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We consider a new class of huge-scale problems, the problems with sparse subgradients. The most
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corresponding linear operators, we suggest a very efficient implementation of subgradient iterations,
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1 Introduction

Motivation. In Convex Optimization, the size of the problem plays a crucial role for
the choice of minimization scheme. For problem of small size (see Table 1), all aux-
iliary operations are feasible, and we can apply the most sophisticated schemes (e.g.
Inscribed Ellipsoid Method [1]). Medium-size problems should be treated by polynomial-
time interior-point methods [6], which require matrix inversions. Large-scale problems
can be solved by the fast gradient schemes [3], or by primal-dual subgradient methods
(e.g. [4]). In the later class, the matrix-vector multiplication is still feasible. However, we
can work only with the sparse matrices.

Class Operations Dimension Iteration Cost Memory

low high units
Small-size All 109 —102 n® n? Kilobyte:  10°
Medium-size At 103 —10* n? nd Megabyte: 106
Large-scale Azx 10°-10" n n? Gigabyte: 10°
Huge-scale z+y 108 — 102 logn n Terabyte: 102

Table 1. Problem sizes, operations and memory.

In the last years we can observe an increasing interest to the huge-scale problems.
These problems are so big, that even the simplest vector operation require considerable
computational efforts. Corresponding matrices are very sparse and have typically a con-
stant number of nonzero elements in each row. This type of structure arise frequently
in image processing, finite-elements models, problems related to internet, telecommunica-
tions and partial differential equations.

At the current moment, there are some promising results on adopting the smoothing
technique to the special equilibrium problems of very big size [7]. However, the main
methods for solving the huge-scale problems remain the Coordinate Descent Schemes
(e.g. [2]). Recently, the random variants of these schemes were endowed with the global
complexity bounds [5, 9] for the classes of convex problems with Lipschitz continuous
gradient. In these methods, each iteration consists in updating a single entry of the
current test point. Therefore, it is very cheap. However, the total number of iterations,
which is necessary for obtaining an approximate solution of the problem, is typically
higher than the corresponding number of iterations of the full-gradient scheme.

In this paper, we consider a new class of huge-scale problems, the problems with sparse
subgradients. For smooth functions this is a very rare feature. Indeed, for quadratic
function f(y) = %(Ay, y) its gradient V f(y) = Ay usually is not sparse even for a sparse
matrix A. For nonsmooth functions, the situation is different. Indeed, the subgradients

of function f(y) = max (a;,y) are sparse provided that all vectors a; share this property.
<i<m

The results of this paper are based on the following simple observation. Consider the

function f(y) = 1r<nizi>§n<ai, y) with sparse matrix A = (a1, ...,am). Let f'(y) = a;) be its

subgradient at point y € R™. Then the subgradient step

yr =y —hf'(y) (1.1)

changes only a few entries of vector y. This means that the vector uy = ATy, differs from
u = ATy also in a few positions only. Thus, the function value f(yy) can be easily updated



provided that we have an efficient procedure for recomputing the maximum of m values.
It can be shown that for matrix A with uniform filling, such full-gradient iteration can
be performed in O(72(A) - mn - logy m) operations, where (A) is the sparsity coefficient
of matrix A. Recall that the usual matrix-vector product ATy, which is necessary for
computing the value f(y), needs y(A) - mn operations. Note that in huge-scale problems
the sparsity coefficient is usually very small.

Another important example of a sparse matrix is the matrix with limited number of
nonzero diagonals. If this number does not exceed ¢, then the complexity of each iteration
of scheme (1.1) does not exceed O(g? Inm) operations. Thus, it does not depend on the
dimension of the vector of variables and grows very slowly with the number of linear
pieces.

Not too many subgradient methods can be efficiently coupled with the above updating
technique. Indeed, most of them need at least O(n) operations per iteration (e.g. [4]).
We managed to find only two simple subgradient methods for nonsmooth minimization,
which can get a full advantage from the sparsity of subgradients. These are the oldest
subgradient methods by Polyak [8] and Shor [10]. In both schemes, despite to a remarkable
drop in the complexity of each iteration, we preserve the initial estimate for the number
of iterations O(e%), where € is the desired accuracy in the function value. Similar results
can be obtained for a new random coordinate descent scheme, which takes into account
only nonzero components of subgradients.

Contents. In Section 2 we analyze the complexity of the update of the matrix-vector
product in the case when the variation of the vector is sparse. In Section 3 we describe a
simple technique for updating the value of a symmetric function of n variables when only
one entry is changing. Its complexity is O(logyn) operations. In Section 4 we give the
complexity bounds and the stepsize rules for two subgradient methods, the unconstrained
minimization scheme by Polyak [8], and a constrained minimization method by Shor [10].
In Section 5 we consider huge-scale problems of the special sparse block structure, and
discuss complexity of sparse update of matrix-vector products. In Section 6 we derive the
complexity bounds for the random coordinate descent method for minimizing nonsmooth
convex functions with sparse subgradients. In Section 7 we give the results of preliminary
computational experiments. Finally, in Section 8 we discuss possible extension of the
results onto the matrices with nonuniform filling.

Notation. For a column vector z = (zM,... 2" )T ¢ R* we denote by p(z) < k the
number of nonzero elements in its coordinate representation. The set of nonzero elements
of z is denoted by o(x) C {1,...,k}. If the sparsity is introduced with respect to a block
structure, we use notation op(z).

We often use the sparsity coefficient of vector x;

dimz —

f)/(q;) déf p(z) < 1 (12)

Y

where dim x = k is the dimension of the corresponding object. The same notation is used
also for square matrices.
The above notation is naturally extended onto the block structure. In this case,
pp(z) denotes the number of nonzero blocks in x (it can be a vector or a matrix), and
_ (@)

w(x) = Timp 2 where dimy(x) is the number of nonzero blocks in the corresponding object.

Finally the set op(z) contains the indices of nonzero blocks in x.
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We denote by e; € R™ the jth coordinate vector in R". The same notation is used for
different dimensions. However, its exact sense is always clear from the context.

Finally, £(£) denotes the expectation of random variable £, and £(&;|£2) the conditional
expectation of & given the event &. In all situations, our random variables are discrete.

2 Updating the sparse matrix-vector product

In many numerical schemes, the cost of internal matrix-vector multiplications is responsi-
ble for the leading term in the total complexity of the method. For a general dense matrix
A € RMXN “and arbitrary vector € RV, computation of the product Az usually needs
MN arithmetic operations'. The situation is changing if the matrix A is sparse. Assume
that the matrix A is stored as a list of nonzero elements. Then the product Ax can be
computed in p(A) operations. Note that

p(A) ‘=" ~4(A)-MN. (2.1)

Thus, the initial complexity is reduced by a factor of y(A).

For sparse matrices of high dimension, we usually have y(A) < 1. In the sequel,
we consider only matrices with nonzero rows and columns. Then, p(A) > max{M, N}.
Therefore,

y(4) > max{% %} (2.2)

Let us show that the complexity of a sparse matrix-vector multiplication can be sig-
nificantly reduced by a recursive update of the product. Indeed, let us assume that the
vector y = Ax is already computed. We need to compute a new vector y. = Az, where

and the vector d is sparse. Then
yr = y+ ¥ dY)-Aey (2.4)
jeo(d)

The complexity of this update is equal to
def
ra(d) = X p(Ae). (2.5)
jeo(d)
As compared with the cost of the direct dense multiplication M N, this value can be very
small.

Lemma 1

ra(d) = 'Y(d)-ﬁjg(d)v(z‘lej%MN < (d) - max 5(Ae;) - MN. (2.6)

"'We count as one operation the pair of operations formed by real multiplication and addition.



Proof:
Since Ae; € RM and d € RN, we have

(1.2)
ra(d) = MY y(Aej) = MN-EQ. L 3 o(Aey)
j€o(d) j€o(d)
(1.2)
= (d) O V(Aej) - MN
jeo(d)
|
Corollary 1 Assume that the matriz A € RM*N has a uniform filling:
v(Ae;) < c-v(A4), j=1,...,N,
where ¢, > 1 is an absolute constant. Assume also that v(d) < ¢, - y(A). Then
ka(d) < c2~4%(A)- MN. (2.7)

Comparing this estimate with (2.1), we can see that the sparse updating strategy (2.4)
is in O(y(A)) times cheaper than the direct sparse matrix-vector multiplication.

Very often, vector d in the sparse update (2.3) is proportional to one of the row of
matrix A. In this case, the level of sparsity of matrix A can be well described by the
following characteristic:

1 Toy — .
k() = max ra(Adle) = lggﬁjeg(%ei)p(fleg)» (2.8)

which we call the row capacity of matrix A. In many practical applications (e.g. matrices
with few nonzero diagonals), the row capacity is constant and does not depend on the
matrix size.

3 Fast updates in short computational trees

Let f(z) be a function of n variables. We call this function short-tree representable, if its
value can be computed by a short binary tree with the height being proportional to Inn.
In order to illustrate the main idea, let us assume that n = 2% for some k > 1, and
the computational tree has k + 1 levels. At the level zero we have n cells containing the
entries of vector z:
Vo; = iL'(z), i:1,...,n

The size of each next level is a half of the size of the previous one. The values at the next
level are computed by the recursion:

Vit1; = Yir1;(Vigj—1,vi25), Jj=1,...,28 1 i=0,... k-1, (3.1)

where ); ; are some functions of two variables (see Figure 1).
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Vg1
Vk—-1,1 Vk—1,2
V2,1 V2.n/4
V1,1 1,2 e V1n/2—1 U1,n/2
Vo1 [ Vo2 | Vo3 | Vo V0,n—3[V0,n—2[V0,n—1[ Vo,n

Figure 1. Short computational binary tree.

Let us present some important examples of such functions. All of them are symmetric
functions of n variables, generated by symmetric functions of two variables.

f@) = Jzll,, p>1, bijltite) = [0 +|tal? 177,
f(z) = In (;::les”(i)), Vi (t1,t2) = In(eht 4 e®2), (3.2)

flx) = max{x(l),...,:v(”)}, i j(ti,t2) = max {t1,ta}.

For all these functions, the computational binary tree has the minimal height.
Short-tree computation of the value of such a function has the following advantages.

e This scheme requires only n — 1 auxiliary cells, provided that the vector of variables
x is stored at the zero level of the tree.

e Computation of its value needs n — 1 applications of functions v ;(-,-).

e The computation of value f(xy) needs only k = logyn applications of functions
¥ (-, ), provided that f(z) is already computed, and = differs from x in one entry
only. Indeed, for such an update, we need to modify only the cells which are strictly
above the new entry, one for each level (see Figure 1). Note that this updating
strategy does not cause any error accumulation.

We will see later that the last feature opens a possibility for development of the pure
subgradient minimization schemes with sublinear iteration cost.

4 Simple subgradient methods

In this section we consider two simple subgradient methods for solving nonsmooth opti-
mization problems. At each iteration, both methods allow a partial update of the test
points provided that the current subgradient is sparse and the feasible set is separable.
Note that usually, the sparsity of the gradient is a feature of nonsmooth functions.

Let us start from the following simple problem:

géig f(x), (4.1)

where @ is a closed convex set in R™, and f is a closed convex function. Our main
assumptions are as follows.



1. At each point z € Q we are able to compute a subgradient f’(x) of function f.

2. These subgradients are uniformly bounded on Q:
1@l < L(f), zeQ. (4.2)
3. The set @ is simple. This means that for any z € R"™ we can easily compute its
Eucleaden projection 7g(z) onto the set Q.
4. The problem (4.1) is feasible, and its optimal set X, is nonempty.
5. The optimal value f* of problem (4.1) is known.

Consider the following optimization scheme [8]:

20 €Q, Tp41 = TQ (wk — %f’(w@) , k>0. (4.3)

For the reader convenience, we present its convergence results with a complete proof.
Denote

fi = min f(z:), Li(f) = max [|f'(z;)]]

0<i<k 0<i<k

Theorem 1 For any k > 0 we have:

* * L ro—7x, (T
fk _ f S k(f)‘(‘]gil)l)/;( O)H. (44)

Moreover, for any k > 0 we have

e —2*|| < Jlwo—a*||, Vz*e X.. (4.5)

Hence, the sequence {x} converges to a single point T* € X,.
Proof:

Let us fix an arbitrary z* € X,. Denote r(z*) = ||z, — «*||. Then,

ri o (z¥) < ka -z - %Jw(l‘k)‘f

20— £ " . )—f* 2
= 7 2P ok o)+ G

o U= o Ut
< ) - YRE < i) - Iz

This proves inequality (4.4). On the other hand, from the latter reasoning, we have
lzpr:r — 2% < |log —2*||? Vao* € X*.

Hence, (4.5) is valid, and the sequence {z} has only one limit point z* € X,. O

Corollary 2 Assume that X, has a recession direction d.. Then for any k > 0 we have

|2k — mx. (o)l < lzo — mx. (zo)ls
(4.6)
(dy, ) > (ds,x0).



Proof:
Note that z*(«) e 7x, (zo) + ad, € X, for any o > 0. Therefore,

lzr — 2 (@7 = llox — 7x. (20)lI” — 20{ds, 21, — 7x., (z0)) + |||
(4.5)
< lwo —2* (@7 = 2o — mx. (xo)[I* — 20(ds, w0 — 7. (20)) + |||,
Taking in this inequality o = 0 and o« — +00, we get both inequalities in (4.6), O

Consider now an optimization problem with single functional constraint:

min{f(z) : g(x) < 0}, (4.7)
z€Q
where @) is a closed convex set in R"™, and f and g are closed convex functions, which
subgradients are uniformly bounded on (). For this problem, we keep the first four as-
sumptions introduced for problem (4.1). Since its feasible set is nonempty, we have

g'(z) #0 (4.8)

for all z € @ with g(x) > 0.
Consider the following method. It has two parameters: the step-size length h > 0,
and the iteration limit N.

Method SGy(h).

For k=0,..., N — 1 iterate:

(4.9)
If g(zx) > h||g'(xk)]|, then (A): 41 =mg (:Ek — mg’(xk» ,

else (B):  zp41 =mq (xk - W};k)” f’(xk)) :

For this method, denote by Fj, C {0,...,k} the set of numbers of iterations of type (B)
with cardinality k¢, and kg defy k. Denote

fo = min f(x), Lip(f) = max||f'(x)]],

i€EFy 1€Fy
* g a 0 ) s L = a. ! ) .
g5 grelffg(fm) k(9) max 19" (i)l

Let us fix an arbitrary point = feasible to problem (4.7). Denote 74(x) e |lzr — x|

Theorem 2 If N > rd(z)/h?, then Fn # 0 and

fv—f@) < hLn(f), gn < hLn(g). (4.10)



Proof:
If k ¢ Fn, then

2 x
(@) < i) - 2R (g (@), ok — 7) + T
(4.11)
< g2 9> (k) 2 2
< 1) = aorE < re(@) - b7
Hence, for k > r2(z)/h? we have F, # (). Further, if k € Fy, then
a(a) < ) — o (P ), o — o) + B2
< e) - 22 (Fon) — F(@)) + B2 (4.12)
< 7“]%(37) LN(f)(fN f(z ))+h2-
Summing up these inequalities, we obtain
fio— @) < S92 @) + (N — Ny»?]
(4.13)
= hLn(f) + Sl @) - NB? < hLy(f).
It remains to note that for all k& € Fn we have g(xy) < h||¢'(zx)|| < hLn(g)- O

Let us discuss now several strategies for applying method (4.9) to the problem (4.7).
Our goal is to find an e-solution T € @ of this problem:

f@) = fl@) < e g(@) < e (4.14)

1. Lipschitz constants L(f), L(g) are known. This is true, for example, for Linear
Programming problems. Then, we can take

h = wEonIer (4.15)

If the estimate Ry > ||zg —z*|| is known, then we can use method (4.9) with h as in (4.15),
and
N = |%R}+1. (4.16)

Consider the case when Ry is not known. Denote

Q(r) = {zeQ: |lz—xll <r},

w'(r) € Arg min (f(z): glz) <0,
Te
There are two ways to proceed.

e We choose N as the main control parameter. Define ry = %N 1/2 Then the output
of the method (4.9) can be interpreted as follows:

a. If Fy =0, then there is no feasible points inside the set @ (rx).

b. If Fy #0, then fi — f(z*(rn)) <e.



e We do not fix N in advance. Instead, we state our goal as follows:

Find a point T € @) and a trust radius r» > 7 such that

f@) = fa*(nr)) <€, g(@) <& |7 —woll <,

where 7 > 0 is the lower for the trust radius, and n > 1 is the safety factor. In order
to find such a point, we skip in the method (4.9) the termination by the predefined
number of step. Instead, we introduce the stopping criterion

kh2 > n?R2, R2 Y max{r? ||z — xol% i =0,... Kk} (4.17)
This criterion can be justified by the third expression in the chain of inequali-
ties (4.13).

2. Lipschitz constants L(f), L(g) are not known. Then we can start the method
(4.9) with parameters based on the lower bounds for these constants. Each time we see
that the norms of corresponding subgradients are bigger than these bounds, we multiply
the bounds by n > 1 and restart the method from scratch. In accordance to (4.16), the
length of the next stage will be in n? times longer. This means that the cost of the last
stage is proportional to the total cost of all previous stages. On the other hand, our
estimates will never exceed the actual Lipschitz constants more than in 7 times. For
numerical experiments, we usually take n = 2.

The main advantage of methods (4.3) and (4.9) consists in their simplicity. If the
basic feasible set @ is separable, then the sparse subgradients of the objective function
and constraints results in a sparse update of the testing point. This allows us to apply
a sparse updating technique of Section 2 for updating the matrix-vector products, which
can be used for computing the new values and subgradients of the functional components.
We consider the corresponding computational strategies in the next section.

5 Solving the huge-scale optimization problems

Huge-scale optimization problems are the problems of very big size, for which even the
usual operations like addition of two vectors or matrix-vector multiplication become ex-
tremely time consuming. For solving such problems, we need to find an efficient way of
treating their structure, especially the structure of linear operators.

In this section, we assume that the main operator A(x) U Az +b has a block structure.
Namely, we assume that the matrix A € RM*N is divided on mn blocks A;j € R*%:

o

n
=1

=1

Accordingly, we partition the vectors of variables, and the vectors in the image space:
r = (2',...,2")€RY, u = (u},...,u™) € RM.
We assume that the block row A4; = (4;1,...,A;y) is block-sparse:

Ai; # 0, jeop(d)C{l,...,n}.
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However, each block A; ; is considered as fully dense:
p(Aij) = aqirj, jeop(Ai), i=1,...,m. (5.1)
Similarly, we define the block column A’ of matrix A, j =1,...,n:
Aij # 0, i€ap(A)C{1,...,m}.

Consider an optimization problem in the following form:

min{f(z) € fo(u'(z)) : (u) € max fi(u'), g(z) € P(u(z)) <0,

1<i<m
. . o 2
u(z)= > Aigxd —V,i=1,...,m, (5.2)
‘ J€ob(4A;)
ey, j=1,...,n},
where convex functions f;(u’), i = 0,...,m, have bounded subgradients, and the sets
Qj € R%, j =1,...,n, are closed and convex. Moreover, we assume that these sets

are simple, presuming a possibility to compute corresponding Euclidean projections in
crq; operations, where ¢, > 1 is an absolute constant. Similarly, we assume that each
function f;(-) is simple, which means that its value and subgradient are computable in
cy r; operations, where ¢y > 1 is an absolute constant.

In order to solve this problem by method (4.9), we need to implement efficiently the
following operations:

e Computation of the value g(x), vector ¢’(z) and its Euclidean norm. Same compu-
tations for function f(z).

e Implementation of the gradient step.
e Recursive update of the residual vector u(x) = Az — b for © = xp4q.

In fact, it is better to implement all these operations in parallel by recursive updates.
Assume that we have already computed the direction dj for updating the test point:

Tht1 = WQ(xk—i-dk).

Assume also that dj, is block-sparse. Then this update can be done only for nonzero block
components of dj: ‘ ‘ ‘
Tppr = 7Q; (g +dy),  J € ow(d),
(5.3)
xi = xfc, otherwise.

Hence, the update of the image vector of the linear operator A(x) is also sparse. Indeed,
define 67, = x;, | — 27, j € op(dy). If the vector up = Az — b is already computed, then
the vector ug11 = Axgy1 — b can be obtained by a sequence of recursive updates. We

10



start by setting uy = ug, and then implement the following operations:

For j € oy(dy), i € op(A7) iterate:

1. Update ul, =u’ + Ai’jéi.

, . (5.4)
2. Compute f;(u’) and f(u’,).
3. Update the value 1(u4) an iy def arg max fi(ul,).

1<I<m
The final vector u4 is accepted as ug4q. Thus,
9(xrr) = Yuy), ¢ (wer) = AL (wh ),
‘ (5.5)
g @ee)l? = 2 g (@))%
jeop(Ar,)

Finally, if u # u?, and g(zx+1) < h||¢'(@g+1)]|, then iy = 0 and we need to compute
fll@) = Affo(ul).

After these computations, everything is ready for making a final choice of the direction
dg+1, which will have the same block sparsity pattern as A;ﬂ.

Let us estimate the computational cost of this computational strategy, taking into
account only the leading terms.

e The update of the test points (5.3) needs

> gy = capp(dy)
j€oy(dy)

operations, provided that all of them are stored in the same array of computer
memory.

e Each loop (5.4) needs r;q; operations for Item 1, ¢fr; operations for Item 2, and
logy m operations for updating the maximum of m values by the technique presented
in Section 3. Thus, the main term of the total complexity of the full loop is equal to

> (rigj +1ogym) = > [p(A7) +logy m - py(A7)]. (5.6)
jEO’b(dk) iEUb(A]) jEO’b(dk)

operations.
e The computations (5.5) need p(A;, ) operations.

Thus, the computational cost (5.6) dominates all other expenses. Consider two cases,
when this cost is very small.

Theorem 3 Assume that the filling of matrixz A is uniform:

=p(A) < Ep(A), p(A) < Lpy(A), i=1,...,m,
| | (5.7)
ép(A]) < Cﬁup(A)7 pb(AJ) < %pb(A)v J=1...n,

11



Then the computational cost (5.6) does not exceed

2 [Y*(A)MN +~2(A) -mn -logom | . (5.8)
Proof:
Indeed, in view of (5.7), the first term in the upper bound (5.6) can be estimated as
follows: , .
> pA) < Fp(A) X g4 = §p(A) op(Aiy)
j€op(dy) Jjeop(dy) *
02
< Sp(A) = EA2(4) MN.
Similarly, ¥ pp(47) < Spy(A) - pp(Ar) < S p2(A) = EAE(A)mn. O

j€oy(dy)

Note that both terms in the estimate (5.8) can be dominating. Indeed, consider the
simple case

ri=r1=1,....m, ¢ =¢q,j=1,....n, M=mr, N =ngq.
Then p(A) = pq - pp(A). Therefore

W) = Gy = B = w(A).

Hence, the estimate (5.8) can be written as follows:
2 22(A) mn [ pg +logzm ).

In our second example, for the sake of notation, consider the case when r; = 1 and
g; = 1. Let us assume that

p(4) < ¢, i=1,....n, p(A7) < ¢4 j=1,...n, (5.9)
where ¢, and ¢, are absolute constants. Then, the bound (5.6) can be estimated as follows:

<1+log2M)j€Z(d)p(Aj) < (L4logy M) cqp(Aiy) < (L+logz M) eger. (510)
o(dg

Thus, in such problems the computational cost of one iteration of subgradient method (4.9)
grows logarithmically with dimension of the image space. Note that the condition (5.9) is
satisfied in many practical applications, where the linear operators have only few nonzero
diagonals (e.g. the problems related to finite elements or to partial differential equations).
If this number is equal to ¢, then the conditions (5.9) are satisfied with ¢, = ¢, = ¢.

6 Random sparse block-coordinate methods
The simplest methods for solving huge-scale optimization problems are the coordinate
descent schemes. The efficiency estimates for these methods as applied to the smooth

optimization problems were first obtained in [5]. In this section we analyze a variant of
these methods as applied to the class of nonsmooth optimization problems with sparse
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block structure, which was described in Section 5. Namely, our problem of interest is as
follows:

. def ; ; ; P
min{g(z) = max f;(u'), v'(x)= > Aj;x7 —b,i=1,...,m,
{9(@) 1<i<m (') (z) j€oy(As) / (6.1)

ijQj,jzl,...,n},

where convex functions f;(u’), i = 0,...,m, have bounded subgradients, and the sets
Q; CRY,j=1,...,n, are closed and convex.

For each point z € RY, define an active index i(x) such that g(z) = fi(z)(u(i(z) (x)).
Then

g(@) = ATfi @ (@), o(g(2)) € op(Aiw), pold' (@) < po(Aign))-

For this point, define a random variable {(x), which generates indexes from oy,(A;(,)) with
equal probabilities 1/py(A;(;)). Assuming that the optimal value g* of problem (6.1) is
known, we can define now a random vector variable Next(z) by the following rules:

1. Compute h(x) = ﬁéx();)ﬁ; Generate j(z) = (7).

2. Define [ Next(z) /™) =mq, (x — (@) AT o Fly (0@ (m))). (6.2)

3. For other indexes j # j(x), define [ Next(z) J/ = 27.

Consider now a random block-coordinate variant of the method (4.3)

0. Choose xg € Q = ﬁ Q;. Compute up = u(xg) and g(zo).
j=1
1. kth iteration (k > 0).

a) Generate jp = £(zx) and update xg1 = Next(zy). (6.3)

b) Update upy1 = ug + A%* (mi’j_l - a:ff), computing in parallel the

values fi(uf, ), i € op(A%) with immediate evaluation of g(zp1).

Note that this method defines a sequence of discrete random variables {xy}. Let us
estimate its expected performance. Denote g; = Orél‘igk g(z;).
<i<

Theorem 4 Let py(4;) <r,i=1,...,m. Then, for any k > 0 we have:

T 2 Xo—T X 2
s ([gz _g*]2) < L2 (gl %+1X*( o)l ’ (6.4)
Ellar - zl?) < Noo—zlPs Vs € X, (6.5

13



Proof:
Let us fix an arbitrary =, € X.. Then for x;11(z) = Next(z).

lzr1 (@) — 2 < [29@) — 2l — n(@) AT, o o @@ @)+ D [lad — 22

i#i(@)
= & = 21” = 20(2) (f] (W' (2)), Az j(a) (xj(x) _ xi(@))

+h*(x) HAZZEx),j(m)fi/(x) (@@ (2))[|?

Hence,
€ (Jlarsi(@) — 2Pl = 20) < [log — a-?
h(z ui@ h2(z uie
M) W 1), Ay — ) + I AT ) )2
< o - 2l? - 52 (g(en) - %) + s g ) 2
= ok — 22 - (g(x)—g*)*

Po(Ai(ey)) lg(@e)l?

Taking now the full expectation, we get
€ (lansr — ) < € (low - 2al2) = i€ ((9law) — 97)2).

This proves inequality (6.5). Summing up these inequalities, we have

lzo —2.ll> > ;22 25((( i) —9)%)

. 2
* k * %12
> e € (LZO(Q(J%') —9 )] > ke (lop - 9T)
which gives us (6.4). O

Let us estimate the computational cost of one iteration of method (6.3). For the sake
of simplicity, assume that r; = ¢; = 1, and all p(47) < g. In this case, its computational
cost (which is mainly related to Step b)) is as follows:

logym - pp(A%) + 3 71ig;, = (1+logym)p(A%) < (1+ logym)g.

i€oy(ATk)

operations. Hence, under assumption of Theorem 4, we get &£ ([gz — g*]Q) < € in

0 (‘P"LQ(Q)!*I*”Q log, m) operations.

Let us describe a block-coordinate version of method (4.9) as applied to problem (5.2).
n
Let us fix a step size h > 0. For any € Q = [] Q; define an indicator I(z) as follows:

j=1
= {1 Stz o

14



Now we can define a random variable £(z), which generates indexes from o (A I(x)) With
equal probabilities 1/py(Aj(,)). The random vector variable Nextc(z) is defined now as
follows:

1. If I(z) > 0, then h(x) = %, else h(z) = h. Generate j(x) = £(x).

2. Define [ Nexto(z) P@ = TQj) ($ — h(z)AT T () 1) (U I@)(g ))) (6.7)

3. For other indexes j # j(x), define [ Nexto(z) 7 = 7.

Using this operation in the scheme (6.3), we get a random block-coordinate method for
problem (5.2). The complexity analysis of this scheme can be easily done by combining
the arguments from Theorem 2 and 4.

7 Computational experiments: Google problem

In this section, we check the practical performance of method (4.3). Our experiments
were performed on a standard PC with 2.6GHz processor and 4Gb of RAM.

From the above theoretical analysis, we know that the sparse updating technique can
be efficient if v(A) < 1 < M N. This condition is satisfied by the Google Problem.

Let E € RV*Y be an incidence matrix of a graph. Denote e = (1,...,1)T € RY and

E =E - diag(ETe)™!

Since, ETe = e, this matrix is stochastic. Our problem consists in finding a maximal right
eigenvector of the matrix E:

Find 2* > 0: FEz*=2z* a*#0.

In [5] it was suggested to solve this problem by applying a random coordinate descent
method to the quadratic function

3l Bz —x|® + 3[(e,z) — 117, (7.1)

where v > 0 is a penalty parameter for a normalizing linear equality constraint. If the
degree of each node in the graph is small, then the computation of partial derivatives of
this function is cheap. Hence, the technique [5] can be applied to the matrices of very big
size.

Note that the maximal eigenvalue of a nonegative matrix A € R
condition

nX" satisfies the

p(A) = min ma (ATe; x).

>0 1<z<n fﬁ(l)

Moreover, the minimum is attained at the corresponding eigenvector. Since in our situ-
ation p(E) = 1, we can characterize z* as a solution to the following convex nonsmooth
minimization problem:

lef Te. 2\ _ @) i
glx) € max [(ATes,a) —2] —  min. (7.2)
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Note that ¢g* = 0, and the optimal set X* of this problem is a convex cone. This feature
suggests to solve (7.2) by method (4.3). Let us choose for this method the starting point
xg = e. Then the whole minimizing sequence {xj} constructed by (4.3), is well separated
from zero. Indeed, for any z* € X* the second inequality in (4.6) implies that

(z%e) < (@5 ap) < 2”1 flwrlloe = (2% €) - [kl
Thus, our goal will be as follows:
Find z > 0 such that ||Z|lcc > 1 and g(7) <. (7.3)

Recall that the first condition is satisfied by method (4.3) automatically.

In our test problem we generate a random graph with uniform degree p > 2 for each
node. Thus, the number of elements in each column of matrix A is exactly p. The number
of elements in the rows can be different, but still it is p in average. Hence, from the analysis
of example (5.9), we can expect that the complexity of one iteration of the subgradient
method (4.3) is of the order

O(p*InN) (7.4)

operations. An upper estimate for the number of iterations of (4.3) can be derived from
(4.4). Since X, is a cone, we have

dist?(X,,e) < N —1.

Since
JATe;l2 = px = 1,
The upper bound for the number of iterations is
L2
E||zo — mx, (z0)l? < 2. (7.5)
Thus, the total computational cost of solving this problem by method (4.3) does not
exceed

0 (pN N ) (7.6)

operations. For the subgradient method, the estimate for the number of iterations will be
the same, but the cost of one iteration is of the order O(pN) operations. Thus, it needs
O (]Z—;) operations. Finally, the smoothing technique [3] needs O (@on —Tx, (xo)H)
iteratrions of the gradient-type scheme. Thus, its total cost is of the order

0 (3 -»N)

operations. We can see that only the sparse subgradient method (4.3) has practically
linear dependence of the computational cost in the dimension V.

Let us present now the results of our numerical experiments. First of all, let us compare
the growth of computational time of the method (4.3) with the sparse updates (SUSM)
and the same method (SM) with the sparse computation of the matrix-vector product
(with complexity (2.1)). In the table below, we put the measurements for both methods
as applied to the random Google problem (7.2). In the first column of the table we put
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the dimension of the matrix, the second column displays its row capacity (2.8), and the
last two columns show the computational time (in seconds) for the new method and for

the standard one.
Time for 10? iterations (p = 32)

N k(A [SUSM| SM
1024 | 1632 3.00 | 2.98
2048 | 1792 | 3.36| 6.41 (7.7)
4096 | 1888 | 3.75 | 15.11
8192 | 1920 | 4.20 | 139.92
16384 | 1824 |  4.69 | 408.38

Since the row capacity in these examples is almost constant, the computational time of
SUSM almost does not grow. The computational time of SM grows linearly, and after
even quadratically with dimension. The later effect can be explained by the troubles with
keeping massive computations in the fast memory of Windows system. For SUSM the
required size of the fast memory is O(k(A)), and for SM it is O(N). Recall that the both
schemes implement the same minimization method (4.3). The only difference between
them consists in the way of computing/updating the matrix-vector products.

For the larger dimensions, the linear growth of the iteration cost in SM is restored.
However, as compared with SUSM, it remains extremly slow.

Time for 103 iterations (p = 16)
N | k(A4) | SUSM SM
131072 | 576 0.19 | 213.9
262144 | 592 0.25| 4778
524288 | 592 0.32 | 1095.5
1048576 | 608 | 0.40 | 2590.8

Therefore, in the sequel we look at the performance of SUSM only. In the next table
we present the computational results for the problem (7.1) with N = 131072, p = 16,
k(A) =576, and L(f) =0.21.

Iterations | g — g* | Time (sec)
1.0-10° | 0.1100 16.44
3.0-10° | 0.0429 49.32
6.0 - 10° | 0.0221 98.65
1.1-10% | 0.0119 180.85 (7.9)
2.2-10° | 0.0057 361.71
4.1-10° | 0.0028 674.09
7.6-10° | 0.0014 1249.54
1.0-107 | 0.0010 1644.13

Despite to a large dimension and sufficiently high accuracy, the computational time is still
reasonable. Finally, let us present the results for a big random problem with N = 1048576,
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p=38, k(A) =192, and L(f) = 0.21.

Iterations g —g* | Time (sec)
0 | 2.000000 0.00
1.0 -10° | 0.546662 7.69
4.0-10° | 0.276866 30.74
1.0-10% | 0.137822 76.86 (7.10)
2.5-10% | 0.063099 192.14
5.1-106 | 0.032092 391.97
9.9-106 | 0.016162 760.88
1.5-107 | 0.010009 1183.59

The size of the final point Z, of this process is as follows:

|Zalloo = 2941497, R2 ¥ ||z, —¢|2 = 1.2 10°.

Thus, the upper bound for the number of iterations for achieving the accuracy e = 1072

by method (4.3) is % =5.3-107. Note that this estimate is very close to the results
shown in (7.10). However, for the problems of this size, the total computational time
remains quite reasonable due to the efficient sparse matrix update. From the table (7.8)
we can guess that for the same number of iterations, the usual subgradient method would
require almost a year of computations.

Finally, let us present computational results for method (6.3) as applied to the prob-
lem (7.2) with the same parameters as in (7.10).

Iterations | g — g* | Time (sec)
0 | 2.00000 0
1.0-10°% | 0.55124 7.04
5.0-106 | 0.27433 35.22
1.4-107 | 0.12881 98.62 (7.11)
3.4-107 | 0.05628 239.50
5.9-107 | 0.03162 415.60
1.1-10% | 0.01636 795.97
1.6 - 108 | 0.01006 1148.17

Despite to the very different number of iterations, we can see that the performance of
both methods is quite similar.

8 Discussion

As we have seen, if the main linear operator A of the optimization problem has small
row density, then the sparse updating strategy transforms a standard slow subgradient
method in a very efficient scheme. Unfortunately, even a single dense row of matrix A
usually results in a big value of k(A). Let us show that this situation can be treated by
introducing into the problem some additional variables.
Assume, for example, that row ¢ of matrix A € R™*™ is dense. Note that linear
inequality
(ATe; x) < b, e R", (8.1)
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is equivalent to the following system of linear equalities and inequalities:

y(l) = Ai,l l‘(l),

Y < b,

We call this system an extended representation of ith row of matrix A.

Note that we need to introduce new variables yU) only for nonzero coefficients of
vector a. Thus, for rewriting the whole system of linear inequalities Az < b in the
extended form, we need to introduce p(A) additional variables and p(A) additional equality
constraints. However, the complexity bound (5.10) of each iteration of sparse update
depends logarithmically on the number of constraints. At the same time, the extended
system has at most three variables in each row. Thus, if the columns of matrix A are not
too dense, we can get very efficient sparse updating procedure.

In the above approach there is a hidden drawback. If we solve an optimization problem
with extended representation of the linear operator, then inequalities (8.2) are treated
as the constraints of the problem. Hence, in the end we can guarantee that they are
satisfied with accuracy e > 0. This means, that the value y(™ differs from (ATe;, ) by
ne (we assume that p(ATe;) = n). It seems that this accumulation of errors destroys all
advantages of the proposed treatment.

However, the situation is not so bad. Indeed, in many problems it is natural to relate
the feasible error in a linear inequality with the number of its nonzero coefficients. Then
the above technique automatically delivers the solutions with correct level of accuracy.

A similar technique can be applied to the dense columns of matrix A. If column Ae; is
dense, then for each nonzero coefficient A; ; we introduce a new variable z; ; and replace
the term Ai,jfv(j ) in the product Az by A; jz; ;. It remains to add p(Ae;) linear equality
constraints:

Zi1l = .. = l‘(j),

)

(which contain only the indexes of nonzero coefficients).
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