
ar
X

iv
:1

20
2.

40
72

v1
 [

cs
.D

S
]

18
 F

eb
 2

01
2

An efficient polynomial time approximation scheme for load
balancing on uniformly related machines

Leah Epstein∗ Asaf Levin†

Abstract

We consider basic problems of non-preemptive scheduling onuniformly related machines. For
a given schedule, defined by a partition of the jobs intom subsets corresponding to them machines,
Ci denotes the completion time of machinei. Our goal is to find a schedule which minimizes or

maximizes
m
∑

i=1

Cp

i for a fixed value ofp such that0 < p < ∞. Forp > 1 the minimization problem

is equivalent to the well-known problem of minimizing theℓp norm of the vector of the completion
times of the machines, and for0 < p < 1 the maximization problem is of interest. Our main result
is an efficient polynomial time approximation scheme (EPTAS) for each one of these problems.
Our schemes use a non-standard application of the so-calledshifting technique. We focus on the
work (total size of jobs) assigned to each machine and introduce intervals of forbidden work. These
intervals are defined so that the resulting effect on the goalfunction is sufficiently small. This allows
the partition of the problem into sub-problems (with subsets of machines and jobs) whose solutions
are combined into the final solution using dynamic programming. Our results are the first EPTAS’s
for this natural class of load balancing problems.

1 Introduction

We consider non-preemptive scheduling problems onm uniformly related machines. In such problems,
we are given a set of jobs{1, 2, . . . , n}, where each jobj has a positive sizepj. The jobs need to be
partitioned intom subsetsS1, . . . , Sm, with Si being the subset of jobs assigned to machinei. We let
si denote the speed of machinei, and the processing of a jobj takespj

si
time units if j is assigned to

machinei. For such a solution (also known as a schedule), we letCi =

∑
j∈Si

pj

si
be thecompletion

time of machinei. The work (also called the weight) of machinei is Wi =
∑

j∈Si
pj = Ci · si,

that is, the total size of the jobs which are assigned toi. The makespan of the schedule ismaxi Ci,
and the optimization problem of finding a schedule which minimizes the makespan is well-studied (see
e.g. [20, 19, 23, 24, 26]). The problem of finding a schedule which maximizesmini Ci is the well-known
Santa Claus problem on uniformly related machines (see e.g.[18, 30, 2, 5, 15, 8]). Both these problems
are concerned with the optimization of the extremum values of the set{C1, . . . , Cm}.

Motivated by minimizing average latency in storage allocation applications (rather than worst-case
latency), researchers have suggested to study the optimization goal of minimizing theℓ2 norm (and the
goal of minimizing theℓp norm for p > 1) of the vector of completion times of the machines (see
e.g. [12, 11, 28, 4, 3]). It was stated more recently by Bansaland Pruhs [7] that: “The standard way to
compromise between optimizing for the average and optimizing for the worst case is to optimize theℓp
norm, generally for something likep = 2 or p = 3.” An additional perspective of using theℓp norm as
an objective function has arisen recently in algorithmic game theory [9]. Note that the minimization of
theℓp norm is equivalent to minimizing the sum of thep-th powers of the completion times of machines.

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il.
†Faculty of Industrial Engineering and Management, The Technion, 32000 Haifa, Israel.

levinas@ie.technion.ac.il.

1

http://arxiv.org/abs/1202.4072v1

Thus, we consider objective functions in which the entire vector C = (C1, . . . Cm) affects the value of
the objective function. Our class of objective functions includes the minimization of the sum of thep-th
powers of the completion times of machines which is equivalent to the minimization of theℓp norm of
C. More precisely, given a fixed real (finite) numberp such that0 < p < ∞, we consider the problem of
minimizing

∑m
i=1 C

p
i and the problem of maximizing

∑m
i=1C

p
i . The minimization problem forp ≤ 1

is trivially solved by placing all the jobs on one of the fastest machines. Therefore, we consider the
minimization problem only for values ofp such thatp > 1. Similarly, the maximization problem is
trivially solved forp ≥ 1 by placing all the jobs on one of the slowest machines. Hence,we consider
the maximization problem only for values ofp such thatp < 1.

An R-approximation algorithm for a minimization problem is a polynomial time algorithm which
always finds a feasible solution of cost at mostR times the cost of an optimal solution. AnR-
approximation algorithm for a maximization problem is a polynomial time algorithm which always finds
a feasible solution of value at least1

R
times the value of an optimal solution (we use the conventionof

approximation ratios greater than 1 for maximization problems). The infimum value ofR for which an
algorithm is anR-approximation is called the approximation ratio or the performance guarantee of the
algorithm. A polynomial time approximation scheme (PTAS) is a family of approximation algorithms
such that the family has a(1 + ε)-approximation algorithm for anyε > 0. An efficient polynomial
time approximation scheme (EPTAS) is a PTAS whose time complexity is of the formf(1ε) · poly(n)
wheref is some (not necessarily polynomial) function andpoly(n) is a polynomial of the length of the
(binary) encoding of the input. Motivated by this definitionof polynomial time complexity, we say that
an algorithm (for some problem) has polynomial time complexity if its time complexity is of the form
f(1ε) · poly(n). Note that whereas a PTAS may have time complexity of the formng(1

ε
), whereg is for

example linear or even exponential, this cannot be the case for an EPTAS. The notion of an EPTAS is
modern and find its roots in the FPT (fixed parameter tractable) literature (see [10, 13, 17, 29]).

Our main result is a class of EPTAS’s for minimizing
∑m

i=1 C
p
i for any fixed value ofp > 1, and for

the problem of maximizing
∑m

i=1 C
p
i for any fixed positive value ofp < 1. Note that these problems

are known to be strongly NP-hard even for identical machines(via the standard reduction from the 3-
PARTITION problem) and therefore our results are the best possible. Our results are the first EPTAS’s
for these important load balancing problems on uniformly related machines.

The running time of an EPTAS (and of a PTAS) is expected to be polynomial in the number of
jobs as well as in the number of machines. For a fixed (constant) number of machines, load balancing
problems typically have a fully polynomial time approximation schemes (FPTAS’s, which are EPTAS’s
wheref is polynomial) [25, 6, 14, 16].

We next review the previous PTAS and EPTAS results for an arbitrary (non-constant) number of
uniformly related machines and the special case of identical machines (where all machines have unit
speed). It was shown by Hochbaum and Shmoys that the makespanminimization problem has a PTAS
for identical machines [23] and for uniformly related machines [24]. It was noted in [21] that the
PTAS of [23] for identical machines can be converted into an EPTAS by using integer program in fixed
dimension instead of dynamic programming. Recently, Jansen [26] was able to solve the long-standing
open problem of establishing an EPTAS for the makespan minimization problem on uniformly related
machines. The Santa Claus problem is also known to have a PTASand an EPTAS for identical machines
[30, 2]. For uniformly related machines a PTAS is known [5, 15].

The problems studied here are known to have an EPTAS on identical machines [1, 2], and a PTAS
on uniformly related machines [15]. The existence of an EPTAS for these problems on uniformly related
machines was stated as an open problem by [15]. This open problem is resolved in our work.
Outline. Our EPTAS’s have the following structure. First, we sort themachines in a non-decreasing
order of their weight in an optimal solution (according to either non-increasing or non-decreasing speed).
We note that some machines may get a zero weight; we guess their number and remove those machines
from the instance. We round the processing times of the jobs and the speeds of the machines, so that

2

the number of possible values is reduced sufficiently, and sothat all job sizes are integer multiples of a
small value.

Next, we observe that we can extend the EPTAS for identical machines to the case where we are
guaranteed that in an optimal solution the ratio between themaximum work of any machine and the
minimum work of any machine is bounded. We show that in this case the speed ratio is bounded as well.
We extend this EPTAS further to allow some total size of jobs to remain unscheduled. This will be our
building block in the design of the EPTAS for the general case.

To reduce the general case into a series of sub-problems of the former type, we create gaps between
the set of allowed weights of machines. For that, we apply theso-called shifting technique [22] in an
original way. Afterwards, we apply dynamic programming to determine the series of sub-problems, that
is, the intervals of machines whose weights come from each interval of allowed weights. The EPTAS
for the special case is used as a black box in this dynamic programming, where unscheduled jobs of one
sub-problem are scheduled later by another sub-problem. Omitted proofs can be found in the Appendix.

2 Preliminaries

In this paper we consider the sum of thep-th powers of a vector rather than the(1p)-th power of this
value. Note that sincep is a fixed constant, our results apply also for this last alternative measure (which
is theℓp norm for the casep > 1). Throughout the paper, for a solutionA we denote byA both the
solution and the value of the objective function for this solution.

When we consider the maximization problem, we sometimes allow the algorithm to avoid assigning
some of the jobs. It is clear that adding these jobs arbitrarily to the schedule can only improve the
solution. Hence, if we can bound the total value of the solution which assigns a subset of the jobs, after
adding the unscheduled jobs (to create a complete solution), we get (at least) the same performance
guarantee.

Let ε be a small constant such that0 < ε < 1
2 and 1

ε is an integer. Epstein and Sgall [15] observed
the following claim.

Claim 1 Let i1 and i2 be a pair of machines such thatsi1 < si2 , that is,i2 is faster thani1. Consider
the minimization problem whenp > 1, then any optimal solution satisfiesWi1 ≤ Wi2 . Consider the
maximization problem whenp < 1, then any optimal solution satisfiesWi1 ≥ Wi2.

Motivated by the above claim we will sort the machines according to their weights. That is, when
we consider the minimization problem we will assume thats1 ≤ s2 ≤ · · · ≤ sm, whereas when we
consider the maximization problem we will assume thats1 ≥ s2 ≥ · · · ≥ sm. In this way, machines of
lower indices should get smaller weight than machines with higher indices (or equal weight). We next
consider a pair of machinesi1 andi2 such thatsi1 is significantly smaller thansi2. We know that in the
minimization problemWi1 ≤ Wi2 and in the maximization problemWi1 ≥ Wi2. Our next goal is to
strengthen these bounds. Letδ be such that0 < δ ≤ ε.

Lemma 2 Consider the minimization problem (p > 1), and a pair of machinesi < i′. There exists a
functionα(δ) = δ

2 such that ifsi ≤ α(δ) · si′ then in any optimal solutionWi ≤ δWi′ .

Lemma 3 Consider the maximization problem (p < 1), and a pair of machinesi < i′. There exists a
functionα(δ) = ((1 + δ)p − 1)1/p such that ifsi′ ≤ α(δ) · si then in any optimal solutionWi ≤ δWi′ .

Note thatα(δ) ≤ δ ≤ ε. This is clear for the minimization problem, and for the maximization
problem it holds because(1 + δ)p ≤ 1p + δp = δp + 1 where the inequality holds by the concavity of
xp for p < 1, and the claim holds by the monotonicity ofx1/p. We summarize the last two lemmas by
the following straightforward corollary, which we will use.

3

Corollary 4 Consider a pair of machinesi andi′ such thati < i′. If Wi >
1

γ(ε)Wi′ for some functionγ

(such thatγ(ε) ≥ 1
ε), then there is a functionβ such that the ratio between the speedsmax{si, si′} and

min{si, si′} is bounded byβ(ε).

First rounding step. In what follows we assume without loss of generality that thespeeds are integer
powers of1+ε. This assumption is justified by the observation that increasing the speed of each machine
to the next value of the form(1 + ε)j (for integerj) may decrease the completion time of this machine
by a multiplicative factor of at most1 + ε. Thus approximating the optimization problem with respect
to the new speeds within a factor of1 + ε gives a(1 + ε)1+p approximation to the original instance of
the problem. Thus by scalingε accordingly, the assumption is justified. Moreover, we assume also that
the sizes of all jobs are integer powers of1 + ε. This assumption is justified by the observation that
increasing the size of each job to the next value of the form(1 + ε)j (for an integerj) may increase the
completion time of each machine by a multiplicative factor of at most1 + ε and may not decrease it.
Thus the following properties can be assumed.

Assumption 5 The speed of each machine as well as the size of each job is an integer power of1 + ε.

Second rounding step. Let pmax = maxj=1,2,...,n pj. We will let OPT denote a fixed optimal solu-
tion for the resulting instance after the second and final rounding step which we now define. For the
minimization problem, we apply the following rounding (down) of the (rounded) processing times. If
pj ≤

εpmax

n then we roundpj down to be zero and we remove all such jobs from the instance. Otherwise,

we roundpj down to the next integer multiple ofµ = ε2pmax

n . Given a solution for the input after this
second rounding step, we create a solution for the original instance, by assigning all the removed jobs to
the machine in which a job of sizepmax is assigned (breaking ties arbitrarily).

Lemma 6 The cost of every solution to the instance of the minimization problem after the second round-
ing step is no larger than its cost before this rounding step.Moreover, given a solution to the final in-
stance, the cost of the resulting solution for the input after the first rounding step is at most(1 + ε)2p

times its cost for the new instance.

Proof. Since we only round down processing times of jobs, the cost ofthe new solution cannot increase.
Therefore, the first claim holds. As for the second claim we first consider the effect of returning the
removed jobs to the solution. The work of the machine which receives these jobs increases by at most
εpmax and since it was previously at leastpmax, it increases by a multiplicative factor of at most1 + ε.

Next, consider the effect of reverting the processing time of the jobs whose processing times were
larger thanεpmax

n to their values in the instance after the first rounding step.Note that such a processing

time of a job is increased by an additive factor of at mostε2pmax

n and hence by a multiplicative factor of
at most1 + ε. Therefore, the work of each machine is increased by a multiplicative factor of at most
1 + ε, and the claim follows.

For the maximization problem, the second rounding step is defined as follows. In this case we let

µ = ε
1
p ·pmax

n·m
1
p

, and we round the processing time of every job down to an integer multiple ofµ.

Lemma 7 The value of every solution to the new instance of the maximization problem after the second
rounding step is not larger than its value before this rounding step and thus reverting jobs to their sizes
after the first rounding step can only improve the performance. Moreover, consider an optimal solution
SOL to the instance after the first rounding step. Denote bySOLnew, SOLold its objective function values
in the new instance after the second rounding step, and before the second rounding step, respectively.
Then,OPT ≥ SOLnew ≥ (1− ε)SOLold.

4

Note that after the second rounding step the size of any job isan integer multiple ofµ.

Lemma 8 Given an interval[L,U], the number of distinct sizes of jobs is at mostlog1+ε
U
L + 2.

Proof. At the end of the first rounding step the number of distinct sizes of jobs in this interval is at most
log1+ε

U
L +1, and this number may increase by at most1 due to the second rounding step (in case where

we round down a value which is slightly larger thanU).

3 Approximating the problem with a bounded weight ratio

In this section we consider the following variant of our (maximization or minimization) problem which
is called BOUNDED RATIO (BR). The input to this problem consists of the following parts:
1. A set ofℓ ≥ 1 consecutive machines with speedssi, si+1, . . . , si+ℓ−1, for which we define

smin = min{si, si+1, . . . , si+ℓ−1} and smax = max{si, si+1, . . . , si+ℓ−1} ,

and assumesmax

smin
≤ β(ε). Recall that for the minimization problem we assume that thespeeds are non-

decreasing and thussmin = si andsmax = si+ℓ−1, and for the maximization problem we assume that
the speeds are non-increasing and thussmin = si+ℓ−1 andsmax = si.
2. A pair of valuesµ ≤ Wi ≤ Wi+ℓ−1 bounding the weights of machinei and machinei + ℓ − 1,
respectively, such thatWi+ℓ−1

Wi
≤ γ(ε). Wi,Wi+ℓ−1 are (not necessarily positive) integer powers of

1 + ε.
3. A valueA which is an integer multiple ofµ. For the minimization problemA is an upper bound on
the total size of jobs that the algorithm does not necessarily need to assign to any of these machines,
whereas for the maximization problem the value ofA is a lower bound of the total size of jobs that the
algorithm should not assign to any of these machines.
4. A setL of large jobs1, 2, . . . , n each of size at leastεWi.
5. A valueB of the total size of existingsmall jobs. The small jobs can be assigned fractionally. The
valueB is an integer multiple ofµ.

The goal is to schedule the large jobs and the small jobs on theℓ machines such that the weight of
each machine is at leastWi and at mostWi+ℓ−1. We allow an arbitrary subset of the jobs (out of the
large jobs and small jobs) to remain unscheduled as long as inthe minimization problem its total size is
at mostA, and in the maximization problem the total size of the unscheduled jobs must be at leastA.
We assume that such an assignment of the jobs is feasible or else the algorithm returnsFALSE. The goal
is to minimize or maximize the value

∑i+ℓ−1
j=i Cp

j of the schedule, and the input to BR consists ofi, ℓ,
Wi, Wi+ℓ−1, A, L andB. We will allow the algorithm (not the optimal solution) to use machines with
weights in the interval[Wi

1+3ε ,Wi+ℓ−1 · (1 + 3ε)].

Remark 9 By Corollary 4, the requirement thatsmax

smin
≤ β(ε) follows fromWi+ℓ−1

Wi
≤ γ(ε).

Next, the number of different sizes of large jobs is at mostlog1+ε
Wi+ℓ−1

εWi
+2 ≤ log1+ε

γ(ε)
ε +2 and

thus this number is a function ofε. LetH be the set of different sizes of large jobs, and for eachh ∈ H
we letnh be the number of jobs of sizeh. We define a class of machines to be machines with the same
(rounded) speed. Since the speeds are integer powers of1 + ε and the ratio between speeds satisfies
smax

smin
≤ β(ε) we conclude that the number of non-empty machine classes, denoted asτ(ε), is at most

log1+ε β(ε) + 1 that is a function ofε. We denote the non-empty machine classes in our problem by
M1, . . . ,Mτ(ε). For each machine classMk, whose machines have a common speed ofσk, we denote
by ν(σk) = |Mk| the number of machines inMk.

We define aconfigurationK of a machineas a vector with the following components. The first
|H| components ofK define the number of large jobs of each size which we schedule on a machine

5

with configurationK. For eachh ∈ H, n(h,K) denotes the number of jobs of sizeh which are
scheduled on a machine with this configuration. Eachn(h,K) is a non-negative integer which is at most
Wi+ℓ−1

εWi
≤ γ(ε)

ε , that is a function ofε. The next component ofK is an integer power of1+ε in the range

[Wi,Wi+ℓ−1] denoted asw(K). For the minimization problem, let̃w(K) = ⌊w(K)
µ ⌋ · µ. w̃(K) is the

maximum total size of jobs in configurationK. For the maximization problem, let̃w(K) = ⌈w(K)
µ ⌉ · µ.

w̃(K) is the minimum total size of jobs in configurationK. The number of options for this component
is at mostlog1+ε

Wi+ℓ−1

Wi
+ 1 ≤ log1+ε γ(ε) + 1, that is a function ofε. The last component is the

machine speed, and we denote this component bys(K). There areτ(ε) options for this last component.
We conclude that the number of different configurations is a function ofε and we can enumerate all of
them in a constant time. We denote byK the set of all configurations. A configuration of a machine
defines the number of large jobs of each size which are scheduled on such a machine, as well as the total
size of small jobs which are scheduled fractionally on such amachine (which is the difference between
w̃(K) and the total size of the large jobs). Since the size of a job isan integer multiple ofµ, we require
that the total size of small jobs which are scheduled on such amachine is an integer multiple ofµ as
well.

We define an integer program of fixed dimension to solve BR. Thedecision variables are for each
configurationK ∈ K, a variablexK counting the number of machines which are scheduled according
to configurationK. We letyh be the number of large jobs of sizeh ∈ H which remain unscheduled in
our solution.

The following integer program is used for solving our minimization problem.

min
∑

K∈K

(

w(K)
s(K)

)p
· xK

s.t.
∑

K∈K:s(K)=σk
xK = ν(σk) ∀k = 1, 2, . . . τ(ε)(1)

∑

K∈K n(h,K) · xK + yh = nh ∀h ∈ H (2)
∑

h∈H h · yh −
∑

K∈K xK ·
(

w̃(K)−
∑

h∈H h · n(h,K)
)

≤ A−B (3)
∑

h∈H h · yh ≤ A (4)

xK , yh ≥ 0 ∀K ∈ K,∀h ∈ H. (5)

The family of constraints (1) enforce that we use onlyν(σk) machines with speedσk. The family of
constraints (2) enforce that exactlyyh jobs of sizeh are unscheduled by our solution. Constraints (3)
and (4) enforce the condition on the total size of jobs which are unscheduled. To see this last claim first
note that a machine which is scheduled with configurationK leaves a gap of sizẽw(K) −

∑

h∈H h ·
n(h,K) for a possible scheduling of small jobs (since all jobs have sizes which are integer multiple of
µ). There are two cases. In the first case the total size of the gaps (of all the machines) is sufficient
for scheduling all the small jobs that is

∑

K∈K xK ·
(

w̃(K)−
∑

h∈H h · n(h,K)
)

≥ B. In this case,
we assume without loss of generality that all the small jobs are scheduled. Thus in this case we only
need to make sure that constraint (4) holds. This last constraint holds because the total size of the
large jobs which are unscheduled is exactly

∑

h∈H h · yh, and thus such a feasible solution satisfies
both constraints (3) and (4). In the other case there are small jobs which are not scheduled by the
solution. Since we allow fractional scheduling of small jobs, their total size is exactlyB −

∑

K∈K xK ·
(

w̃(K)−
∑

h∈H h · n(h,K)
)

which is positive. Thus the total size of the large jobs whichmay be
unscheduled is at mostA −

(

B −
∑

K∈K xK ·
(

w̃(K)−
∑

h∈H h · n(h,K)
))

and thus constraint (3)
holds, and by the assumption of this case, we conclude that constraint (4) holds as well.

Let (x∗, y∗) be an optimal solution for the above integer program, and letX∗ =
∑

K∈K

(

w(K)
s(K)

)p
· x∗K

be its objective function value.

Claim 10 Denote byOPTbr the optimal solution for this bounded ratio minimization problem as well as
the value of its objective function. We haveX∗ ≤ (1 + ε)p · OPTbr.

6

The following integer program is used for solving our maximization problem.

max
∑

K∈K

(

w(K)
s(K)

)p
· xK

s.t.
∑

K∈K:s(K)=σk
xK = ν(σk) ∀k = 1, 2, . . . τ(ε)(6)

∑

K∈K n(h,K) · xK + yh = nh ∀h ∈ H (7)
∑

h∈H h · yh −
∑

K∈K xK ·
(

w̃(K)−
∑

h∈H h · n(h,K)
)

≥ A−B (8)
∑

K∈K xK ·
(

w̃(K)−
∑

h∈H h · n(h,K)
)

≤ B (9)

xK , yh ≥ 0 ∀K ∈ K,∀h ∈ H.(10)

The family of constraints (6) enforce that we use onlyν(σk) machines with speedσk. The family
of constraints (7) enforce that exactlyyh jobs of sizeh are unscheduled by our solution. Constraints
(8) and (9) enforce the condition on the total size of jobs which are unscheduled. To see this last
claim first we observe that a machine which is scheduled with configurationK leaves a gap of size
w̃(K)−

∑

h∈H h ·n(h,K) which must be covered by small jobs. Therefore, the total size of small jobs
should be sufficient to fill all these gaps. This enforces constraint (9). The remaining small jobs together
with the unscheduled large jobs need to be of total size of at leastA. Thus constraint (8) holds as well.

Let (x∗, y∗) be an optimal solution for the above integer program, and letX∗ =
∑

K∈K

(

w(K)
s(K)

)p
· x∗K

be its objective function value.

Claim 11 Denote byOPTbr the optimal solution for this bounded ratio optimization problem as well as
the value of its objective function. For the maximization problemX∗ ≥ OPTbr

(1+ε)p .

For each of our problems, we first solve the corresponding integer program. We show that given the
solution (x∗, y∗) to the integer program, we can construct a feasible solutionfor BR whose objective
function value is at least as good asX∗. Then large jobs are assigned to the machines according to the
configurations of the machines. Small jobs are assigned using (fractional) next-fit to the remaining gaps.
In fractional next-fit we assign the jobs one by one until the current gap does not have a sufficient room
for the next job, in which case we assign a fraction of the job to the current gap, so as to fill exactly the
gap, and the remaining of the current job is assigned to the next gap (of the next machine). The work
of a configurationK is assumed to bẽw(K). This procedure fills exactly all the gaps until one of the
following two cases occurs. Either, there are no additionalmachines and there are still small jobs to be
assigned, or there are no additional small jobs, but remaining gaps. By constraint (9) in the maximization
problem only the second case may occur. In the minimization problem the first case does not cause any
problem as it gives a feasible solution to problem BR since the remaining small jobs are counted towards
A in Constraint (3). In the second case for maximization problem, the unscheduled small jobs (or parts
of these) are counted towards the total size of unscheduled jobs as well. This assignment algorithm
is clearly a polynomial time algorithm. By the above claims it suffices to show that we can solve the
integer programs in polynomial time.

Claim 12 The integer programs can be solved in strongly polynomial time.

Proposition 13 Problem BR has an EPTAS.

We next consider a variation of problem BR in which the small jobs which are scheduled on one
of theℓ machines need to be scheduled integrally. We call the resulting problem INTEGER BOUNDED

RATIO (IBR). In order to obtain the EPTAS for IBR, we note that in ouralgorithm for BR, each machine
receives at most two small jobs fractionally. For the maximization problem of IBR we simply remove
the fractional parts. This decreases the completion time ofeach machine by at most2εWi, and thus the
completion time of each machine is decreased by a multiplicative factor of at most1− 2ε. This gives an

7

EPTAS for the maximization problem of IBR. For the minimization problem we assign (integrally) each
small job to the first machine which gets a fraction of the job in the solution to BR. This may increase
the completion time of a machine by at mostεWi. Therefore, the completion time of each machine
increases by a multiplicative factor of at most1+ε (it may decrease for some machines as well). Hence,
in this case the total cost of the resulting solution to IBR isat most(1+ε)p times the cost of the solution
to BR. Thus, this gives an EPTAS for the minimization problemof IBR as well, and the following result
is established.

Theorem 14 Problem IBR has an EPTAS.

4 Applying the shifting technique

In this section we use the shifting technique of Hochbaum andMaas [22]. We modify the total weight
of a machine if it lies withinillegal intervals. We will choose the set of illegal intervals (which imply a
set of valid intervals) such that the following properties hold: First, the value of the objective function
of an optimal solution using the modified weights will be close to its value according to the objective
function of the original instance. Second, the ratio of weights of two values which are not separated by
an illegal interval that is, belong to one valid interval will be bounded by a functionγ(ε). Finally, the
ratio between the two extreme points of an illegal interval is at least1ε . The set of illegal intervals is
finite, and each such interval is bounded.

Given such a set of illegal intervalsS = {(a0, b0), (a1, b1), . . . , (ar, br)} wherebℓ < aℓ+1 for all
0 ≤ ℓ ≤ r − 1 anda0 ≥ minj pj andbr ≤

∑n
j=1 pj. We consider a schedule and assume that when a

machinei gets an allocation of a total weightWi, it will contribute
(

g(Wi)
si

)p
to the objective function.

We next define the functiong.
For the maximization problem wherep < 1, we defineg(x) = x if x /∈ (aℓ, bℓ) for all ℓ, and

otherwiseg(x) = 0. For the minimization problem wherep > 1, we defineg(x) = x if x /∈ (aℓ, bℓ) for
all ℓ, and otherwise ifx ∈ (aℓ, bℓ) we letg(x) = 2bℓ. By using the value ofg instead of the total weight,
the objective function value of any feasible solution may become worse (larger for the minimization
problem and smaller for the maximization problem). We denote bypmin the minimum size of a job in
the instance.

Our algorithm will choose the best outcome among a constant number of iterations. In each such
iteration we will use a different set of illegal intervals. Let ρ = 1

ε2⌈p⌉+1 ≥ 1
ε3 (where equality holds for

p < 1), then forη = 0, 1, . . . , ρ − 1, in iterationη we will use the following set of illegal intervals:
(aℓ, bℓ) = (pmin ·

(

1
ε

)η+ℓρ
, pmin ·

(

1
ε

)η+ℓρ+1
), for the non-negative values ofℓ such thatbℓ ≤

∑n
j=1 pj.

The number of non-negative powers of1
ε for which we define an interval in all iterations is at most

log 1

ε

npmax

pmin
+ 1 ≤ log 1

ε

npmax

µ
+ 1 ≤ log 1

ε

n2 ·m1/p

ε1/p+1
+ 1 ,

and this is a polynomial inn,m and 1
ε . We denote bygη the functiong in the η-th iteration, and we

denote bySη the set of illegal intervals of iterationη.
We next show that there is a value ofη such that the objective function value of the optimal solution

to the problem with the modified weights is within a factor of1+ ε of the objective function value of an
optimal solution to the original instance.

Lemma 15 Denote byOPTη the objective function value of an optimal solution with respect to the
modified weightsgη. Then, for the maximization problem there is a value ofη such thatOPT ≥ OPTη ≥
OPT · (1− ε3) ≥ OPT

1+ε , and for the minimization problem there is a value ofη such thatOPT ≤ OPTη ≤
OPT(1 + ε).

8

We next show that given an instance where the value or cost of asolution is computed usinggη, we
can restrict ourselves to solutions which (almost) do not use weights fromSη. More precisely we show
the following claim.

Lemma 16 Consider the optimal solutionOPTη for the instance with the modified weightsgη. Without
loss of generality, there is at most one machinei whose weightWi belongs to one of the intervals ofSη.

Note that the number of machines of weight zero can be arbitrary.
Proof. Denote byMη the set of machines whose weight belong to an interval fromSη. Consider
the maximization problem. If the claim does not hold, then byassumption|Mη| ≥ 2. We modify
the solution so that all the jobs which were assigned to one ofthe machines inMη are assigned to the
maximum index machine ofMη. The machines ofMη did not contribute a positive value to the objective
function inOPTη (since the modified objective function is used), and hence this modification did not hurt
the optimality ofOPTη. The claim holds for the new solution.

Consider the minimization problem. We repeat the followingmodification of OPTη as long as
|Mη| ≥ 2. Let i ∈ Mη be a most loaded machine inOPTη among the machines ofMη . Let i′ 6= i
be another member ofMη. Then, the weight ofi′ in OPTη is at mostWi. We modifyOPTη by assigning
to machinei all jobs which were assigned previously to eitheri or i′. This modification will at most
double the weight ofi, and hence the solution remains optimal (eitheri remains inMη and in this case
it pays the same as in the original solution andi′ pays nothing, ori is removed fromMη and in this case
its work is at most double the infimum point of the following allowed interval so it now pays at most its
payment in the original solution, andi′ pays nothing). Repeating the process decreases the cardinality
of Mη (i′ is removed fromMη after its weight becomes zero).

Next, given such a value ofη, we can guess the parity of the indexℓ (of the interval(aℓ, bℓ) ∈ Sη

which contains a weight of a machine inOPTη if it exists). By the previous lemma there is at most one
such value ofℓ. Given such a guess, we allow the use of intervals of the same parity asℓ. That is, ifℓ is
an odd number, we remove fromSη the intervals of the form(a2i−1, b2i−1), and ifℓ is an even number,
we remove fromSη the intervals of the form(a2i, b2i). We denote the resulting set of illegal intervals
by Sη,φ whereφ ∈ {odd,even}. The number of possibilities for this guess (ofη andφ) is polynomial
in 1

ε . Hence, we can assume that the setSη,φ satisfies thatOPTη does not have a machine whose weight
belongs to an interval fromSη,φ. Moreover, the following observation holds.

Observation 17 The ratio between two weightsW < W ′ which are not separated by an interval from
Sη,φ is bounded by a functionγ(ε) = 1

ε2ρ−1 (i.e., W
′

W ≤ γ(ε)), and the ratio betweenW ′ andW if they
are separated by an interval fromSη,φ is at least1ε .

Using this set of intervalsSη,φ, we can evaluate all the solutions which satisfy the property that they do
not use weights from the setSη,φ, according to the weights and not the modified weights. This cannot
harm the quality of the solution with respect to the modified objective functions. We conclude that using
such solutions which do not use a weight fromSη,φ does not hurt the approximation algorithm too much.
That is, we establish the following lemma.

Lemma 18 There is a value ofη and φ, such thatOPTη does not use a weight which belong to an
interval ofSη,φ, and such that the objective function value ofOPTη (with respect to the original objective
function) in terms of the weights (i.e., as a solution to the original instance) is within a factor of1+ ε of
OPT.

5 Dynamic programming to approximate OPTη

Given fixed values ofη andφ, the set of illegal weightsSη,φ leaves a set of valid intervals whose pos-
sible weights denoted byΩ = {[ω0, ω1], [ω2, ω3], . . . , [ωr′−1, ωr′]} where the sequenceωi is monotone

9

increasing,ω0 ≥ pmin, andr′ ≤ r. Recall that some machines may get a zero weight in an optimal
solution, but we can guess their number and remove the set of these machines (of lowest indices) from
the instance. Hence, without loss of generality it suffices to consider solutions which assign at least one
job to each machine, and therefore the minimum weight of a machine is at leastω0.

By Observation 17, we conclude that for any value ofξ, ω2ξ

ω2ξ−1
= 1

ε and ω2ξ+1

ω2ξ
≤ γ(ε). We define a

linear order on the intervals ofΩ saying that an interval[ωξ, ωξ+1] is smaller than[ωξ′ , ωξ′+1] if ξ < ξ′,
and an interval[ωξ, ωξ+1] is at most an interval[ωξ′ , ωξ′+1] if ξ ≤ ξ′. We next describe an allocation
of jobs to intervals ofΩ. A job j of sizepj is associated with an interval[ωξ−1, ωξ] if pj ≤ ωξ and
pj > ωξ−2 where we use the conventionω−1 = 0. We define an assignment of intervals of (consecutive)
machines to intervals ofΩ in the following sense. An interval of machines[i, i′] with parametersA,B
is assigned to an interval[ωξ, ωξ+1] ∈ Ω if the following four conditions hold: 1) the weight of each
machinẽi ∈ [i, i′ − 1] is in the interval[ωξ, ωξ+1]; 2) no other machine has weight in this interval; 3) the
total size of jobs associated with smaller intervals and arescheduled by a machine of index at leasti is
B; and similarly 4) the total size of jobs associated with intervals at most[ωξ, ωξ+1] and are scheduled
by a machine of index at leasti′ isA. HereA andB are integer multiples ofµ. We say thatA andB are
the parameters of the interval of machines[i, i′].

Claim 19 The number of possibilities of a machine interval and a pair of parameters is polynomial in
the input size.

Note that given an interval of machines[i, i′] and valuesA,B we get an instance of the IBR problem
for which we presented an EPTAS (this IBR instance has an empty set of machines ifi = i′ and
otherwise at least one machine). Thus our scheme applies this EPTAS for each possibility of a machine
interval [i, i′] such thati ≤ i′ corresponding to weight interval[ωξ, ωξ+1] with valuesA,B. We denote
by IBReptas(i, i

′ − 1, ξ, A,B) the solution returned by the EPTAS for the IBR instance as well as its
objective function value. Ifi = i′ andA = B, thenIBReptas(i, i

′ − 1, ξ, A,B) = 0, and if i = i′ and
A 6= B thenIBReptas(i, i

′ − 1, ξ, A,B) returnsFALSE. If the returned output isFALSE, then the value
is∞ for the minimization problem and−∞ for the maximization problem.

To find the approximated solution for the minimization problem we find a shortest (minimum cost)
path in the following layered graphG, and to find the approximated solution for the maximization
problem we find a longest (maximum cost) path in this graphG (sinceG is a layered graph, it is acyclic
and hence both the shortest path problem and the longest pathproblem are solvable in linear time).
We have a layer for each value ofξ such that[ωξ, ωξ+1] ∈ Ω (that is, we will have a layer for every
even value ofξ). Each such layer corresponding toξ has a vertex for each machine (and one additional
dummy machine of indexm+ 1), and each possibility for the value ofA (i.e., for each integer multiple
of µ). Given a vertex(i, b) in layerξ and a vertex(i′, a) in layerξ + 2, there is an arc from the former
vertex to the later vertex ifi ≤ i′, and the cost associated with such an arc isIBReptas(i, i

′ − 1, ξ, a, b).
The construction ofG takes polynomial time, and it has a polynomial size.

We next find a shortest or longest path inG from the vertex(1, 0) of the layer with index0 to the
vertex(m + 1, 0) in the last layer. We schedule the jobs according to the path which we found. That
is, if the path uses the arc from(i, b) of layerξ to (i′, a) of layerξ + 2 wherei ≤ i′, then we schedule
large and small jobs as defined by the solutionIBReptas(i, i

′ − 1, ξ, a, b). The total size of jobs which
are associated with the interval[ωξ, ωξ+1] or smaller intervals, and are not scheduled to machines of
index at mosti′−1 is indeed at mosta for the minimization problem and at leasta for the maximization
problem. The EPTAS for IBR may use at most one small job which exceeds the total ofB. This job is
scheduled in the case of minimization to the machinei′ − 1 and discarded in the case of maximization.
In addition, since we use only some values forw(K), in the case of minimization we have too large
room for small jobs, and in the case of maximization too smallroom for small jobs. Thus, for the
minimization problem, it can be the case that too many jobs are scheduled and as a result no small
available jobs remain. In this case, the algorithm moves to deal with the next arc of the path (or stops

10

if this is the last arc). Similarly, for the maximization problem, since discarded jobs remain available,
there are always sufficiently many small jobs to cover all theconfigurations (and some small jobs may
remain unassign upon the termination (at the end of the path). Note that every job is scheduled by one
of the solutions corresponding to this path, and hence we obtained a feasible solution whose objective
function value is the total cost of the arcs in the path.

We next note thatOPTη also corresponds to a path inG in the following sense. IfOPTη uses machines
i, i + 1, . . . , i′ − 1 with weight in the interval[ωξ, ωξ+1], the total size of the jobs allocated to smaller
intervals and are not scheduled byOPTη to machines with index at mosti − 1 is b, and the total size
of the jobs allocated to intervals at most this interval and are not scheduled byOPTη to machines with
index at mosti′ − 1 is a, then we say that the arc from(i, b) of layerξ to (i′, a) of layerξ + 2 belongs
to the path associated withOPTη. SinceOPTη is a feasible solution, this set of arcs can be augmented to
form a path by adding zero cost arcs (from(i, b) of layerξ to (i, b) of layerξ + 2). Moreover, the cost
of OPTη can be also partitioned into its arcs, by assigning the cost (according toOPTη) of the machines
i, i + 1, . . . , i′ − 1 to the arc from(i, b) of layer ξ to (i′, a) of layer ξ + 2. By the correctness of the
EPTAS to IBR we conclude that the cost assigned to such an arc is within a multiplicative factor of1+ε
of the cost of the arc. Hence, the cost of this path inG is within a factor of1+ε of the objective function
value ofOPTη. Since we use the optimal path, we are not worse than this pathof OPTη, and thus we
established the following result.

Theorem 20 Both the problem of minimizing
∑m

i=1 C
p
i and the problem of maximizing

∑m
i=1 C

p
i for

real finite values ofp have efficient polynomial time approximation schemes.

References

[1] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling. In
SODA’97, 493–500.

[2] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling on parallel
machines.Journal of Scheduling, 1(1):55–66, 1998.

[3] A. Avidor, Y. Azar, and J. Sgall. Ancient and new algorithms for load balancing in theLp norm.
Algorithmica, 29(3):422–441, 2001.

[4] B. Awerbuch, Y. Azar, E. F. Grove, M.-Y. Kao, P. Krishnan,and J. S. Vitter. Load balancing in the
lp norm. InFOCS’95, 383–391.

[5] Y. Azar and L. Epstein. Approximation schemes for covering and scheduling on related machines.
In APPROX’98, 39–47.

[6] Y. Azar, L. Epstein, Y. Richter, and G. J. Woeginger. All-norm approximation algorithms.Journal
of Algorithms, 52(2):120–133, 2004.

[7] N. Bansal and K. R. Pruhs. Server scheduling to balance priorities, fairness, and average quality
of service.SIAM Journal on Computing, 39(7):3311–3335, 2010.

[8] N. Bansal and M. Sviridenko. The Santa Claus problem. InSTOC’06, 31–40.

[9] I. Caragiannis. Better bounds for online load balancingon unrelated machines. InSODA’08,
972–981.

[10] M. Cesati and L. Trevisan. On the efficiency of polynomial time approximation schemes.Infor-
mation Processing Letters, 64(4):165–171, 1997.

11

[11] A. K. Chandra and C. K. Wong. Worst-case analysis of a placement algorithm related to storage
allocation.SIAM Journal on Computing, 4(3):249–263, 1975.

[12] R. A. Cody and E. G. Coffman Jr. Record allocation for minimizing expected retrieval costs on
drum-like storage devices.Journal of the ACM, 23(1):103–115, 1976.

[13] R. G. Downey and M. R. Fellows.Parameterized Complexity. Springer-Verlag, Berlin, 1999.

[14] P. Efraimidis and P. G. Spirakis. Approximation schemes for scheduling and covering on unrelated
machines.Theoretical Computer Science, 359(1-3):400–417, 2006.

[15] L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related and identical
parallel machines.Algorithmica, 39(1):43–57, 2004.

[16] L. Epstein and R. van Stee. Maximizing the minimum load for selfish agents.Theoretical Computer
Science, 411(1):44–57, 2010.

[17] J. Flum and M. Grohe.Parameterized Complexity Theory. Springer-Verlag, Berlin, 2006.

[18] D. K. Friesen and B. L. Deuermeyer. Analysis of greedy solutions for a replacement part sequenc-
ing problem.Mathematics of Operations Research, 6(1):74–87, 1981.

[19] T. Gonzalez, O. H. Ibarra, and S. Sahni. Bounds for LPT schedules on uniform processors.SIAM
Journal on Computing, 6(1):155–166, 1977.

[20] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell Sys. Tec. J., 45(9):1563–1581,
1966.

[21] D. S. Hochbaum. Various notions of approximations: Good, better, best and more. In D. S.
Hochbaum, editor,Approximation algorithms. PWS Publishing Company, 1997.

[22] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems in
image processing and VLSI.Journal of the ACM, 32(1):130–136, 1985.

[23] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling problems:
theoretical and practical results.Journal of the ACM, 34(1):144–162, 1987.

[24] D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for scheduling on
uniform processors: Using the dual approximation approach. SIAM J. on Computing, 17(3):539–
551, 1988.

[25] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling nonidentical proces-
sors.Journal of the ACM, 23(2):317–327, 1976.

[26] K. Jansen. An EPTAS for scheduling jobs on uniform processors: Using an MILP relaxation with
a constant number of integral variables.SIAM Journal on Discrete Mathematics, 24(2):457–485,
2010.

[27] H. W. Lenstra Jr. Integer programming with a fixed numberof variables.Mathematics of Opera-
tions Research, 8(4):538–548, 1983.

[28] J. Y. T. Leung and W. D. Wei. Tighter bounds on a heuristicfor a partition problem.Information
Processing Letters, 56(1):51–57, 1995.

[29] D. Marx. Parameterized complexity and approximation algorithms. The Comp. J., 51(1):60–78,
2008.

12

[30] G. J. Woeginger. A polynomial time approximation scheme for maximizing the minimum machine
completion time.Operations Research Letters, 20(4):149–154, 1997.

A Omitted proofs

A.1 Proof of Lemma 2

Assume by contradiction thatWi > δWi′ . The solution pays at least
(

Wi
si

)p
for this pair of machines.

We move all the jobs which were scheduled on machinei to machinei′. It suffices to show that the
completion time of machinei′ in this new solution is smaller thanWi

si
. This last claim holds because the

completion time ofi′ in the new solution isWi+Wi′

si′
< 2Wi

δsi′
≤ 2Wi

δsi
·α(δ) = Wi

si
where the first inequality

holds becauseWi′ ≤
Wi
δ andδ < 1, the second inequality holds becausesi ≤ α(δ) ·si′ , and the equality

holds by the definition ofα(δ).

A.2 Proof of Lemma 3

Assume by contradiction that the claim does not hold, that is, there exist such machinesi andi′ with
Wi > δWi′ . We compare the current solution with a new solution that schedules all the jobs (which
were previously scheduled on eitheri or i′) to machinei′. It suffices to show that this new solution

is better, that is, that the following inequality holds:
(

Wi+Wi′

si′

)p
>

(

Wi
si

)p
+

(

Wi′

si′

)p
. We first note

that
(

Wi
si

)p
≤

(

Wi′

si′

)p
· ((1 + δ)p − 1). This claim holds becauseWi ≤ Wi′ and si′ ≤ α(δ) · si,

and therefore
(

Wi
si

)p
≤

(

Wi′

si′

)p
· (α(δ))p, and the claim holds by the definition ofα(δ). Therefore,

to get a contradiction it suffices to show that
(

Wi+Wi′

si′

)p
>

(

Wi′

si′

)p
· (1 + δ)p, which is equivalent

to (Wi + Wi′)
p > (Wi′ · (1 + δ))p which holds usingWi > δWi′ , sincexp is a strictly monotone

increasing function ofx (for 0 ≤ x < ∞ and anyp > 0).

A.3 Proof of Lemma 7

The first claim holds because we round down the size of each job. We prove the second claim. Consider
a machinei whose work inSOL is denoted byWi. If Wi ≤ nµ then its new work is at least0. Otherwise,
its new work is at leastWi − nµ. Consider the case whereWi > nµ. Then, the contribution of machine

i to SOLnew is at least
(

Wi−nµ
si

)p
≥

(

Wi
si

)p
−

(

nµ
si

)p
=

(

Wi
si

)p
− εppmax

m·spi
≥

(

Wi
si

)p
− εppmax

m·spm
where the

first inequality holds by concavity ofxp for p < 1, and the last one holds usingsi ≥ sm.
Consider the case whereWi ≤ nµ. Then, the contribution of machinei to SOLnew is at least

0 ≥
(

Wi
si

)p
−

(

nµ
si

)p
≥

(

Wi
si

)p
− εppmax

m·spm
, where the second inequality holds similarly to the previous

case. Thus, the decrease of the contribution of each machinetowards the objective function value of

SOL, is at mostεp
p
max

m·spm
≤ εSOLold

m , where the inequality holds becauseSOLold ≥
(

pmax

sm

)p
which is the

value of a solution that places the largest job on the slowestmachine, and ignores all the other jobs.

A.4 Proof of Claim 10

First, note thatOPTbr induces a feasible solution for the integer program. To get this induced solution
we apply the following rounding for each machine in the optimal solution: for each machine we define
a configurationK by first counting the number of large jobs of each size, and it remains to definew(K).
w(K) is a rounded up value of the total weight of the jobs assigned to the machine to the closest integer
power of1 + ε. We next argue that the total work of this machine inOPTbr is at mostw̃(K). This is

13

so because otherwise, a machine with total work ofθ in OPTbr has a configurationK with w(K) ≥ θ
which is an integer power of1 + ε, andw̃(K) = θ′ such thatθ′ < θ. However, sinceθ is an integer
multiple ofµ we haveθ = µ · ⌊ θ

µ⌋ ≤ µ · ⌊w(K)
µ ⌋ = θ′, that is a contradiction. The total size of the gaps

for scheduling the small jobs does not decrease, and thus thetotal size of the unscheduled jobs is at most
A. This results in a feasible solution to the integer program.The value of the objective function of this
rounded solution is at most(1 + ε)p · OPTbr, and at leastX∗, and thus the claim holds.

A.5 Proof of Claim 11

First, note thatOPTbr induces a feasible solution for the integer program. To get this induced solution
we apply the following rounding for each machine in the optimal solution: for each machine we define
a configurationK by first counting the number of large jobs of each size, and it remains to definew(K).
w(K) is a rounded down value of the total weight of the jobs assigned to the machine to the closest
integer power of1+ ε. We next argue that the total work of this machine inOPTbr is at leastw̃(K). This
is so because otherwise, a machine with total work ofθ in OPTbr has a configurationK with w(K) ≤ θ
which is an integer power of1 + ε, andw̃(K) = θ′ such thatθ′ > θ. However, sinceθ is an integer
multiple ofµ we haveθ = µ · ⌈ θ

µ⌉ ≥ µ · ⌈w(K)
µ ⌉ = θ′, that is a contradiction. The total size of the gaps

for scheduling the small jobs does not increase, and thus there is sufficient total size of small jobs to fill
in all the gaps, and the total size of the unscheduled jobs is at leastA. This results a feasible solution to
the integer program. The value of the objective function of this rounded solution is at leastOPTbr

(1+ε)p , and
at mostX∗, and thus the claim holds.

A.6 Proof of Claim 12

First, the construction of the integer programs takes polynomial time since the set of all configurations
can be enumerated in polynomial time (using the fact thatK has at most a constant number of configura-
tions which is upper bounded by a function ofε). Next, we observe that the dimension of each of these
programs (the number of variables) is|K|+ |H|, and as explained above, both|K| and|H| are bounded
by a function of1ε . Thus the integer program has a fixed dimension, and we can usethe polynomial time
algorithms for solving such a problem. The number of constraints (beside the non-negativity constraints)
is τ(ε) + |H|+ 2 which is again bounded by a function of1

ε . Therefore, using Lenstra’s algorithm [27]
or one of its improvements, give a polynomial time algorithmfor solving (exactly) the integer programs
(recall that the time complexity of solving an integer program of dimensiond is f(d) ·poly wheref is an
exponential function of the dimension, andpoly is a polynomial in the binary encoding of the program).
To obtain a strongly polynomial time we use the following observations. First, the coefficients in the
objective function are integer powers of1 + ε and can be scaled to be at most a function ofε (since the
ratios smax

smin
and Wi+ℓ−1

Wi
are bounded). Next, we scale constraints (3), (4), (8), and (9) by dividing the

constraints by the factorµ. In the resulting constraint matrices and right hand sides,all the coefficients
are strongly polynomial (i.e., do not depend on the magnitude of the numbers in the instance).

A.7 Proof of Lemma 15

Fix an optimal solutionOPT to the original instance, and associate the value of each machine to a
corresponding value ofη as follows. Assume that a machinei has weightWi, and assume thatWi ∈

(pmin ·
(

1
ε

)η0+ℓρ
, pmin ·

(

1
ε

)η0+ℓρ+1
), then we associate

(

Wi
si

)p
with this valueη0 of η. Note that for a

machinei there is at most one such corresponding value ofη. If there is no such corresponding value of

η then we associate
(

Wi
si

)p
with an arbitrary value ofη. By the pigeonhole principle, there is a valueη0

of η which is associated with at mostOPT
ρ .

14

Consider first the maximization problem. Using the valueη0 of η, OPT is a feasible solution to the
problem with the modified value functiongη0 whose objective function value is at leastOPT · (1− 1

ρ) =

OPT(1− ε3), and thus the claim holds.
Next, consider the minimization problem. Using the valueη0 of η, OPT is a feasible solution to

the problem with the modified costgη0 whose objective function value is at mostOPT+ OPT
ρ ·

(

2
ε

)p
≤

OPT+ OPT
ρ · 1

ε2p
≤ OPT(1+ε), where the first inequality holds because the modified weightof a machine

whose corresponding value ofη is η0 is at most2ε times its weight. Thus, the claim holds.

A.8 Proof of Claim 19

The number of pairs of machinesi andi′ is at mostm2, and the number of possibilities for the valueA
(and similarly forB) is at mostn·pmax

µ ≤ n2·m1/p

ε1/p+1 . Thus, the claim holds.

15

	1 Introduction
	2 Preliminaries
	3 Approximating the problem with a bounded weight ratio
	4 Applying the shifting technique
	5 Dynamic programming to approximate opt
	A Omitted proofs
	A.1 Proof of Lemma ??
	A.2 Proof of Lemma ??
	A.3 Proof of Lemma ??
	A.4 Proof of Claim ??
	A.5 Proof of Claim ??
	A.6 Proof of Claim ??
	A.7 Proof of Lemma ??
	A.8 Proof of Claim ??

