Skip to main content

Advertisement

Log in

Differential variational inequality approach to dynamic games with shared constraints

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The dynamic Nash equilibrium problem with shared constraints (NEPSC) involves a dynamic decision process with multiple players, where not only the players’ cost functionals but also their admissible control sets depend on the rivals’ decision variables through shared constraints. For a class of the dynamic NEPSC, we propose a differential variational inequality formulation. Using this formulation, we show the existence of solutions of the dynamic NEPSC, and develop a regularized smoothing method to find a solution of it. We prove that the regularized smoothing method converges to the least norm solution of the differential variational inequality, which is a solution of the dynamic NEPSC as the regularization parameter \(\lambda \) and smoothing parameter \(\mu \) go to zero with the order \(\mu =o(\lambda )\). Numerical examples are given to illustrate the existence and convergence results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer Verlag, Heidelberg (1984)

    Book  MATH  Google Scholar 

  2. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  3. Brogliato, B.: Some perspective on analysis and control of complementarity systems. IEEE Trans. Autom. Control 48, 918–935 (2003)

    Article  MathSciNet  Google Scholar 

  4. Camlibel, M.K., Heemels, W.P.M.H., Schumacher, J.M.: On linear passive complementarity systems. Eur. J. Control 8, 220–237 (2002)

    Article  Google Scholar 

  5. Camlibel, M.K., Heemels, W.P.M.H., Schumacher, J.M.: Consistency of a time-stepping method for a class of piecewise linear networks. IEEE Trans. Circ. Syst. 49, 349–357 (2002)

    Article  MathSciNet  Google Scholar 

  6. Camlibel, M.K., Pang, J.-S., Shen, J.: Lyapunov stability of complementarity and extended systems. SIAM J. Optim. 17, 1056–1101 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, X.: Smoothing methods for nonsmooth, nonconvex minimization. Math. Prog. 134, 71–99 (2012)

    Article  MATH  Google Scholar 

  8. Chen, X., Wang, Z.: Error bounds for differential linear variational inequality. IMA J. Numer. Anal. 32, 957–982 (2011)

    Article  MATH  Google Scholar 

  9. Chen, X., Wang, Z.: Convergence of regularized time-stepping methods for differential variational inequalities. SIAM J. Optim. (to appear)

  10. Chen, X., Xiang, S.: Newton iterations in implicit time-stepping scheme for differential linear complementarity systems. Math. Prog. 138, 579–606 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, X., Xiang, S.: Implicit solution function of \(P_0\) and Z matrix linear complementarity constraints. Math. Prog. 128, 1–18 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dal Maso, G.: Introduction to \(\varGamma \)-convergence. In: Progress in Nonlinear Differential Equations and Their Applications Series 8. Springer Verlag, New York (1993)

  13. Facchinei, F., Fischer, A., Piccialli, V.: On generalized Nash games and variational inequalities. Oper. Res. Lett. 35, 159–164 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Facchinei, F., Fischer, A., Piccialli, V.: Generalized Nash equilibrium problems and newton methods. Math. Prog. 117, 163–194 (2008)

    Article  MathSciNet  Google Scholar 

  15. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5, 173–210 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Verlag, New York (2003)

    Google Scholar 

  17. Gabriel, S.A., Moreé, J.J.: Smoothing of mixed complementarity problems. In: Complementarity and variational problems, pp. 105–116. SIAM, Philadelphia (1997)

  18. Han, L., Camlibel, M.K., Pang, J.-S., Heemels, W.P.M.H.: A unified numerical scheme for linear-quadratic optimal control problems with joint control and state constraints. Optim. Methods Softw. 27, 761–799 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Han, L., Tiwari, A., Camlibel, M.K., Pang, J.-S.: Convergence of time-stepping schemes for passive and extended linear complementarity systems. SIAM J. Numer. Anal. 47, 3768–3796 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Harker, P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54, 81–94 (1991)

    Article  MATH  Google Scholar 

  21. Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Linear complementarity systems. SIAM J. Appl. Math. 60, 1234–1269 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kulkarni, A.A., Shanbhag, U.V.: On the variational equilibrium as a refinement of the generalized Nash equilibrium. Automatica 48, 45–55 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kulkarni, A.A., Shanbhag, U.V.: Revisiting generalized Nash games and variational inequalities. J. Optim. Theory Appl. 154, 175–186 (2012)

    Google Scholar 

  24. Lang, S.: Real and Functional Analysis. Springer Verlag, Heidelberg (1993)

    Book  MATH  Google Scholar 

  25. Ledvina, A., Sircar, R.: Dynamic Bertrand oligopoly. Appl. Math. Optim. 63, 11–44 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nabetani, K., Tseng, P., Fukushima, M.: Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints. Comput. Optim. Appl. 48, 423–452 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  28. Pang, J.-S., Fukushima, M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comp. Manag. Sci. 2, 21–56 (2005). [Erratum, ibid. 6, 373–375(2009)]

  29. Pang, J.-S., Stewart, D.E.: Differential variational inequalities. Math. Prog. 113, 345–424 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pang, J.-S., Stewart, D.E.: Solution dependence on initial conditions in differential variational inequalities. Math. Prog. 116, 429–460 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer Verlag, Berlin (1998)

    Book  MATH  Google Scholar 

  32. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave N-Person games. Econometrica 33, 520–534 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  33. Schiro, D.A., Pang, J.-S., Shanbhag, U.V.: On the solution of affine generalized Nash equilibrium problems with shared constraints by Lemkes method. Math. Prog. (2012). doi:10.1007/s10107-012-0558-3

  34. Wei, J.Y., Smeers, Y.: Spatial oligopolistic electricity models with cournot generators and regulated transmission prices. Oper. Res. 47, 102–112 (1999)

    Article  MATH  Google Scholar 

  35. Zhang, R.X., Sumalee, A., Friesz, T.L.: Dynamic user equilibrium with side constraints for a traffic network: theoretical development and numerical solution algorithm. Transp. Res. B 45, 1035–1061 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Sven Leyffer, the anonymous associate editor and two referees for providing valuable comments and constructive suggestions, which help us to enrich the content and improve the presentation of the results in this paper. We are grateful to Jong-Shi Pang for his helpful comments on the optimal control problem with joint control and state constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Chen.

Additional information

This work was supported partly by Hong Kong Research Grant Council PolyU5003/11p, the Fundamental Research Funds for the Central Universities (Grant No. 1113020301) and the National Natural Science Foundation of China (Grant No. 10871092).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Wang, Z. Differential variational inequality approach to dynamic games with shared constraints. Math. Program. 146, 379–408 (2014). https://doi.org/10.1007/s10107-013-0689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0689-1

Keywords

Mathematics Subject Classification

Navigation