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OPTIMALITY CONDITIONS AND FINITE CONVERGENCE OF

LASSERRE’S HIERARCHY

JIAWANG NIE

Abstract. Lasserre’s hierarchy is a sequence of semidefinite relaxations for
solving polynomial optimization problems globally. This paper studies the re-
lationship between optimality conditions in nonlinear programming theory and
finite convergence of Lasserre’s hierarchy. Our main results are: i) Lasserre’s
hierarchy has finite convergence when the constraint qualification, strict com-
plementarity and second order sufficiency conditions hold at every global min-
imizer, under the standard archimedean condition; the proof uses a result of
Marshall on boundary hessian conditions. ii) These optimality conditions are
all satisfied at every local minimizer if a finite set of polynomials, which are
in the coefficients of input polynomials, do not vanish at the input data (i.e.,
they hold in a Zariski open set). This implies that, under archimedeanness,
Lasserre’s hierarchy has finite convergence generically.

1. Introduction

Given polynomials f, hi, gj in x ∈ Rn, consider the optimization problem

(1.1)





min f(x)
s.t. hi(x) = 0 (i = 1, . . . ,m1),

gj(x) ≥ 0 (j = 1, . . . ,m2).

Let K be the feasible set of (1.1). When m1 = 0 (resp. m2 = 0), there are no
equality (resp. inequality) constraints. For convenience, denote h := (h1, . . . , hm1

),
g := (g1, . . . , gm2

) and g0 := 1. A standard approach for solving (1.1) globally is
Lasserre’s hierarchy of semidefinite programming (SDP) relaxations [11]. It is based
on a sequence of SOS type representations for polynomials that are nonnegative on
K. To describe Lasserre’s hierarchy, we first introduce some notation. Let R[x] be
the ring of polynomials with real coefficients and in x := (x1, . . . , xn). A polynomial
p ∈ R[x] is said to be SOS if p = p21 + · · ·+ p2k for p1, . . . , pk ∈ R[x]. The set of all
SOS polynomials is denoted by ΣR[x]2. For each k ∈ N (N is the set of nonnegative
integers), denote

〈h〉2k :=

{
m1∑

i=1

φihi

∣∣∣∣∣
each φi ∈ R[x]

and deg(φihi) ≤ 2k

}
,

Qk(g) :=





m2∑

j=0

σjgj

∣∣∣∣∣∣
each σj ∈ ΣR[x]2

and deg(σjgj) ≤ 2k



 .
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The set 〈h〉2k is called the 2k-th truncated ideal generated by h, and Qk(g) is called
the k-th truncated quadratic module generated by g. Lasserre’s hierarchy is the
sequence of SOS relaxations (k ∈ N is called a relaxation order):

(1.2) max γ s.t. f − γ ∈ 〈h〉2k +Qk(g).

The SOS program (1.2) is equivalent to a semidefinite program [11]. We refer to
[12, 14] for surveys in this area.

Let fmin denote the minimum value of (1.1) and fk denote the optimal value
of (1.2). Clearly, fk ≤ fmin for all k and {fk} is monotonically increasing. Under
the archimedean condition (i.e., R − Σn

i=1x
2
i ∈ 〈h〉2t + Qt(g) for some t ∈ N and

R > 0), Lasserre obtained the asymptotic convergence fk → fmin as k → ∞, by
using Putinar’s Positivstellensatz (cf. Theorem 2.1). When fk = fmin for some k,
we say Lasserre’s hierarchy has finite convergence. When h(x) = 0 defines a finite
set in the complex space Cn, Laurent [13] proved that Lasserre’s hierarchy has
finite convergence. Indeed, when h(x) = 0 defines a finite set in R

n, the sequence
{fk} also has finite convergence to fmin, as shown in [22]. There exist examples
that Lasserre’s hierarchy fails to have finite convergence, e.g., when f is the Motzkin
polynomial x2

1x
2
2(x

2
1+x2

2−3x2
3)+x6

3 andK is the unit ball [20, Example 5.3]. Indeed,
such examples always exist when dim(K) ≥ 3 (cf. Scheiderer [27, Prop. 6.1]).

However, in practical applications, Lasserre’s hierarchy often has finite conver-
gence, e.g., as shown by numerical experiments in Henrion and Lasserre [9, 10].
The known examples for which finite convergence fails are created in very special
ways. Since Lasserre proposed his method in [11], people are intrigued very much
by the discrepancy between its theory (only asymptotic convergence is guaranteed
theoretically) and its practical performance (in applications we often observe finite
convergence). The motivation of this paper is trying to resolve this discrepancy.
Our main result is that Lasserre’s hierarchy has finite convergence when a finite
set of polynomials, which are in the coefficients of f and all hi, gj , do not van-
ish at the input data, under the archimedean condition. This implies that, under
archimedeanness, Lasserre’s hierarchy has finite convergence generically. (We say a
property holds generically if it holds in the entire space of input data except a set of
Lebsgue measure zero.) To prove this, we need to investigate optimality conditions
for (1.1).

We here give a short review of optimality conditions in nonlinear programming
theory (cf. [1, Section 3.3]). Let u be a local minimizer of (1.1) and J(u) =
{j1, . . . , jr} be the index set of active inequality constraints. If the constraint qual-
ification condition (CQC) holds at u, i.e., the gradients

∇h1(u), . . . ,∇hm1
(u),∇gm1

(u), . . . ,∇gjr(u)

are linearly independent, then there exist Lagrange multipliers λ1, . . . , λm1
and

µ1, . . . , µm2
satisfying

(1.3) ∇f(u) =

m1∑

i=1

λi∇hi(u) +

m2∑

j=1

µj∇gj(u),

(1.4) µ1g1(u) = · · · = µm2
gm2

(u) = 0, µ1 ≥ 0, . . . , µm2
≥ 0.

The equation (1.3) is called the first order optimality condition (FOOC), and (1.4)
is called the complementarity condition. If it further holds that

(1.5) µ1 + g1(u) > 0, . . . , µm2
+ gm2

(u) > 0,
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we say the strict complementarity condition (SCC) holds at u. Note that strict
complementarity is equivalent to µj > 0 for every j ∈ J(u). Let L(x) be the
associated Lagrange function

L(x) := f(x) −
m1∑

i=1

λihi(x)−
∑

j∈J(u)

µjgj(x).

Clearly, (1.3) implies ∇xL(u) = 0. The polynomials f, hi, gj are infinitely many
times differentiable everywhere. Thus, under the constraint qualification condition,
the second order necessity condition (SONC) holds at u, i.e.,

(1.6) vT∇2
xL(u)v ≥ 0 for all v ∈ G(u)⊥.

Here, G(x) denotes the Jacobian of the active constraining polynomials

G(x) =
[
∇h1(x) · · · ∇hm1

(x) ∇gj1(x) · · · ∇gjr (x)
]T

and G(u)⊥ denotes the null space of G(u). If it holds that

(1.7) vT∇2
xL(u)v > 0 for all 0 6= v ∈ G(u)⊥,

we say the second order sufficiency condition (SOSC) holds at u.
We summarize the above as follows. If the constraint qualification condition

holds at u, then (1.3), (1.4) and (1.6) are necessary conditions for u to be a local
minimizer of f on K, but they are not sufficient. If (1.3), (1.4), (1.5) and (1.7)
hold at a point u ∈ K, then u is a strict local minimizer of (1.1). The first
order optimality, strict complementarity and second order sufficiency conditions
are sufficient for strict local optimality. We refer to [1, Section 3.3].

This paper studies the relationship between optimality conditions and finite con-
vergence of Lasserre’s hierarchy. Denote R[x]d := {p ∈ R[x] : deg(p) ≤ d} and
[m] := {1, . . . ,m}. Our main conclusions are the following two theorems.

Theorem 1.1. Suppose the archimedean condition holds for the polynomial tuples
h and g in (1.1). If the constraint qualification, strict complementarity and second
order sufficiency conditions hold at every global minimizer of (1.1), then Lasserre’s
hierarchy of (1.2) has finite convergence.

Theorem 1.2. Let d0, d1, . . . , dm1
, d′1, . . . , d

′
m2

be positive integers. Then there
exist a finite set of polynomials ϕ1, . . . , ϕL (cf. Condition 4.3), which are in the co-
efficients of polynomials f ∈ R[x]d0

, hi ∈ R[x]di
(i ∈ [m1]), gj ∈ R[x]d′

j
(j ∈ [m2]),

such that if ϕ1, . . . , ϕL do not vanish at the input polynomial, then the constraint
qualification, strict complementarity and second order sufficiency conditions hold
at every local minimizer of (1.1).

The proof of Theorem 1.1 uses a result of Marshall on boundary hessian condi-
tions [15, 17], and the proof of Theorem 1.2 uses elimination theory in computational
algebra. Theorem 1.2 implies that these classical optimality conditions hold in a
Zariski open set in the space of input polynomials with given degrees. The paper is
organized as follows. Section 2 presents some backgrounds in the field; Section 3 is
mostly to prove Theorem 1.1; Section 4 is mostly to prove Theorem 1.2; Section 5
makes some discussions.
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2. Preliminary

2.1. Notation. The symbol R (resp., C) denotes the set of real (resp., complex)

numbers. A polynomial is called a form if it is homogeneous. For f ∈ R[x], f̃ de-

notes the homogenization of f , i.e., f̃(x̃) = x
deg(f)
0 ·f(x/x0) with x̃ := (x0, x1, . . . , xn).

The symbol ‖ · ‖2 denotes the standard 2-norm. For a symmetric matrix X , X � 0
(resp., X ≻ 0) means X is positive semidefinite (resp. positive definite). The
determinant of a square matrix A is detA. The N × N identity matrix is de-
noted as IN . If p is a polynomial in x, ∇p (resp., ∇2p) denotes the gradient
(resp., Hessian) of p with respect to x; if p has variables in addition to x, ∇xp
(resp., ∇2

xp) denotes the gradient (resp., Hessian) of p with respect to x. For
p1, . . . , pr ∈ R[x], Jac(p1, . . . , pr)|u denotes the Jacobian of (p1, . . . , pr) at u, i.e.,
Jac(p1, . . . , pr)|u = (∂pi(u)/∂xj)1≤i≤r,1≤j≤n.

2.2. Some basics in real algebra. Here we give a short review on elementary
real algebra. More details can be found in [2, 3].

An ideal I of R[x] is a subset such that I · R[x] ⊆ I and I + I ⊆ I. Given
p1, . . . , pm ∈ R[x], 〈p1, · · · , pm〉 denotes the smallest ideal containing all pi, which
is the set p1 · R[x] + · · · + pm · R[x]. A variety is a subset of Cn that consists of
common zeros of a set of polynomials. A real variety is the intersection of a variety
and the real space Rn. Given a polynomial tuple p = (p1, . . . , pr), denote

V (p) := {v ∈ C
n : p1(v) = · · · = pr(v) = 0},

VR(p) := {v ∈ R
n : p1(v) = · · · = pr(v) = 0}.

Every set T ⊂ Rn is contained in a real variety. The smallest one containing T is
called the Zariski closure of T , and is denoted by Zar(T ). In the Zariski topology
on Rn, the real varieties are closed sets, and the complements of real varieties are
open sets. Denote I(T ) := {q ∈ R[x] : q(u) = 0 ∀u ∈ T }, which is an ideal in R[x]
and is called the vanishing ideal of T .

Let h = (h1, . . . , hm1
) and g = (g1, . . . , gm2

) be the polynomial tuples as in (1.1),
and K be the feasible set of (1.1). Recall the definitions of 〈h〉2k and Qk(g) in the
Introduction. Clearly, the union ∪k∈N〈h〉2k is the ideal 〈h〉 := 〈h1, . . . , hm1

〉. The
union Q(g) := ∪k∈NQk(g) is called the quadratic module generated by g. The set
〈h〉+Q(g) is called archimedean if R−‖x‖22 ∈ 〈h〉+Q(g) for some R > 0. Clearly,
if p ∈ 〈h〉+Q(g), then p is nonnegative on K, while the converse is not always true.
However, if p is positive on K and 〈h〉+Q(g) is archimedean, then p ∈ 〈h〉+Q(g).
This is called Putinar’s Positivstellensatz.

Theorem 2.1 (Putinar, [23]). Let K be the feasible set of (1.1). Suppose 〈h〉+Q(g)
is archimedean. If p ∈ R[x] is positive on K, then p ∈ 〈h〉+Q(g).

2.3. The boundary hessian condition. Let K be the feasible set of (1.1) and
h = (h1, . . . , hm1

). Let u be a local minimizer of (1.1), and ℓ be the local dimension
of VR(h) at u (cf. [2, §2.8]). We first state a condition about parameterizing K
around u locally, which was proposed by Marshall.

Condition 2.2 (Marshall,[17]). i) The point u on VR(h) is nonsingular and there
exists a neighborhood O of u such that VR(h) ∩O is parameterized by uniformizing
parameters t1, . . . , tℓ; ii) there exist 1 ≤ ν1 < · · · < νr ≤ m2, such that tj = gνj
(j = 1, . . . , r) on VR(h) ∩ O and K ∩ O is defined by t1 ≥ 0, . . . , tr ≥ 0.
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The following condition was introduced by Marshall [15, 17] in studying Puti-
nar type representation for nonnegative polynomials, and it is called the boundary
hessian condition (BHC).

Condition 2.3 (Marshall,[15, 17]). Assume Condition 2.2 holds. Expand f locally
around u as f = f0 + f1 + f2 + · · · , with every fi being homogeneous of degree i in
t1, . . . , tℓ. The linear form f1 = a1t1 + · · ·+ artr for some positive constants a1 >
0, . . . , ar > 0, and the quadratic form f2(0, . . . , 0, tr+1, . . . , tℓ) is positive definite in
(tr+1, . . . , tℓ).

If K is compact and the boundary hessian condition holds at every global min-
imizer, then (1.1) has finitely many global minimizers. (See the proof of Theo-
rem 9.5.3 in [16].) Marshall proved the following important result.

Theorem 2.4. (Marshall, [16, Theorem 9.5.3]) Let V = VR(h) and fmin be the
minimum of (1.1). If 〈h〉+Q(g) is archimedean and the boundary hessian condition
holds at every global minimizer of (1.1), then f − fmin ∈ I(V ) +Q(g).

In the above, if I(V ) = 〈h〉 (i.e., 〈h〉 is real, [2, §4.1]), then f−fmin ∈ 〈h〉+Q(g).
Theorem 2.4 can also be found in Scheiderer’s survey [28, Theorem 3.1.7].

2.4. Resultants and discriminants. Here, we review some basics of resultants
and discriminants. We refer to [4, 5, 19, 29] for more details.

Let f1, . . . , fn be forms in x = (x1, . . . , xn). The resultant Res(f1, . . . , fn) is a
polynomial, in the coefficients of f1, . . . , fn, having the property that

Res(f1, . . . , fn) = 0 ⇐⇒ ∃ 0 6= u ∈ C
n, f1(u) = · · · = fn(u) = 0.

The discriminant of a form f is defined as

∆(f) := Res

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

So, it holds that

∆(f) = 0 ⇐⇒ ∃ 0 6= u ∈ C
n, ∇f(u) = 0.

Both Res(f1, . . . , fn) and ∆(f) are homogeneous, irreducible and have integer co-
efficients.

Discriminants and resultants are also defined for nonhomogeneous polynomials.
If one of f0, f1, . . . , fn is not a form in x, then Res(f0, f1, . . . , fn) is defined to be

Res(f̃0, . . . , f̃n), where each f̃i is the homogenization of fi. Similarly, if f is not a

form, then ∆(f) is defined to be ∆(f̃).
Discriminants are also defined for several polynomials [19]. Let f1, . . . , fm be

forms in x of degrees d1, . . . , dm respectively, and m ≤ n− 1. Suppose at least one
di > 1. The discriminant of f1, . . . , fm, denoted by ∆(f1, . . . , fm), is a polynomial
in the coefficients of f1, . . . , fm, having the property that ∆(f1, . . . , fm) = 0 if and
only if there exists 0 6= u ∈ C

n satisfying

(2.1) f1(u) = · · · = fm(u) = 0, rank
[
∇f1(u) · · · ∇fm(u)

]
< m.

If one of f1, . . . , fm is nonhomogeneous and m ≤ n, then ∆(f1, . . . , fm) is defined

to be ∆(f̃1, . . . , f̃m). In the nonhomogeneous case, ∆(f1, . . . , fm) = 0 if there exists
u ∈ Cn satisfying (2.1) (cf. [19]).

We conclude this section with an elimination theorem for general homogeneous
polynomial systems.
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Theorem 2.5. (Elimination Theory, [7, Theorem 5.7A]) Let f1, . . . , fr be homoge-
neous polynomials in x0, . . . , xn, having indeterminate coefficients aij . Then there
is a set g1, . . . , gt of polynomials in the aij, with integer coefficients, which are ho-
mogeneous in the coefficients of each fi separately, with the following property: for
any field k, and for any set of special values of the aij ∈ k, a necessary and suf-
ficient condition for the fi to have a common zero different from (0, . . . , 0) is that
the aij are a common zero of the polynomials gj.

3. Optimality conditions and Finite Convergence

This section is to prove Theorem 1.1. It is based on the following theorem.

Theorem 3.1. Let u be a local minimizer of (1.1). If the constraint qualification,
strict complementarity and second order sufficiency conditions hold at u, then f
satisfies the boundary hessian condition at u.

Proof. Let J(u) := {j1, . . . , jr} be the index set of inequality constraints that are
active at u. For convenience, we can generally assume u = 0, up to a shifting. Since
the constraint qualification condition holds at 0, the gradients

∇h1(0), . . . ,∇hm1
(0),∇gj1(0), . . . ,∇gjr (0)

are linearly independent. The origin 0 is a nonsingular point of the real variety
VR(h), because the gradients ∇h1(0), . . . ,∇hm1

(0) are linearly independent. Up to
a linear coordinate transformation, we can further assume that

(3.1)





[
∇gj1(0) · · · ∇gjr (0)

]
=

[
Ir
0

]
,

[
∇h1(0) · · · ∇hm1

(0)
]

=

[
0

Im1

]
.

Let ℓ := n − m1, which is the local dimension of VR(h1, . . . , hm1
) at 0 (cf. [2,

Prop. 3.3.10]). Define a function ϕ(x) := (ϕI(x), ϕII(x), ϕIII(x)) : R
n → Rn as

(3.2) ϕI(x) =



gj1(x)

...
gjr(x)


 , ϕII(x) =



xr+1

...
xℓ


 , ϕIII(x) =




h1(x)
...

hm1
(x))


 .

Clearly, ϕ(0) = 0, and the Jacobian of ϕ at 0 is the identity matrix In. Thus, by the
implicit function theorem, in a neighborhood O of 0, the equation t = ϕ(x) defines
a smooth function x = ϕ−1(t). So, t = (t1, . . . , tn) can serve as a coordinate system
for Rn around 0 and t = ϕ(x). In the t-coordinate system and in the neighborhood
O, VR(h1, . . . , hm1

) is defined by linear equations tℓ+1 = · · · = tn = 0, and K ∩ O
can be equivalently described as

t1 ≥ 0, . . . , tr ≥ 0, tℓ+1 = · · · = tn = 0.

Let λi(i ∈ [m1]) and µj(j ∈ [m2]) be the Lagrange multipliers satisfying (1.3)-(1.4).
Define the Lagrange function

L(x) := f(x)−
m1∑

i=1

λihi(x)−
r∑

k=1

µjkgjk(x).
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Note that ∇xL(0) = 0. In the t-coordinate system, define functions

F (t) := f(ϕ−1(t)), L̂(t) := L(ϕ−1(t)) = F (t)−
n∑

i=ℓ+1

λi−ℓti −
r∑

k=1

µjk tk.

Clearly, ∇xL(0) = 0 implies ∇tL̂(0) = 0. So, it holds that

∂F (0)

∂tk
= µjk (k = 1, . . . , r),

∂F (0)

∂tk
= 0 (k = r + 1, . . . , ℓ),

∂F (0)

∂tk
= λk−ℓ (k = ℓ+ 1, . . . , n).

Expand F (t) locally around 0 as

F (t) = f0 + f1(t) + f2(t) + f3(t) + · · ·
where each fi is a form in t of degree i. Clearly, we have

f1(t) = µj1t1 + · · ·+ µjr tr on tℓ+1 = · · · = tn = 0.

For tr+1, . . . , tℓ near zero, it holds that

F (0, . . . , 0, tr+1, . . . , tℓ, 0, . . . , 0) = L̂(0, . . . , 0, tr+1, . . . , tℓ, 0, . . . , 0) =

L
(
ϕ−1(0, . . . , 0, tr+1, . . . , tℓ, 0, . . . , 0)

)
.

Denote x(t) := ϕ−1(t) = (ϕ−1
1 (t), . . . , ϕ−1

n (t)). For all i, j, we have

∂2L̂(t)

∂ti∂tj
=

∑

1≤k,s≤n

∂2L(x(t))

∂xk∂xs

∂ϕ−1
k (t)

∂ti

∂ϕ−1
s (t)

∂tj
+

∑

1≤k≤n

∂L(x(t))

∂xk

∂2ϕ−1
k (t)

∂ti∂tj
.

Evaluating the above at x = t = 0, we get (note ∇xL(0) = 0)

∂2L̂(0)

∂ti∂tj
=

∑

1≤k,s≤n

∂2L(0)

∂xk∂xs

∂ϕ−1
k (0)

∂ti

∂ϕ−1
s (0)

∂tj
.

Note that Jac(ϕ)|0 = Jac(ϕ−1)|0 = In. So, for all r + 1 ≤ i, j ≤ ℓ, we have

(3.3)
∂2f2
∂ti∂tj

∣∣∣∣
t=0

=
∂2F

∂ti∂tj

∣∣∣∣
t=0

=
∂2L̂

∂ti∂tj

∣∣∣∣∣
t=0

=
∂2L

∂xi∂xj

∣∣∣∣
x=0

.

The strict complementarity condition (1.5) implies that µj1 > 0, . . . , µjr > 0.
So, the coefficients of the linear form µj1t1+ · · ·+µjr tr are all positive. The second
order sufficiency condition (1.7) implies that the sub-Hessian

(
∂2L(0)

∂xi∂xj

)

r+1≤i,j≤ℓ

is positive definite. By (3.3), the quadratic form f2 is positive definite in (tr+1, . . . , tℓ).
Therefore, f satisfies the boundary hessian condition at 0. �

Now, we give the proof of Theorem 1.1.
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Proof of Theorem 1.1. By Theorem 3.1, we know the boundary hessian condition
is satisfied at every global minimizer of f on K, when the constraint qualification,
strict complementarity and second order sufficiency conditions hold. Then, by
Theorem 2.4 of Marshall, we know there exists σ1 ∈ Q(g) such that

f − fmin ≡ σ1 mod I(VR(h)).

Let f̂ := f − fmin − σ1. Then f̂ vanishes identically on VR(h). By Real Nullstel-
lensatz (cf. [2, Corollary 4.1.8]), there exist ℓ ∈ N and σ2 ∈ ΣR[x]2 such that

f̂2ℓ + σ2 ∈ 〈h〉.
Let c > 0 be big enough such that s(t) := 1+t+ct2ℓ is an SOS univariate polynomial
in t (cf. [22, Lemma 2.1]). For each ǫ > 0, let

σǫ := ǫs
(
f̂/ǫ

)
+ cǫ1−2ℓσ2 + σ1.

Then, one can verify that

φǫ := f − (fmin − ǫ)− σǫ = −cǫ1−2ℓ(f̂2ℓ + σ2) ∈ 〈h〉.
Clearly, there exists k0 ∈ N such that σǫ ∈ Qk0

(g) and φǫ ∈ 〈h〉2k0
for all ǫ > 0.

So, for every ǫ > 0, γ = fmin − ǫ is feasible in (1.2) for the order k0. Hence,
fk0

≥ fmin − ǫ. Since ǫ > 0 can be arbitrary, we get fk0
≥ fmin. Recall that

fk ≤ fmin for all k and {fk} is monotonically increasing. Hence, we get fk = fmin

for all k ≥ k0, i.e., Lasserre’s hierarchy has finite convergence. �

Theorem 3.1 shows that the constraint qualification, strict complementarity and
second order sufficiency conditions imply the boundary hessian condition. Typi-
cally, to check the boundary hessian condition by its definition, one needs to con-
struct a local parametrization for the feasible set K and verify some sign condi-
tions, which would be very inconvenient in applications. However, checking opti-
mality conditions is generally much more convenient, because it does not need a
parametrization and only requires some elementary linear algebra operations. This
is an advantage of optimality conditions over the boundary hessian condition. We
show this in the following example.

Example 3.2. Consider the optimization problem:
{

min x6
1 + x6

2 + x6
3 + 3x2

1x
2
2x

2
3 − x4

1(x
2
2 + x2

3)− x4
2(x

2
3 + x2

1)− x4
3(x

2
1 + x2

2)
s.t. x2

1 + x2
2 + x2

3 = 1.

The objective is the Robinson form which is nonnegative but not SOS (cf. [24]).
The minimum fmin = 0, and the global minimizers are

1√
3
(±1,±1,±1),

1√
2
(±1,±1, 0),

1√
2
(±1, 0,±1),

1√
2
(0,±1,±1).

The unit sphere is smooth, so the constraint qualification condition holds at every
feasible point. There is no inequality constraint, so strict complementarity is au-
tomatically satisfied. It can be verified that the second order sufficiency condition
(1.7) holds on all the global minimizers. For instance, at u = 1√

3
(1, 1, 1),

∇2
xL(u) =

4

9


3 ·



1 0 0
0 1 0
0 0 1


−



1
1
1





1
1
1



T

 , G(u)⊥ =



1
1
1



⊥

.
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Clearly, (1.7) is satisfied at u. By Theorem 1.1, Lasserre’s hierarchy for this problem
has finite convergence. A numerical experiment by GloptiPoly 3 [8] verified that
f5 = fmin = 0, modulo computer round-off errors. �

In Theorem 1.1, none of the optimality conditions there can be dropped. We
show counterexamples as follows.

Example 3.3. (a) Consider the optimization problem:
{

min 3x1 + 2x2

s.t. x2
1 − x2

2 − (x2
1 + x2

2)
2 ≥ 0, x1 ≥ 0.

It can be shown that the origin 0 is the unique global minimizer. The constraint
qualification condition fails at 0, and the first order optimality condition (1.3)
fails. The feasible set has nonempty interior, so the SOS program (1.2) achieves its
optimal value (cf. [11]). Lasserre’s hierarchy for this problem does not have finite
convergence, which is implied by Proposition 3.4 in the below.
(b) Consider the optimization problem:

{
min x1x2 + x3

1 + x3
2

s.t. x1 ≥ 0, x2 ≥ 0, 1− x1 − x2 ≥ 0.

Clearly, 0 is the unique global minimizer. The constraint qualification condition
holds at 0. The Lagrange multipliers are all zeros. The second order sufficiency
condition (1.7) also holds at 0 because the null space G(0)⊥ = {0}. However, the
strict complementarity condition fails at 0. Lasserre’s hierarchy for this problem,
does not have finite convergence, as shown by Scheiderer [26, Remark 3.9].
(c) Consider the optimization problem:

{
min x4

1x
2
2 + x2

1x
4
2 + x6

3 − 3x2
1x

2
2x

2
3 + ǫ(x2

1 + x2
2 + x2

3)
3

s.t. 1− x2
1 − x2

2 − x2
3 ≥ 0.

For every ǫ > 0, 0 is the unique global minimizer, and the constraint qualification
and strict complementarity conditions hold at 0. However, the second order suffi-
ciency condition fails at 0. For ǫ > 0 sufficiently small, Lasserre’s hierarchy for this
optimization problem does not have finite convergence, as shown by Marshall [15,
Example 2.4]. �

The first order optimality condition (1.3) is necessary for Lasserre’s hierarchy to
have finite convergence. This is summarized as follows.

Proposition 3.4. Suppose (1.2) achieves its optimal value. If the first order opti-
mality condition (1.3) fails at a global minimizer of (1.1), then Lasserre’s hierarchy
cannot have finite convergence.

Proof. Suppose otherwise fk = fmin for some k. Since (1.2) achieves its optimum,

f − fmin =

m1∑

i=1

φihi +

m2∑

j=0

σjgj

for some φi ∈ R[x] and σj ∈ ΣR[x]2. Let u be a global minimizer of (1.1). Note
that every hi(u) = 0 and gj(u)σj(u) = 0. Differentiate the above with respect to x
and evaluate it at u, then we get

∇f(u) =

m1∑

i=1

φi(u)∇hi(u) +

m2∑

j=0

(σj(u)∇gj(u) + gj(u)∇σj(u)).
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Since every σj is SOS, gj(u)σj(u) = 0 implies gj(u)∇σj(u) = 0. Hence,

∇f(u) =

m1∑

i=1

φi(u)∇hi(u) +

m2∑

j=0

σj(u)∇gj(u).

But this means that (1.3) holds at u, which is a contradiction. So Lasserre’s hier-
archy cannot have finite convergence. �

In Proposition 3.4, the assumption that (1.2) achieves its optimal value cannot
be dropped. (This assumption is satisfied if K has nonempty interior, cf. [11].) As
a counterexample, consider the simple problem

min x s.t. − x2 ≥ 0.

The global minimizer is 0. The first order optimality condition fails at 0, but
Lasserre’s hierarchy has finite convergence (fk = fmin = 0 for all k ≥ 1).

4. Zariski Openness of Optimality Conditions

This section is mostly to prove Theroem 1.2. For this purpose, we need some
results on generic properties of critical points.

4.1. Generic properties of critical points. Given polynomials p0 ∈ R[x]d0
, . . . , pk ∈

R[x]dk
with k ≤ n, consider the optimization problem

(4.1) min
x∈Rn

p0(x) s.t. p1(x) = · · · = pk(x) = 0.

Its Karush-Kuhn-Tucker (KKT) system is defined by the equations

(4.2) ∇xp0(x) −
k∑

i=1

λi∇xpi(x) = 0, p1(x) = · · · = pk(x) = 0.

Every (x, λ) satisfying (4.2) is called a critical pair, and such x is called a critical
point. Let

(4.3) K(p) :=

{
x ∈ C

n

∣∣∣∣
rank

[
∇xp0(x) ∇xp1(x) · · · ∇xpk(x)

]
≤ k

p1(x) = · · · = pk(x) = 0

}

be the KKT variety of (4.1). Clearly, every critical point belongs to K(p).
First, we discuss when does K(p) intersect the variety q(x) = 0 of a polynomial

q ∈ R[x]dk+1
, i.e., when does the polynomial system

(4.4)

{
rank

[
∇xp0(x) ∇xp1(x) · · · ∇xpk(x)

]
≤ k

p1(x) = · · · = pk(x) = 0, q(x) = 0

have a solution in Cn? For a generic p, K(p) is a finite set (cf. [18, Prop. 2.1]), and
it does not intersect q(x) = 0 if q is also generic. Consider the homogenization in
x := (x1, . . . , xn) of the polynomial system (4.4):

(4.5)

{
rank

[
∇xp̃0(x̃) ∇xp̃1(x̃) · · · ∇xp̃k(x̃)

]
≤ k,

p̃1(x̃) = · · · = p̃k(x̃) = q̃(x̃) = 0.

Its variable is x̃ := (x0, . . . , xn). When k < n, the matrix in (4.5) has rank ≤ k if
and only if all its maximal minors vanish; when k = n, the rank condition in (4.5) is
always satisfied and can be dropped. Thus, in either case, (4.5) can be equivalently
defined by some homogeneous polynomial equations, say,

M1(x̃) = · · · = Mℓ(x̃) = 0.
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Note that the coefficients of every Mi are also homogeneous in the ones of each of
p0, . . . , pk, q. By Theorem 2.5, there exist polynomials

R1(p0, . . . , pk; q), . . . , Rt(p0, . . . , pk; q)

in the coefficients of p0, . . . , pk, q such that

• every Ri(p0, . . . , pk; q) has integer coefficients and is homogeneous in the
coefficients of each of p0, p1, . . . , pk, q;

• the system (4.5) has a solution 0 6= x̃ ∈ Cn+1 if and only if

R1(p0, . . . , pk; q) = · · · = Rt(p0, . . . , pk; q) = 0.

Define the polynomial R(p0, . . . , pk; q) as

(4.6) R(p0, . . . , pk; q) := R1(p0, . . . , pk; q)
2 + · · ·+Rt(p0, . . . , pk; q)

2.

Note that R(p0, . . . , pk; q) is a polynomial in the coefficients of the tuple

(p0, . . . , pk, q) ∈ R[x]d0
× · · · × R[x]dk

× R[x]dk+1
.

Combining the above, we can get the following proposition.

Proposition 4.1. Let p0 ∈ R[x]d0
, . . . , pk ∈ R[x]dk

, q ∈ R[x]dk+1
, and R be

as defined in (4.6). Then (4.5) has a solution 0 6= x̃ ∈ Cn+1 if and only if
R(p0, . . . , pk; q) = 0. In particular, if R(p0, . . . , pk; q) 6= 0, then (4.4) has no
solution in C

n.

We would like to remark that the polynomial R in (4.6) does not vanish iden-
tically in (p0, . . . , pk, q) ∈ R[x]d0

× · · · × R[x]dk
× R[x]dk+1

, for any given positive
degrees d0, . . . , dk, dk+1. A proof for this fact is given in the Appendix.

Second, we discuss when the KKT system (4.2) is nonsingular. Denote

Lp(x, λ) := p0(x)−
k∑

i=1

λipi(x).

The polynomial system (4.2) is nonsingular if and only if the square matrix

Hp(x, λ) :=

[
∇2

xLp(x, λ) Jac(p1, . . . , pk)|Tx
Jac(p1, . . . , pk)|x 0

]

is nonsingular at every critical pair (x, λ). If every pi is generic, there are only
finitely many critical pairs, and (4.2) is nonsingular if detHp(x, λ) does not vanish
on them.

The matrixHp(x, λ) is singular if and only if there exists (0, 0) 6= (y, ν) ∈ Rn×Rk

such that

(4.7) ∇2
xLp(x, λ)y + Jac(p1, . . . , pk)|Tx ν = 0, y ∈

k⋂

i=1

∇pi(x)
⊥.

When Jac(p1, . . . , pk)|x has full rank k, the existence of a pair (y, ν) 6= (0, 0) satis-
fying (4.7) is equivalent to the existence of a pair (y, ν) with y 6= 0 satisfying (4.7).
When (4.2) is nonsingular, there is no y 6= 0 satisfying (4.7) for any critical pair
(x, λ). Write ν = (ν1, . . . , νk), then (4.2) and (4.7) together are equivalent to

(4.8)





[
∇xp0

(∇2
xp0)y

]
−

k∑
i=1

λi

[
∇xpi

(∇2
xpi)y

]
+

k∑
i=1

νi

[
0

∇xpi

]
= 0,

p1(x) = · · · = pk(x) = (∇xp1)
T y = · · · = (∇xpk)

T y = 0.
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Define the (2n)× (2k + 1) matrix

P (x, y) :=

[
∇xp0 · · · ∇xpk

(∇2
xp0)y · · · (∇2

xpk)y ∇xp1 · · · ∇xpk

]
.

Clearly, every pair (x, y) in (4.8) satisfies

(4.9)

{
rankP (x, y) ≤ 2k, p1(x) = · · · = pk(x) = 0,

(∇xp1)
T y = · · · = (∇xpk)

T y = 0.

If the vectors [
∇xpi

(∇2
xpi)y

]
,

[
0

∇xpi

]
(i = 1, . . . , k)

are linearly independent, (4.8) and (4.9) are equivalent. Consider the homogeniza-
tion in x of (4.9):

(4.10)

{
rank P̃ (x̃, y) ≤ 2k, p̃1(x̃) = · · · = p̃k(x̃) = 0,

(∇xp̃1)
T y = · · · = (∇xp̃k)

T y = 0.

In the above, x̃ := (x0, . . . , xn) and

P̃ (x̃, y) :=

[
∇xp̃0 · · · ∇xp̃k(

∇2
xp̃0

)
y · · ·

(
∇2

xp̃k
)
y ∇xp̃1 · · · ∇xp̃k

]
.

When k = n, we always have rank P̃ (x̃, y) ≤ 2k and the rank condition in (4.10)

can be dropped. When k < n, we can replace rank P̃ (x̃, y) ≤ 2k by the vanishing of

all maximal minors of P̃ (x̃, y). In either case, (4.10) could be equivalently defined
by some polynomial equations, say,

N1(x̃, y) = · · · = Nr(x̃, y) = 0.

Note that all N1, . . . , Nr are homogeneous in both x̃ and y, and their coefficients are
also homogeneous in the ones of each of p0, p1, . . . , pk. By applying Theorem 2.5
twice (first in x̃ and then in y), there exist polynomials Di(p0, p1, . . . , pk) (i =
1, . . . , s), in the coefficients of p0, p1, . . . , pk, such that

• every Di(p0, p1, . . . , pk) has integer coefficients and is homogeneous in the
coefficients of each of p0, p1, . . . , pk;

• there exist 0 6= x̃ ∈ Cn+1 and 0 6= y ∈ Cn satisfying (4.10) if and only if

D1(p0, p1, . . . , pk) = · · · = Ds(p0, p1, . . . , pk) = 0.

Define the polynomial D(p0, p1, . . . , pk) as

(4.11) D(p0, p1, . . . , pk) := D1(p0, p1, . . . , pk)
2 + · · ·+Ds(p0, p1, . . . , pk)

2.

Note that D(p0, . . . , pk) is a polynomial in the coefficients of the tuple

(p0, . . . , pk) ∈ R[x]d0
× · · · × R[x]dk

.

Combining the above, we can get the following proposition.

Proposition 4.2. Let p0 ∈ R[x]d0
, . . . , pk ∈ R[x]dk

and D be as defined in (4.11).
Then (4.10) has a solution (x̃, y) ∈ Cn+1 × Cn with x̃ 6= 0, y 6= 0 if and only if
D(p0, . . . , pk) = 0. In particular, if D(p0, . . . , pk) 6= 0, then (4.2) is a nonsingular
system.

The following special cases are useful to illustrate Proposition 4.2.
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• (Every deg(pi) = 1.) Let pi = aTi x + bi for i = 0, . . . , k. If k < n and

a0, a1, . . . , ak are linearly independent, then P̃ is a constant matrix of rank
2k + 1. If k = n and a1, . . . , an are linearly independent, then there is no
y 6= 0 satisfying ∇xp̃i

T y = 0 for i = 1, . . . , n. So, if every pi is generic, then
(4.10) has no complex solution (x̃, y) with x̃ 6= 0, y 6= 0.

• (k = 0, i.e., (4.1) has no constraints.) The system (4.10) is then reduced to

(4.12) ∇xp̃0(x̃) = 0,
(
∇2

xp̃0(x̃)
)
y = 0.

If deg(p0) = 1 and p0 is nonzero, ∇xp̃0(x̃) = 0 has no complex solution.
If deg(p0) = 2 and p0 = xTAx + 2bTx + c with det(A) 6= 0, there is no
y 6= 0 satisfying

(
∇2

xp̃0(x̃)
)
y = 0. When deg(p0) ≥ 3, by the definition

of discriminants for several polynomials (cf. §2.4), (4.12) has a complex
solution (x̃, y) with x̃ 6= 0, y 6= 0 if and only if

∆

(
∂p̃0
∂x1

, . . . ,
∂p̃0
∂xn

)
= 0.

So, if p0 is generic, there are no x̃ 6= 0, y 6= 0 satisfying (4.12).

The above observations can be simply implied by Proposition 4.2.
In Proposition 4.2, one might naturally think of replacing D by

(4.13) ∆(∇xp0 − Jac(p1, . . . , pk)|Tx λ, p1, . . . , pk),

which is the discriminant for the set of polynomials defining (4.2), by considering
λ1, . . . , λk as new variables, in addition to x. However, this approach is problematic.
The main issue is that the discriminantal polynomial in (4.13) might be identically
zero, e.g., when deg(p0) ≤ max1≤i≤k deg(pi). For convenience, consider the simple
case n > k = 1 and a := deg(p1) − deg(p0) ≥ 0. By definition of discriminants for
several polynomials (cf. §2.4), the discriminant in (4.13) vanishes if there exists a
complex vector (x0, x1, . . . , xn, λ1) 6= 0 satisfying

(4.14)





xa+1
0 · ∇xp̃0 − λ1∇xp̃1 = 0, p̃1(x0, . . . , xn) = 0,

det

[
xa+1
0 · ∇2

xp̃0 − λ1∇2
xp̃1 ∇xp̃1

∇xp̃1
T 0

]
= 0.

Let (u1, . . . , un) 6= 0 be a complex zero of p̃1(0, x1, . . . , xn). Then, (0, u1, . . . , un, 0)
is a nonzero solution of (4.14). So, for any p0, p1, (4.14) always has a nonzero
complex solution like (0, u1, . . . , un, 0). This means that the discriminant in (4.13)
identically vanishes. On the other hand, the polynomial D in (4.11) does not
vanish identically in (p0, . . . , pk) ∈ R[x]d0

× · · · × R[x]dk
, for any given positive

degrees d0, . . . , dk. A proof for this fact is given in the Appendix.
Typically, the polynomials R in (4.6) and D in (4.11) are very difficult to com-

pute explicitly. They are mostly for theoretical interests.

4.2. Zariski openness of optimality conditions. This section is to prove that
the constraint qualification, strict complementarity and second order sufficiency
conditions all hold at every local minimizer of (1.1) if a finite set of polynomials,
which are in the coefficients of polynomials f, hi (i ∈ [m1]), gj (j ∈ [m2]), do not
not vanish at the input polynomials. (That is, they hold in a Zariski open set in
the space of input polynomials.) These polynomials are listed as follows.
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Condition 4.3. The polynomials f0 ∈ R[x]d0
, hi ∈ R[x]di

(i ∈ [m1]), and gj ∈
R[x]d′

j
(j ∈ [m2]) with m1 ≤ n satisfy (Res,∆ are from §2.4, R from (4.6) and D

from (4.11)):

(a) If m1 +m2 ≥ n+ 1, for all 1 ≤ j1 < · · · < jn−m1+1 ≤ m2,

Res(h1, . . . , hm1
, gj1 , . . . , gjn−m1+1

) 6= 0.

(b) For all 1 ≤ j1 < · · · < jr ≤ m2 with 0 ≤ r ≤ n−m1,

∆(h1, . . . , hm1
, gj1 , . . . , gjr) 6= 0.

(c) For all 1 ≤ j1 < · · · < jr ≤ m2 with 0 ≤ r ≤ n−m1,

R(f, p1, . . . , pk; pk+1) 6= 0,

where (p1, . . . , pk, pk+1) is a re-ordering of (h1, . . . , hm1
, gj1 , . . . , gjr ).

(d) For all 1 ≤ j1 < · · · < jr ≤ m2 with 0 ≤ r ≤ n−m1,

D(f, h1, . . . , hm1
, gj1 , . . . , gjr ) 6= 0.

First, we study the relationship between Condition 4.3 and properties of critical
points. Let u ∈ K be a critical point of (1.1) (i.e., (1.3) and (1.4) are satisfied for
some λi, µj , excluding the sign conditions µj ≥ 0). Let J(u) := {j1, . . . , jr} be the
index set of active inequality constraints. Denote

L(x) := f(x) −
m1∑

i=1

λihi(x)−
∑

j∈J(u)

µjgj(x),

G(x) :=
[
∇h1(x) · · · ∇hm1

(x) ∇gj1(x) · · · ∇gjr (x)
]T

,

H(x) :=

[
∇2

xL(x) G(x)T

G(x) 0

]
.

Proposition 4.4. Let u ∈ K and λi, µj satisfy (1.3)-(1.4) (excluding the sign con-
ditions µj ≥ 0), and L(x), G(x), H(x) be as above. Condition 4.3 has the following
properties:

i) Item (a) implies that at most n−m1 of gj’s are active at every point of K.
ii) Item (b) implies that the constraint qualification condition holds at every

point of K.
iii) Item (c) implies that λi 6= 0, µj 6= 0 for all i ∈ [m1] and j ∈ J(u).
iv) Item (d) implies that H(u) is nonsingular, i.e., detH(u) 6= 0.

Proof. i) If more than n−m1 of gj ’s vanish at a point u ∈ K, say, gj1 , . . . , gjn−m1+1
,

then there are n+1 polynomials vanishing at u, including h1, . . . , hm1
. This implies

the resultant

Res(h1, . . . , hm1
, gj1 , . . . , gjn−m1+1

) = 0,

which violates item (a) of Condition 4.3. So, the item i) is true.
ii) By item (b) of Condition 4.3, ∆(h1, . . . , hm1

, gj1 , . . . , gjr) 6= 0. By the def-
inition of ∆ (cf. §2.4), the gradients of h1, . . . , hm1

, gj1 , . . . , gjr at u are linearly
independent, i.e., the constraint qualification condition holds at u.

iii) Suppose otherwise one of λi(i ∈ [m1]) or µj(j ∈ J(u)) is zero, say, µjr = 0,
then u is also a critical point of the optimization problem

min f(x) s.t. hi(x) = 0 (i ∈ [m1]), gj(x) = 0 (j ∈ J(u)/{jr}).
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Note that gjr (u) = 0. By definition of R in (4.6) and Proposition 4.1, we get

R(f, h1, . . . , hm1
, gj1 , . . . , gjr−1

; gjr ) = 0,

which contradicts item (c) of Condition 4.3. So, the item iii) must be true.
iv) This is implied by definition of D in (4.11) and Proposition 4.2. �

Second, we study the relationship between Condition 4.3 and the optimality
conditions. This is summarized as follows.

Proposition 4.5. If Condition 4.3 holds, then the constraint qualification, strict
complementarity and second order sufficiency conditions all hold at every local min-
imizer of (1.1). This is implied by the following properties:

1) Item (a) of Condition 4.3 implies that at most n−m1 of gj’s are active at
every local minimizer of (1.1).

2) Item (b) of Condition 4.3 implies that the constraint qualification condition
holds at every local minimizer of (1.1).

3) Items (b) and (c) of Condition 4.3 imply that the strict complementarity
condition holds at every local minimizer of (1.1).

4) Items (b) and (d) of Condition 4.3 imply that the second order sufficiency
condition holds at every local minimizer of (1.1).

Proof. Let u be a local minimizer of (1.1).
1) and 2) are implied by i), ii) of Proposition 4.4 respectively.
3) By item 2), the constraint qualification condition holds at u. So, there exist

λi, µj satisfying (1.3)-(1.4) with all µj ≥ 0. If j 6∈ J(u), then gj(u) > 0 and
µj + gj(u) > 0; if j ∈ J(u), then µj 6= 0 by item iii) of Proposition 4.4, and hence
µj > 0 and µj + gj(u) > 0. This means that the strict complementarity condition
holds at u.

4) By item 2), the constraint qualification condition holds at u. So, (1.3) and
(1.4) are satisfied. The second order sufficiency condition is then implied by item
iv) of Proposition 4.4 and Lemma 4.6 in the below. �

Lemma 4.6. Let u be a local minimizer of (1.1), λi, µj satisfy (1.3)-(1.4), and
L(x), G(x), H(x) be as defined preceding Proposition 4.4. If G(u) has full rank,
then (1.7) holds at u if and only if detH(u) 6= 0.

Proof. First, assume (1.7) holds. Then, for η > 0 big enough,

V := ∇2
xL(u) + ηG(u)TG(u) ≻ 0.

By the matrix equation
[
In

1
2ηG(u)T

0 Im1+r

] [
∇2

xL(u) G(u)T

G(u) 0

] [
In 0

1
2ηG(u) Im1+r

]
=

[
∇2

xL(u) + ηG(u)TG(u) G(u)T

G(u) 0

]
,

one can see that

detH(u) = det(V ) · det
(
−G(u)V −1G(u)T

)
6= 0,

because of the positive definiteness of V and nonsingularity of G(u).
Second, assume detH(u) 6= 0. Suppose otherwise (1.7) fails. Then there exists

0 6= v ∈ G(u)⊥ such that vT∇2
xL(0)v ≤ 0. Since G(u) has full rank, the constraint
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qualification condition holds at u. So, the second order necessity condition (1.6) is
satisfied at u. It implies that v is a minimizer of the problem

min
z∈Rn

zT
(
∇2

xL(u)
)
z s.t. G(u)z = 0.

By the first order optimality condition for the above, there exists ν such that
∇2

xxL(u)v = G(u)T ν, which then implies
[
∇2

xxL(u) G(u)T

G(u) 0

] [
v
−ν

]
= 0.

This contradicts detH(u) 6= 0, because v 6= 0. So, (1.7) must hold at u. �

We conclude this section with the proof of Theorem 1.2.

Proof of Theorem 1.2. Let ϕ1, . . . , ϕL be the finite set of polynomials given in Con-
dition 4.3. Theorem 1.2 is then implied by Proposition 4.5. �

5. Some discussions

Our main conclusions are Theorems 1.1 and 1.2. Lasserre’s hierarchy has finite
convergence when the constraint qualification, strict complementarity and second
order sufficiency conditions hold at every global minimizer, under the archimedean
condition. These optimality conditions are all satisfied at every local minimizer if
the vector of coefficients of input polynomials lies in a Zariski open set. This gives
a connection between the classical nonlinear programming theory and Lasserre’s
hierarchy of semidefinite relaxations in polynomial optimization. These results give
an interpretation for the phenomenon that Lasserre’s hierarchy often has finite
convergence in solving polynomial optimization problems.

Under the assumptions that Condition 2.2 holds at every u ∈ K and K is
irreducible and bounded, Marshall [17, Corollary 4.5] proved that, for each d ≥ 2,
the set

{
f ∈ R[x]d : f satisfies BHC at each global minimizer on K

}

is open and dense in R[x]d. This interesting result can also be implied by Theorems
1.2 and 3.1. Indeed, they can imply the following stronger conclusions:

• the boundary hessian condition is satisfied in a Zariski open set in the space
of input data (not every open dense set is Zariski open, e.g., Rn\Zn);

• Condition 2.2 also holds in a Zariski open set;
• for the case d = 1, the boundary hessian condition also holds in a Zariski
open set;

• the defining polynomials for K are also allowed to be generic; the set K is
not required to be irreducible or bounded.

We would like to remark that Putinar’s Positivstellensatz (cf. Theorem 2.1) also
holds generically for polynomials that are nonnegative on K. Assume 〈h〉+Q(g) is
archimedean and the ideal 〈h〉 is real. Let Pd(K) be the cone of polynomials in R[x]d
that are nonnegative on K, and ∂Pd(K) be the boundary of Pd(K). Theorems 1.2,
2.4 and 3.1 imply that if p lies generically on ∂Pd(K) then p ∈ 〈h〉+Q(g). In [11],
Lasserre interpreted Putinar’s Positivstellensatz as a generalized KKT condition
for global optimality. Therefore, the classical KKT conditions for local optimal-
ity and the generalized KKT condition (i.e., Putinar’s Positivstellensatz, under
archimedeanness) for global optimality, both hold generically.
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A theoretically interesting question is whether there is a uniform bound on the
number of steps to achieve finite convergence for Lasserre’s hierarchy in the generic
case. That is, whether there exists an integer N , which only depends on the degree
of f and a set of defining polynomials for K, such that fk = fmin for all generic
f of a given degree and k ≥ N? Unfortunately, such a bound N typically does
not exist. This could be implied by a result of Scheiderer [25] on the non-existence
of degree bounds for weighted SOS representations. For instance, when K is the
3-dimensional unit ball, such a bound does not exist (cf. [21, Section 5]).

The archimedean condition cannot be removed in Theorems 1.1, 2.4. For in-
stance, consider the unconstrained optimization

min x2
1x

2
2(x

2
1 + x2

2 − 3x2
3) + x6

3 + x2
1 + x2

2 + x2
3.

The origin 0 is the unique minimizer. The archimedean condition failed, because
the feasible set is the entire space R

n and is not compact. The objective f is the
sum of the Motzkin polynomial and the positive definite quadratic form xTx. The
second order sufficiency condition hold at 0. However, for all scalar γ, f − γ is not
SOS. In this case, Lasserre’s hierarchy does not converge.

The archimedean condition is not generically satisfied. To see this fact, consider
the simple case that m1 = 0 and m2 = 1. For a given d, let A (d) be the set of
polynomials g ∈ R[x]d such that Q(g) is archimedean. The set A (d) is not dense
in R[x]d. For instance, when d = 2, both A (d) and its complement R[x]d\A (d)
have nonempty interior:

• Let b1 = xTx − 1. Clearly, b1 6∈ R[x]2\A (2). For all q ∈ R[x]2 with
sufficiently small coefficients, we have b1 + q 6∈ A (2).

• Let b2 = 1 − xTx. Clearly, b2 ∈ A (2). For all q ∈ R[x]2 with small
sufficiently coefficients, we have b2 + q ∈ A (2).

There exist polynomial optimization problems that Lasserre’s hierarchy fails to
have finite convergence, e.g., minimizing the Motzkin polynomial over the unit ball.
Such problems always exist when the feasible set has dimension three or higher, as
shown by Scheiderer [28]. So, we are also interested in methods that have finite
convergence for optimizing all polynomials over a given set K. The Jacobian SDP
relaxation is a method that has this property (cf. [20]).

Theorems 1.1 does not tell how to check when finite convergence happens. This
can be done by using flat truncation, which is a rank condition on the dual optimiz-
ers of (1.2). Flat truncation is a sufficient condition for Lasserre’s hierarchy to have
finite convergence. In the generic case, flat truncation is also a necessary condition
for Lasserre’s hierarchy to have finite convergence (cf. [21]).

No matter Lasserre’s hierarchy has finite convergence or not, if there are finitely
many global minimizers and the archimedean condition holds, then the flat trun-
cation condition is always asymptotically satisfied (cf. [21, §3]). So, in numerical
experiments, we might also observe that Lasserre’s hierarchy has finite convergence
even if it does not have in exact mathematical computations. However, if there
are infinitely many global minimizers, the flat truncation condition is typically not
satisfied (cf. Laurent [14, §6.6]). For instance, consider the problem

{
min x2

1x
2
2(x

2
1 + x2

2) + (x3 − 1)6 − 3x2
1x

2
2(x3 − 1)2

s.t. x2
1 + x2

2 + x2
3 − 1

2 ≥ 0, 2− x2
1 − x2

2 − x2
3 ≥ 0.

The objective f is shifted from the Motzkin polynomial (i.e., f(x1, x2, x3 + 1) is
the Motzkin polynomial). It has infinitely many global minimizers and fmin = 0.
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Lasserre’s hierarchy for this problem does not have finite convergence. This can
be implied by the proof of Prop. 6.1 of Scheiderer [27], because (0, 0, 1) is a zero
f lying in the interior of the feasible set and f is a nonnegative but non-SOS
form in (x1, x2, x3 − 1). The flat truncation condition is typically not satisfied
for dual optimizers of (1.2). When GloptiPoly 3 is applied to solve this problem
numerically, the convergence did not occur for the orders k = 3, 4, . . . , 12.

Acknowledgement The author was partially supported by NSF grants DMS-
0757212 and DMS-0844775. He would like very much to thank Murray Marshall
for communications on the boundary hessian condition.

Appendix A. Non-identically Vanishing of R and D

Given any positive degrees d0, d1, . . . , dk, dk+1, we show that the polynomial
R(p0, . . . , pk; q) defined in (4.6) and the polynomial D(p0, p1, . . . , pk) defined in
(4.11) do not vanish identically in pi ∈ R[x]di

(i = 0, . . . , k) and q ∈ R[x]dk+1
.

Without loss of generality, we can assume all d1, . . . , dk > 1 because linear con-
straints in (4.2) can be removed by eliminating variables.

First, we prove that the polynomial R defined in (4.6) does not vanish identically
in the space R[x]d0

× · · · × R[x]dk
× R[x]dk+1

. We only consider the case k <
n, because if k = n then p̃1(x̃) = · · · = p̃k(x̃) = q̃(x̃) has no nonzero complex
solution in the generic case. By Proposition 4.1, it is enough to show that the
homogeneous polynomial system (4.5) does not have a complex solution x̃ 6= 0 for
generic p0, p1, . . . , pk, q. We prove this in two cases:

• (x0 6= 0) We can scale as x0 = 1, and the system (4.5) is then reduced to
(4.4). When p0, p1, . . . , pk are generic, the set K(p) defined in (4.3) is finite
(cf. [18, Prop. 2.1]). Thus, when q is also generic, (4.4) does not have a
solution in Cn.

• (x0 = 0) The system (4.5) is then reduced to

(A.1)

{
rank

[
∇xp

h
0(x) ∇xp

h
1 (x) · · · ∇xp

h
k(x)

]
≤ k,

ph1 (x) = · · · = phk(x) = qh(x) = 0.

(Here, fh denotes the homogeneous part of the highest degree for a poly-
nomial f .) When p1, . . . , pk are generic, we have ∆(ph1 , . . . , p

h
k) 6= 0. By

definition of ∆ (cf. §2.4), if ph1 (x) = · · · = phk(x) = 0 and x 6= 0, then

rank
[
∇xp

h
1 (x) · · · ∇xp

h
k(x)

]
= k.

So, if x satisfies (A.1), there must exist scalars c1, . . . , ck such that

∇xp
h
0(x) = c1∇xp

h
1 (x) + · · ·+ ck∇xp

h
k(x).

Since each phi is a form, by Euler’s formula for homogeneous polynomials
(cf. [19, §2]), we can get

d0p
h
0 (x) = xT∇xp

h
0 (x) =

k∑

i=1

cix
T∇xp

h
k(x) =

k∑

i=1

cidkp
h
k(x) = 0.

This means that (A.1) implies

ph0(x) = ph1 (x) = · · · = phk(x) = 0,

rank
[
∇xp

h
0(x) ∇xp

h
1 (x) · · · ∇xp

h
k(x)

]
= k.
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Any x satisfying the above must be zero if ∆(ph0 , p
h
1 , . . . , p

h
k) 6= 0.

Combining the above two cases, we know the polynomial system (4.5) has no com-
plex solution x̃ 6= 0 when p0, p1, . . . , pk, q are generic.

Second, we show that the polynomial D(p0, p1, . . . , pk) defined in (4.11) does not
identically vanish in the space R[x]d0

× R[x]d1
× · · · × R[x]dk

. By Proposition 4.2,
it is enough to prove that there exist pi ∈ R[x]di

(i = 0, . . . , k) such that (4.10) has
no complex solution (x̃, y) with x̃ 6= 0, y 6= 0. We prove this in two cases.

• (x0 6= 0) We scale as x0 = 1, and (4.10) is then reduced to (4.9). Choose
polynomials p̂i as follows:

p̂0 := f0 ∈ R[xk+1, . . . , xn]d0
, p̂1 := xd1

1 − 1, . . . , p̂k := xdk

k − 1.

Clearly, on the variety V (p̂1, . . . , p̂k), the gradients ∇xp̂1, . . . ,∇xp̂k are lin-
early independent, and so are

[
∇xp̂i

(∇2
xp̂i)y

]
,

[
0

∇xp̂i

]
(i = 1, . . . , k).

Thus, (4.9) is equivalent to (4.8). If (x, λ) is a critical pair, then λ1 =

· · · = λk = 0 and D := diag(d1x
d1−1
1 , . . . , dkx

dk−1
k ) is invertible. Denote

xI := (x1, . . . , xk, ) and xII := (xk+1, . . . , xn). Note that (p̂ := (p̂0, . . . , p̂k))

Hp̂(x, 0) =




0 0 D
0 ∇2

xII
f0 0

D 0 0


 .

(In the above, the 0’s denote zero matrices of proper dimensions.) The ma-
trix Hp̂(x, 0) is nonsingular if and only if ∇2

xII
f0 is nonsingular. Therefore,

(4.8) has a solution if and only if there exists u ∈ Cn−k satisfying

∇xII
f0(u) = 0, det ∇2

xII
f0(u) = 0.

However, the above is possible only if

∆(
∂f0

∂xk+1
, . . . ,

∂f0
∂xn

) = 0.

So, if f0 is generic, then Hp̂(x, 0) is nonsingular for all (x, λ) satisfying (4.2)
corresponding to p̂0, p̂1, . . . , p̂k.

By continuity of roots of polynomials, Hp(x, λ) is nonsingular for every
pair (x, λ) satisfying (4.2), if each pi is generic and close enough to p̂i.

• (x0 = 0) The polynomial system (4.10) is then reduced to

(A.2)

{
rankQ(x, y) ≤ 2k, ph1(x) = · · · = phk(x) = 0,(

∇xp
h
1 (x)

)T
y = · · · =

(
∇xp

h
1(x)

)T
y = 0.

In the above, Q(x, y) denotes the matrix
[

∇xp
h
0 · · · ∇xp

h
k(

∇2
xp

h
0

)
y · · ·

(
∇2

xp
h
k

)
y ∇xp

h
1 · · · ∇xp

h
k

]
.

We show that if p0, p1, . . . , pk are generic, then (A.2) has no complex so-
lution (x, y) with x 6= 0, y 6= 0. When all pi are generic, for every x 6= 0
satisfying

ph1 (x) = · · · = phk(x) = 0,
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the gradients∇xp
h
1 , . . . ,∇xp

h
k are linearly independent. When rankQ(x, y) ≤

2k, there exist scalars c1, . . . , ck such that

(A.3) ∇xp
h
0 (x)−

k∑

i=1

ci∇xp
h
i (x) = 0.

By Euler’s formula for homogeneous polynomials, the above implies

d0p
h
0 (x) = xT∇xp

h
0 (x) =

k∑

i=1

λix
T∇xp

h
i (x) =

k∑

i=1

λidip
h
i (x) = 0.

This means that if some x 6= 0 satisfies (A.2) then the polynomial system

ph0 (x) = ph1 (x) = · · · = phk(x) = 0

is singular. But this is impossible unless ∆(ph0 , p
h
1 , . . . , p

h
k) = 0.

Combining the above two cases, we know that there exist polynomials pi ∈ R[x]di
(i =

0, . . . , k) such that there are no complex x̃ 6= 0, y 6= 0 satisfying (4.10). This shows
that D(p0, . . . , pk) does not identically vanish.
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