Skip to main content
Log in

Optimality conditions for maximizing a function over a polyhedron

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We present new first and second-order optimality conditions for maximizing a function over a polyhedron. These conditions are expressed in terms of the first and second-order directional derivatives along the edges of the polyhedron, and an edge description of the polyhedron. If the objective function is quadratic and edge-convex, and the constraint polyhedron includes a box constraint, then local optimality can be checked in polynomial time. The theory is applied to continuous formulations of the vertex and edge separator problems. It is seen that the necessary and sufficient optimality conditions for these problems are related to the existence of edges at specific locations in the graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  2. Borwein, J.: Necessary and sufficient conditions for quadratic minimality. Numer. Funct. Anal. Optim. 5, 127–140 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Contesse, L.: Une caractérisation complète des minima locaux en programmation quadratique. Numer. Math. 34, 315–332 (1980)

    MATH  MathSciNet  Google Scholar 

  4. Dantzig, G.: Maximization of a linear function of variables subject to linear inequalities. In: Koopman, T.C. (eds), Activity Analysis of Production and Allocation, Cowles Commission Monograph, vol. 13, Chap. XXI. Wiley, New York (1951)

  5. Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: computational complexity and applications to Gröbner bases. SIAM J. Disc. Math. 6, 246–269 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  7. Hager, W.W., Hungerford, J.T.: A Continuous Quadratic Programming Formulation of the Vertex Separator Problem. Technical Report. Department of Mathematics, University of Florida. http://www.math.ufl.edu/~hager/papers/GP/vertex.pdf (2012)

  8. Hager, W.W., Krylyuk, Y.: Graph partitioning and continuous quadratic programming. SIAM J. Disc. Math. 12, 500–523 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hwang, F., Rothblum, U.: Directional-quasi-convexity, asymmetric Schur-convexity and optimality of consecutive partitions. Math. Oper. Res. 21, 540–554 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Klee, V.: Some characterizations of convex polyhedra. Acta Math. 102, 79–107 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  11. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. Springer, Berlin (2008)

    MATH  Google Scholar 

  12. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and linear programming. Math. Program. 39, 117–129 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  14. Onn, S., Rothblum, U.: Convex combinatorial optimization. Discret. Comput. Geom. 32, 549–566 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Onn, S., Rothblum, U., Tangir, Y.: Edge-directions of standard polyhedra with applications to network flows. J. Glob. Optim. 33, 109–122 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pardalos, P.M., Schnitger, G.: Checking local optimality in constrained quadratic programming can be NP-hard. Oper. Res. Lett. 7, 33–35 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rockafellar, R.T.: Network Flows and Monotropic Optimization. Wiley, New York (1984)

    MATH  Google Scholar 

  18. Tardella, F.: On the equivalence between some discrete and continuous optimization problems. Ann. Oper. Res. 25, 291–300 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tuy, H.: Concave programming under linear constraints. Soviet Math. 5, 1439–1440 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Hager.

Additional information

This material is based upon work supported by the National Science Foundation under Grants 0619080 and 0620286, and the Office of Naval Research under Grant N00014-11-1-0068.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hager, W.W., Hungerford, J.T. Optimality conditions for maximizing a function over a polyhedron. Math. Program. 145, 179–198 (2014). https://doi.org/10.1007/s10107-013-0644-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0644-1

Keywords

Mathematics Subject Classification

Navigation