Skip to main content
Log in

Dijkstra’s algorithm and L-concave function maximization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Dijkstra’s algorithm is a well-known algorithm for the single-source shortest path problem in a directed graph with nonnegative edge length. We discuss Dijkstra’s algorithm from the viewpoint of discrete convex analysis, where the concept of discrete convexity called L-convexity plays a central role. We observe first that the dual of the linear programming (LP) formulation of the shortest path problem can be seen as a special case of L-concave function maximization. We then point out that the steepest ascent algorithm for L-concave function maximization, when applied to the LP dual of the shortest path problem and implemented with some auxiliary variables, coincides exactly with Dijkstra’s algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A polyhedral \(L^{\natural }\)-concave function satisfying the condition (12) is called a polyhedral L-concave function (see, e.g., [12]).

  2. The value of \(\hat{\rho }^{\prime }(p;\chi _X)\) admits an explicit formula, which is omitted here for simplicity of the description.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Side River (1993)

    MATH  Google Scholar 

  2. Chung, N-k, Tcha, D-w: A dual algorithm for submodular flow problems. Oper. Res. Lett. 10, 489–495 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  4. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. Ann. Discrete Math. 1, 185–204 (1977)

    Article  MathSciNet  Google Scholar 

  5. Fujishige, F.: Submodular Functions and Optimization, 2nd edn. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  6. Hassin, R.: The minimum cost flow problem: a unifying approach to dual algorithms and a new tree-search algorithm. Math. Program. 25, 228–239 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions. J. ACM 48, 761–777 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kalaba, R.: On some communication network problems. In: Bellman, R., Hall, M. Jr (eds.) Proceedings of Symposia in Applied Mathematics, vol. 10, pp. 261–280. American Mathematical Society, Providence (1960)

  9. Kolmogorov, V., Shioura, A.: New algorithms for convex cost tension problem with application to computer vision. Discrete Optim. 6, 378–393 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Murota, K.: Discrete convex analysis. Math. Program. 83, 313–371 (1998)

    MATH  MathSciNet  Google Scholar 

  11. Murota, K.: Algorithms in discrete convex analysis. IEICE Trans. Syst. Inf. E83–D, 344–352 (2000)

    Google Scholar 

  12. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  13. Murota, K.: On steepest descent algorithms for discrete convex functions. SIAM J. Optim. 14, 699–707 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Murota, K., Shioura, A.: Extension of M-convexity and L-convexity to polyhedral convex functions. Adv. Appl. Math. 25, 352–427 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory Ser. B 80, 346–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)

    Google Scholar 

Download references

Acknowledgments

This research is partially supported by KAKENHI (21360045, 21740060) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Global COE program “The Research and Training Center for New Development in Mathematics,” and the Aihara Project, the FIRST program from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyoshi Shioura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murota, K., Shioura, A. Dijkstra’s algorithm and L-concave function maximization. Math. Program. 145, 163–177 (2014). https://doi.org/10.1007/s10107-013-0643-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0643-2

Keywords

Mathematics Subject Classification (2010)

Navigation