·
) (N)x̄,

l̃− z0 ≤





x̄

ȳ
1

...
ȳN



 ≤ ũ− z0,

ȳ1, . . . , ȳN ∈ ZnA







































for given z0 = (x0,y
1
0, . . . ,y

N
0 ) and x̄. As shown in the second line, this problem

does indeed simplify to a separable convex N -fold IP with problem matrix ( · D
· A ) (N)

because z0 = (x0,y
1
0, . . . ,y

N
0 ) and x̄ are fixed. Since the matrices A andD are fixed,

each such N -fold IP is solvable in polynomial time [10]. In fact, as shown in [9],
because the function h is “2-piecewise affine”, this problem can be solved in time
O(N3L) by Graver-based dynamic programming, where L = 〈c,d, l̃, ũ, z0, x̄〉.

If the N -fold IP is infeasible, there does not exist an augmenting vector using
the particular choice of x̄. If it is feasible, let v = (x̄, ȳ1, . . . , ȳN ) be the optimal
solution. Now if we have h(v) ≥ 0, then no augmenting vector can be constructed
using this particular choice of x̄. If, on the other hand, we have h(v) < 0, then v

is a desired augmenting vector for z0 and we can stop.
As we solve polynomially many polynomially solvable N -fold IPs, one for each

choice of x̄, an optimality certificate or a desired augmentation step can be com-
puted in polynomial time and the claim follows. �

3.4. Using Hochbaum–Shanthikumar’s proximity results. Hochbaum and
Shanthikumar [13] present an algorithm for nonlinear separable convex integer
minimization problems for matrices with small subdeterminants. The algorithm
is based on the so-called proximity-scaling technique. It is pseudo-polynomial in
the sense that the running time depends polynomially on the absolute value of
the largest subdeterminant of the problem matrix. The results of the paper [13]
cannot be directly applied to our situation, since the subdeterminants of N -fold
4-block decomposable matrices typically grow exponentially in N . In the following
we adapt a lemma from [13] that establishes proximity of optimal solutions of the
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integer problem and its continuous relaxation; we do not use the scaling technique,
however.

We consider the separable convex integer minimization problem

min{ f(z) : Ez = b, l ≤ z ≤ u, z ∈ Zn }. (3.3)

Theorem 3.14 (Proximity). Let r̂ be an optimal solution of the continuous relax-
ation of (3.3),

min{ f(r) : Er = b, l ≤ r ≤ u, r ∈ Rn }. (3.4)

Then there exists an optimal solution z∗ of the integer optimization problem (3.3)
with

‖r̂− z∗‖∞ ≤ n ·max {‖v‖∞ : v ∈ G(E)} .
We remark that we actually just need a bound on the circuits of E, which form a

subset of the Graver basis of E. Hochbaum and Shanthikumar [13] prove a version
of this result where the maximum of the absolute values of the subdeterminants
of E appears on the right-hand side. Our proof is almost identical, but we include
it here for completeness.

Proof. Let ẑ be an optimal solution of the integer optimization problem (3.3).
Since ẑ is a feasible solution to the continuous relaxation, there exists a conformal
(orthant-compatible) decomposition of r̂− ẑ into rational multiples of the circuits
of E,

r̂− ẑ =
n
∑

i=1

αiu
i, αi ≥ 0, ui ∈ C(E),

where, due to Carathéodory’s theorem, at most n circuits are needed. Then

r̂− ẑ =

n
∑

i=1

⌊αi⌋ui +

n
∑

i=1

βiu
i,

setting βi = αi − ⌊αi⌋. Now we define

r∗ = ẑ+

n
∑

i=1

βiu
i, and z∗ = ẑ+

n
∑

i=1

⌊αi⌋ui.

Since the vectors ui lie in the kernel of matrix E, both z = z∗ and z = r∗ satisfy
the equation Ez = b. Moreover, since both r̂ and ẑ lie within the lower and upper
bounds and the vectors ui lie in the same orthant as r̂− ẑ, also z∗ and r∗ lie within
the lower and upper bounds. Thus, r∗ is a feasible solution to the continuous
relaxation of (3.3). Since z∗ is also an integer vector, it is a feasible solution to the
integer optimization problem (3.3).

We can write

r̂− ẑ = [r∗ − ẑ] + [z∗ − ẑ].

Then we use an important superadditivity property of separable convex functions
(see [13, Lemma 3.1] and [16]), which gives

f(r̂)− f(ẑ) ≥ [f(r∗)− f(ẑ)] + [f(z∗)− f(ẑ)], (3.5)

or, equivalently,

f(r̂)− f(r∗) ≥ f(z∗)− f(ẑ). (3.6)

Since r̂ is an optimal solution to the continuous relaxation and r∗ is a feasible
solution to it, the left-hand side is nonpositive, and so f(z∗) ≤ f(ẑ). Thus, since z∗
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is a feasible solution to (3.3), it is, in fact, another optimal solution of the integer
optimization problem and f(z∗) = f(ẑ).

We now verify the proximity of z∗ to r̂. From the definition of z∗, we immediately
get

∥

∥r̂− z∗
∥

∥

∞
=

∥

∥[̂r− ẑ] + [ẑ− z∗]
∥

∥

∞

=
∥

∥

∑n
i=1 αiu

i −∑n
i=1⌊αi⌋ui

∥

∥

∞

=
∥

∥

∑n
i=1 βiu

i
∥

∥

∞

≤ n ·max{ ‖uj‖∞ : j = 1, . . . , n }
≤ n ·max { ‖v‖∞ : v ∈ G(E) } .

This concludes the proof. �

As an immediate corollary, we obtain the following result.

Corollary 3.15. Let ǫ ≥ 0 and let r̂ be an optimal solution to the continuous
relaxation (3.4). Setting

l′ = max{l, ⌊r̂− (n · ℓ)1⌋},
u′ = min{u, ⌈r̂+ (n · ℓ)1⌉},

where ℓ = max { ‖v‖∞ : v ∈ G(E) }, we have

min{ f(z) : Ez = b, l ≤ z ≤ u, z ∈ Zn }
= min{ f(z) : Ez = b, l′ ≤ z ≤ u′, z ∈ Zn }. (3.7)

Later we will use a simple modification of Corollary 3.15, using an ǫ-approximate
optimal solution to the continuous relaxation (3.4).

For E = ( C D
B A ) (N), we can control the size of ℓ using Proposition 3.11 or

Proposition 3.12 and thus obtain an equivalent IP with small (polynomial-sized)
bounds.

We note that though the bounds are small, the dimension is still variable, and
so the problem cannot be solved efficiently with elementary techniques such as
dynamic programming. In the following subsections, we show how to solve this IP
with Graver basis techniques.

3.5. Graver-best augmentation for the restricted problem. In the restricted
problem, no long augmentation steps are possible, and therefore it is possible to
efficiently construct a Graver-best augmentation vector. Using this observation, we
prove the following theorem.

Theorem 3.16. Let A ∈ ZdA×nA , B ∈ ZdA×nB , C ∈ ZdC×nB , D ∈ ZdC×nA be
fixed matrices. Then there exists an algorithm that, given N ∈ Z+, c ∈ ZknB+kNnA ,
b ∈ ZdC+NdA , l,u ∈ ZnB+NnA , a feasible solution z0, and a comparison oracle for
the function f : RnB+NnA → R, finds an optimal solution to

min
{

f(z) : ( C D
B A ) (N)z = b, l′ ≤ z ≤ u′, z ∈ ZnB+NnA

}

and that runs in time that is polynomially bounded in N , in k := ‖u′ − l′‖∞, and

in the binary encoding lengths 〈b, c, f̂〉.
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Proof. By the Graver-best speed-up technique [10], it suffices to show that for
a given feasible solution z0, we can construct a vector γg, where γ ∈ Z+ and
g ∈ G

(

( C D
B A ) (N)

)

, such that z0 + γg is feasible, and γ and g minimize f(z0 + γg)
among all possible choices. It actually suffices to construct any vector v such that
z0 + v is feasible and f(z0 + v) ≤ f(z0 + γg).

Write z0 = (x0,y
1
0, . . . ,y

N
0 ) and let v = (x̄, . . . ) be any vector in the Graver basis

of (C D
B A ) (N). By Proposition 3.11 or Proposition 3.12, the ℓ1-norm of v is bounded

polynomially in N . Thus, since nB is constant, there is only a polynomial number
of candidates for the x̄-part of v. Since the bounds given by Proposition 3.11 and
Proposition 3.12 are effectively computable (cf. Remark 3.10), we can actually list
all possible vectors x̄ that satisfy these bounds.

For each such vector x̄, we now consider all vectors of the form (γx̄, ȳ1, . . . , ȳN )
as candidate augmentation vectors, not just multiples γv of Graver basis elements.

In the special case x̄ = 0, this is equivalent to the construction of a Graver-best
augmentation vector for the N -fold IP with the problem matrix ( · D

· A ) (N), which
can be done in polynomial time [10].

Otherwise, if x̄ 6= 0, we determine the largest step length γ̂ ∈ Z+ such that
x0 + γ̂x̄ lies within the bounds l′,u′. Certainly γ̂ ≤ k. We now check each possible
step length γ = 1, 2, . . . , γ̂ separately. To find a best possible choice for ȳ1, . . . , ȳN ,
we solve the following N -fold IP:

min







f (v) :
(C D
B A ) (N) (z0 + v) = b,

l′ ≤ (z0 + v) ≤ u′,

v = (γx̄, ȳ1, . . . , ȳN ) ∈ ZnB+NnA







.

Since the matrices A and D are fixed, each such N -fold IP is solvable in polynomial
time [10].

If the N -fold IP is infeasible, there does not exist an augmenting vector using the
particular choice of x̄ and γ. If it is feasible, let v = (γx̄, ȳ1, . . . , ȳN ) be an optimal
solution. Now if we have f(v) ≥ 0, then no augmenting vector can be constructed
using this particular choice of x̄ and γ. If, on the other hand, we have f(v) < 0,
then v is a candidate for the Graver-best augmentation vector.

By iterating over all x̄ and all γ, we efficiently construct a Graver-best augmen-
tation vector. �

Remark 3.17. A more precise complexity analysis is as follows.

(a) For the construction in the special case x̄ = 0: In fact, by [9, Lemma 3.4 and
proof of Theorem 4.2], for any of the possible step lengths γ = 1, 2, . . . , k, we
can find in linear time O(N) an augmenting vector γv that is at least as good
as the best Graver step γg with g ∈ G ( · D

· A ) (N). Checking all step lengths, we
get a complexity of O(kN).

(b) For the solution of the N -fold subproblem in the general case x̄ 6= 0: This
optimization, in turn, uses another Graver-best augmentation technique. In
Phase I, the possible step lengths are large, but the auxiliary objective func-
tions are linear, and so the running time is O(N3L) by Graver-based dynamic
programming [9, Theorem 3.9], where L = 〈l′, u′, z0, x̄〉. In Phase II, there
are few possible step lengths, γ = 1, 2, . . . , k, so we can try them all. By [9,
Lemma 3.4 and proof of Theorem 4.2], we can find for a fixed γ in linear time
O(N) an augmenting vector γv that is at least as good as the best Graver
step γg with g ∈ G ( · D

· A ) (N). Checking all step lengths, we get a complexity
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of O(kN). Using the results of [10] (modified with the optimality criterion of

[16]), the number of Graver-best augmentations is bounded by O(N〈f̂〉). Thus
the complexity of this subproblem is O(N2k〈f̂〉+N3L).

(c) The number of steps in the overall Graver-best augmentation algorithm for the

restricted 4-block decomposable problem is again bounded by O(N〈f̂〉).
Remark 3.18. Other augmentation techniques can be used to prove Theorem 3.16.
For example, following [13, section 2], we can reformulate a separable convex inte-
ger minimization problem with small bounds as a 0/1 linear integer minimization
problem in the straightforward way. Then we can apply the bit-scaling speed-up
technique, for instance [22].

3.6. Putting all together. For each set of fixed matrices A, B, C, D and for
any function ǫ(N) that is bounded polynomially in N , we consider the following
algorithm.

Algorithm 3.19 (Graver proximity algorithm).

1: input N ∈ Z+, bounds l,u ∈ ZnB+NnA , right-hand side b ∈ ZdC+NdA , eval-
uation oracle for a separable convex function f : RnB+NnA → R, approximate
continuous convex optimization oracle.

2: output an optimal solution z∗ to (IP)N,b,l,u,f or Infeasible or Unbounded.
3: Let n = nB +NnA denote the dimension of the problem.
4: Call the approximate continuous convex optimization oracle with ǫ = ǫ(N) to

find an approximate solution rǫ ∈ QnB+NnA to the continuous relaxation

min
{

f(r) : ( C D
B A ) (N)r = b, l ≤ r ≤ u, r ∈ RnB+NnA

}

.

5: if oracle returns Infeasible then

6: return Infeasible.
7: else if oracle returns Unbounded then

8: return Unbounded.
9: else

10: Compute an upper bound ℓ on the maximum ℓ1-norm of the vectors in
G
(

( C D
B A ) (N)

)

, using Proposition 3.11 or Proposition 3.12.
11: Let l′ = max{l, ⌊rǫ − (n · ℓ+ ǫ)1⌋} and u′ = min{u, ⌈rǫ + (n · ℓ+ ǫ)1⌉}.
12: Let k = ‖u′ − l′‖∞.
13: Using the algorithm of Theorem 2.1 (a), find a feasible solution z0 for the

restricted convex integer minimization problem

min
{

f(z) : ( C D
B A ) (N)z = b, l′ ≤ z ≤ u′, z ∈ ZnB+NnA

}

.

14: Solve the problem to optimality using the algorithm of Theorem 3.16.

By analyzing this algorithm, we now prove the main theorem of this paper.

Proof of Theorem 2.3. We first show that Algorithm 3.19 is correct. If the contin-
uous relaxation (CP)N,b,l,u,f is infeasible or unbounded, then so is the problem
(IP)N,b,l,u,f . In the following, assume that (CP)N,b,l,u,f has an optimal solution.
Then there exists an optimal solution r̂ to (CP)N,b,l,u,f with ‖r̂ − rǫ‖∞ ≤ ǫ. By
Theorem 3.14, there exists an optimal solution z∗ of the integer optimization prob-
lem (IP)N,b,l,u,f with ‖r̂−z∗‖∞ ≤ n·ℓ. By the triangle inequality, this solution then
satisfies ‖z∗ − rǫ‖∞ ≤ n · ℓ+ ǫ and is therefore a feasible solution to the restricted
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IP with variable bounds l′ and u′. Thus it suffices to solve the restricted IP to
optimality, which is done with the algorithm of Theorem 3.16.

The algorithm has the claimed complexity because

k ≤ 2((nB +NnA) · ℓ + ǫ)

is bounded polynomially in N by Proposition 3.11 or Proposition 3.12. The com-
plexity then follows from Theorem 3.16. �
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