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An efficient polynomial time approximation scheme for load
balancing on uniformly related machines

Leah Epstein Asaf Levinf

Abstract

We consider basic problems of non-preemptive schedulingniiormly related machines. For
a given schedule, defined by a partition of the jobs inteubsets corresponding to themachines,
C; denotes the completion time of machiheOur goal is to find a schedule which minimizes or

m
maximizes) . C? for a fixed value op such thad < p < oo. Forp > 1 the minimization problem

is equivalezntlto the well-known problem of minimizing thenorm of the vector of the completion
times of the machines, and for< p < 1 the maximization problem is of interest. Our main result
is an efficient polynomial time approximation scheme (EPYAS each one of these problems.
Our schemes use a non-standard application of the so-diléithg technique. We focus on the
work (total size of jobs) assigned to each machine and intedhtervals of forbidden work. These
intervals are defined so that the resulting effect on the fywation is sufficiently small. This allows
the patrtition of the problem into sub-problems (with subs#tmachines and jobs) whose solutions
are combined into the final solution using dynamic prograngnOur results are the first EPTAS’s
for this natural class of load balancing problems.

1 Introduction

We consider non-preemptive scheduling problemssomiformly related machines. In such problems,

we are given a set of jobfl, 2,...,n}, where each jolj has a positive sizp;. The jobs need to be

partitioned intom subsetsSy, ..., S, with S; being the subset of jobs assigned to macliiné/e let

s; denote the speed of machineand the processing of a jqbtakes’;—j time units if j is assigned to
>

machinei. For such a solution (also known as a schedule), w€jet %p] be thecompletion
time of machinei. The work (also called the weight) of machineis W; = ZjeSi pj = Cj - s,
that is, the total size of the jobs which are assigned tdhe makespan of the schedulenisx; C;,
and the optimization problem of finding a schedule which mines the makespan is well-studied (see
e.g.[20[ 19, 23, 24, 26]). The problem of finding a schedulewmaximizesnin; C; is the well-known
Santa Claus problem on uniformly related machines (sed28g30, 2/ 5 15, 8]). Both these problems
are concerned with the optimization of the extremum vald¢keoset{C1,...,C,, }.

Motivated by minimizing average latency in storage allaragpplications (rather than worst-case
latency), researchers have suggested to study the optiomizgoal of minimizing thes norm (and the
goal of minimizing the/, norm forp > 1) of the vector of completion times of the machines (see
e.g. [12]11] 28,14,13]). It was stated more recently by BaasdlPruhs([7] that: The standard way to
compromise between optimizing for the average and optignifar the worst case is to optimize the
norm, generally for something like= 2 or p = 3.” An additional perspective of using thg norm as
an objective function has arisen recently in algorithmimgaheory[[9]. Note that the minimization of
the/,, norm is equivalent to minimizing the sum of theh powers of the completion times of machines.
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Thus, we consider objective functions in which the entireteeC = (C1, ... C,,) affects the value of
the objective function. Our class of objective functionslildes the minimization of the sum of theth
powers of the completion times of machines which is equitaie the minimization of thé, norm of

C. More precisely, given a fixed real (finite) numbesuch thad < p < oo, we consider the problem of
minimizing >";", C? and the problem of maximizing_;" ; C”. The minimization problem fop < 1

is trivially solved by placing all the jobs on one of the fattenachines. Therefore, we consider the
minimization problem only for values gf such thatp > 1. Similarly, the maximization problem is
trivially solved forp > 1 by placing all the jobs on one of the slowest machines. Hemeegonsider
the maximization problem only for values pfuch thap < 1.

An R-approximation algorithm for a minimization problem is dyswmial time algorithm which
always finds a feasible solution of cost at m@ttimes the cost of an optimal solution. AR-
approximation algorithm for a maximization problem is aypamial time algorithm which always finds
a feasible solution of value at Iea%t times the value of an optimal solution (we use the converion
approximation ratios greater than 1 for maximization peaf$). The infimum value ok for which an
algorithm is ariR-approximation is called the approximation ratio or thef@@nance guarantee of the
algorithm. A polynomial time approximation scheme (PTASaifamily of approximation algorithms
such that the family has @ + ¢)-approximation algorithm for any > 0. An efficient polynomial
time approximation scheme (EPTAS) is a PTAS whose time cexitglis of the formf(%) - poly(n)
wheref is some (not necessarily polynomial) function andy(n) is a polynomial of the length of the
(binary) encoding of the input. Motivated by this definitiohpolynomial time complexity, we say that
an algorithm (for some problem) has polynomial time comipyeik its time complexity is of the form
f(%) - poly(n). Note that whereas a PTAS may have time complexity of the fmﬂ*é), whereg is for
example linear or even exponential, this cannot be the casenfEPTAS. The notion of an EPTAS is
modern and find its roots in the FPT (fixed parameter tractditdeature (see [10, 13, 17, 29]).

Our main result is a class of EPTAS's for minimizidg;” , C? for any fixed value op > 1, and for
the problem of maximizing_" , C? for any fixed positive value op < 1. Note that these problems
are known to be strongly NP-hard even for identical mach{m&sthe standard reduction from the 3-
PARTITION problem) and therefore our results are the best possible.r&3ults are the first EPTAS’s
for these important load balancing problems on uniformlgtezl machines.

The running time of an EPTAS (and of a PTAS) is expected to Bgnpmial in the number of
jobs as well as in the number of machines. For a fixed (constamber of machines, load balancing
problems typically have a fully polynomial time approxirioat schemes (FPTAS’s, which are EPTAS'’s
wheref is polynomial) [25| 6, 14, 16].

We next review the previous PTAS and EPTAS results for artrarlyi (hon-constant) number of
uniformly related machines and the special case of iddmtiggchines (where all machines have unit
speed). It was shown by Hochbaum and Shmoys that the makespanization problem has a PTAS
for identical machines [23] and for uniformly related maws [24]. It was noted in_[21] that the
PTAS of [23] for identical machines can be converted into &TAS by using integer program in fixed
dimension instead of dynamic programming. Recently, JafZ&] was able to solve the long-standing
open problem of establishing an EPTAS for the makespan n#ation problem on uniformly related
machines. The Santa Claus problem is also known to have a Bid8n EPTAS for identical machines
[30,[2]. For uniformly related machines a PTAS is known [5]. 15

The problems studied here are known to have an EPTAS on édémntiachines [1,12], and a PTAS
on uniformly related machines [15]. The existence of an EB 1@k these problems on uniformly related
machines was stated as an open probleni by [15]. This opeteprab resolved in our work.

Outline. Our EPTAS'’s have the following structure. First, we sort thachines in a non-decreasing

order of their weight in an optimal solution (according tther non-increasing or non-decreasing speed).
We note that some machines may get a zero weight; we guessitimeber and remove those machines
from the instance. We round the processing times of the jobsttze speeds of the machines, so that



the number of possible values is reduced sufficiently, artthaioall job sizes are integer multiples of a
small value.

Next, we observe that we can extend the EPTAS for identicalhmas to the case where we are
guaranteed that in an optimal solution the ratio betweemthgimum work of any machine and the
minimum work of any machine is bounded. We show that in thi®dhe speed ratio is bounded as well.
We extend this EPTAS further to allow some total size of jabsemain unscheduled. This will be our
building block in the design of the EPTAS for the general case

To reduce the general case into a series of sub-problems &btimer type, we create gaps between
the set of allowed weights of machines. For that, we applystitealled shifting techniqué [22] in an
original way. Afterwards, we apply dynamic programming &etmine the series of sub-problems, that
is, the intervals of machines whose weights come from eaeinviad of allowed weights. The EPTAS
for the special case is used as a black box in this dynamicamuming, where unscheduled jobs of one
sub-problem are scheduled later by another sub-problenittéiproofs can be found in the Appendix.

2 Préiminaries

In this paper we consider the sum of theh powers of a vector rather than th%)—th power of this
value. Note that sincgis a fixed constant, our results apply also for this last mdttve measure (which
is the/,, norm for the cas@ > 1). Throughout the paper, for a solutioh we denote byA both the
solution and the value of the objective function for thisusiain.

When we consider the maximization problem, we sometimesvalie algorithm to avoid assigning
some of the jobs. It is clear that adding these jobs ardigréni the schedule can only improve the
solution. Hence, if we can bound the total value of the sotutizhich assigns a subset of the jobs, after
adding the unscheduled jobs (to create a complete solutiom)get (at least) the same performance
guarantee.

Let e be a small constant such thak e < % and% is an integer. Epstein and Sgall [15] observed
the following claim.

Claim 1 Leti; andiy be a pair of machines such that < s;,, that is, iy is faster thani;. Consider
the minimization problem whem > 1, then any optimal solution satisfié¥;, < W;,. Consider the
maximization problem whem< 1, then any optimal solution satisfiés;, > W,.

Motivated by the above claim we will sort the machines acicgrdo their weights. That is, when
we consider the minimization problem we will assume that< s, < --- < s,,, whereas when we
consider the maximization problem we will assume that s, > --- > s,,,. In this way, machines of
lower indices should get smaller weight than machines wijhdr indices (or equal weight). We next
consider a pair of machings andis such thats;, is significantly smaller thas;,. We know that in the
minimization problemiV;, < W;, and in the maximization proble’;, > W;,. Our next goal is to
strengthen these bounds. bdbe such thab < 6 < e.

Lemma 2 Consider the minimization problemp ¢~ 1), and a pair of machines < i’. There exists a
functiona(d) = g such that ifs; < a(6) - sy then in any optimal solutiof; < §W;.

Lemma 3 Consider the maximization problem & 1), and a pair of machines < /. There exists a
functiona(8) = ((1 + 6)? — 1)*/? such that ifs; < a(5) - s; then in any optimal solutiofV; < 5W;.

Note thata(d) < 6 < e. This is clear for the minimization problem, and for the nmaization
problem it holds becausg + §)? < 17 + ¢ = 4P + 1 where the inequality holds by the concavity of
xP for p < 1, and the claim holds by the monotonicity ef/?. We summarize the last two lemmas by
the following straightforward corollary, which we will use



Corollary 4 Consider a pair of machinesand:’ such that < '. If W; > %Wi, for some functiony

(such thaty(e) > %), then there is a functiof# such that the ratio between the speedsx{s;, s;} and
min{s;, s } is bounded by (¢).

First rounding step.  In what follows we assume without loss of generality thatdpeeds are integer
powers ofl +¢. This assumption is justified by the observation that irgireathe speed of each machine
to the next value of the forrl + ¢)7 (for integerj) may decrease the completion time of this machine
by a multiplicative factor of at most + . Thus approximating the optimization problem with respect
to the new speeds within a factor bft ¢ gives a(1 + ¢)! ™7 approximation to the original instance of
the problem. Thus by scalingaccordingly, the assumption is justified. Moreover, we assalso that
the sizes of all jobs are integer powerslof- €. This assumption is justified by the observation that
increasing the size of each job to the next value of the fdrm <)/ (for an integerj) may increase the
completion time of each machine by a multiplicative factbabmost1 + ¢ and may not decrease it.
Thus the following properties can be assumed.

Assumption 5 The speed of each machine as well as the size of each job isegeiippower ofl + ¢.

Second rounding step.  Let p.x = max;—12 ., p;. We will let opPT denote a fixed optimal solu-
tion for the resulting instance after the second and finahding step which we now define. For the
minimization problem, we apply the following rounding (doyof the (rounded) processing times. If
p; < ==ex then we rounch; down to be zero and we remove all such jobs from the instantieer@ise,

we roundp; down to the next integer multiple of = 521’%. Given a solution for the input after this
second rounding step, we create a solution for the origisthnce, by assigning all the removed jobs to
the machine in which a job of sizg,.x is assigned (breaking ties arbitrarily).

Lemma6 The cost of every solution to the instance of the minimingifoblem after the second round-
ing step is no larger than its cost before this rounding stijmreover, given a solution to the final in-
stance, the cost of the resulting solution for the inputrate first rounding step is at mogt + ¢)?
times its cost for the new instance.

Proof. Since we only round down processing times of jobs, the casteoew solution cannot increase.
Therefore, the first claim holds. As for the second claim w& fionsider the effect of returning the
removed jobs to the solution. The work of the machine whideires these jobs increases by at most
€pmax @nd since it was previously at least., it increases by a multiplicative factor of at mdst ¢.
Next, consider the effect of reverting the processing tifhthe jobs whose processing times were
larger than®222x to their values in the instance after the first rounding siégie that such a processing

time of a job is increased by an additive factor of at rrfééﬁgﬂ and hence by a multiplicative factor of
at mostl + . Therefore, the work of each machine is increased by a nliodijve factor of at most
1 + £, and the claim follows.m

Folr the maximization problem, the second rounding step finel@ as follows. In this case we let
p = £Pmax and we round the processing time of every job down to an émtewltiple of ..

n-m?~

Lemma 7 The value of every solution to the new instance of the maxiiizproblem after the second
rounding step is not larger than its value before this roumdstep and thus reverting jobs to their sizes
after the first rounding step can only improve the perfornearidoreover, consider an optimal solution
soL to the instance after the first rounding step. Denotesby,,..,, SOL4 its objective function values
in the new instance after the second rounding step, and édifier second rounding step, respectively.
Then,0PT > SOLyey > (1 — £)SOLyg-



Note that after the second rounding step the size of any jab iateger multiple of:.
Lemma8 Given an intervalL, U], the number of distinct sizes of jobs is at mlogf ., . % + 2.

Proof. At the end of the first rounding step the number of distinatsiaf jobs in this interval is at most
logy, . % + 1, and this number may increase by at mbdtie to the second rounding step (in case where
we round down a value which is slightly larger thé&i). =

3 Approximating the problem with a bounded weight ratio

In this section we consider the following variant of our (nmaization or minimization) problem which
is called BOUNDED RATIO (BR). The input to this problem consists of the followingtsar
1. A set of¢ > 1 consecutive machines with speegss;.1, ..., s;1¢_1, for which we define

Smin = MIN{s;, Sit1, ..., Site—1} aNd Smax = Max{s;, Si41,...,8i40-1} ,

and assumgzs= < (¢). Recall that for the minimization problem we assume thasfieeds are non-
decreasing and thus,i, = s; andsmax = s;1¢—1, and for the maximization problem we assume that
the speeds are non-increasing and thiis = S;1¢—1 aNdsyax = Si-

2. A pair of valuesy < W; < W;.,_1 bounding the weights of machineand machine + ¢ — 1,
respectively, such th%;1 < ~(g). Wi, Wiye—1 are (not necessarily positive) integer powers of
1+e.

3. A value A which is an integer multiple of. For the minimization probleml is an upper bound on
the total size of jobs that the algorithm does not necegsaekd to assign to any of these machines,
whereas for the maximization problem the valuedois a lower bound of the total size of jobs that the
algorithm should not assign to any of these machines.

4. A setL of largejobs1,2, ..., n each of size at leastV;.

5. A value B of the total size of existingmalljobs. The small jobs can be assigned fractionally. The
value B is an integer multiple of:.

The goal is to schedule the large jobs and the small jobs o# tin@chines such that the weight of
each machine is at leaBV; and at mos¥V;,,_;. We allow an arbitrary subset of the jobs (out of the
large jobs and small jobs) to remain unscheduled as longthe iminimization problem its total size is
at mostA, and in the maximization problem the total size of the undahesl jobs must be at leasit.

We assume that such an assignment of the jobs is feasibleeothel algorithm returrsaLsSE. The goal

is to minimize or maximize the valugéii’l Cj.’ of the schedule, and the input to BR consistg,df
Wi, Wiae—1, A, L and B. We will allow the algorithm (not the optimal solution) toaumachines with
weights in the interval 2%, W, 41 - (1 + 32)].

Remark 9 By Corollary[4, the requirement thge=x < j3(e) follows fromwl'#’;’f1 < ~(e).

Next, the number of different sizes of large jobs is at niast, . Wg;\ﬁi‘l +2 <logy,. @ +2and
thus this number is a function ef Let H be the set of different sizes of large jobs, and for dach H
we letny, be the number of jobs of siZze We define a class of machines to be machines with the same
(rounded) speed. Since the speeds are integer powérs-af and the ratio between speeds satisfies
fmax < f3(e) we conclude that the number of non-empty machine classestettasr(c), is at most
log,. B(e) + 1 that is a function ok. We denote the non-empty machine classes in our problem by
My, ..., M. For each machine clagd}, whose machines have a common speed;ofve denote
by v(ox) = | M| the number of machines ij.

We define aconfiguration X' of a machineas a vector with the following components. The first
|H| components of< define the number of large jobs of each size which we scheduke machine
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with configurationk. For eachh € H, n(h,K) denotes the number of jobs of sizewhich are
scheduled on a machine with this configuration. Eagh K') is a non-negative integer which is at most
% < @ that is a function of. The next component df is an integer power af + ¢ in the range

15
[Wi, Witi—1] denoted asv(K). For the minimization problem, leb(K) = L#j - p. w(K) is the
maximum total size of jobs in configuratids. For the maximization problem, lei(K) = [@1 - fh
w(K) is the minimum total size of jobs in configuratidn. The number of options for this component
is at mostlog . W%*I + 1 < logy,.v(e) + 1, that is a function of. The last component is the
machine speed, and we denote this componer{ hy). There arer(<) options for this last component.
We conclude that the number of different configurations igrecfion ofe and we can enumerate all of
them in a constant time. We denote Kythe set of all configurations. A configuration of a machine
defines the number of large jobs of each size which are sabgdul such a machine, as well as the total
size of small jobs which are scheduled fractionally on suateahine (which is the difference between
w(K) and the total size of the large jobs). Since the size of a jaln imteger multiple of:, we require
that the total size of small jobs which are scheduled on suttachine is an integer multiple of as
well.

We define an integer program of fixed dimension to solve BR. ddwsion variables are for each
configurationK € K, a variablex - counting the number of machines which are scheduled acwprdi
to configurationk’. We lety,, be the number of large jobs of sizec H which remain unscheduled in
our solution.

The following integer program is used for solving our mirgation problem.

min DoKek <%)p XK
s.t. Y Keks(K)=oy, TK = V(0k) VE=1,2,...7(¢)(1)
Yokex(h, K) - 2x +yn = nn Vhe H ¥
ZheHh‘yh—ZKerK'(w(K)—ZheHh'n(h>K)) <A-B 3)
Dherh yn <A (4)
Zxun > 0 VK € K,Vh € H.(5)

The family of constraints[{1) enforce that we use only;) machines with speed;. The family of
constraints[(R) enforce that exactly jobs of sizeh are unscheduled by our solution. Constraifts (3)
and [4) enforce the condition on the total size of jobs whighumscheduled. To see this last claim first
note that a machine which is scheduled with configurafidteaves a gap of sizé&(K) — >, 5 h -
n(h, K) for a possible scheduling of small jobs (since all jobs hazesswhich are integer multiple of
1). There are two cases. In the first case the total size of the @d all the machines) is sufficient
for scheduling all the small jobs that 8 ;o zx - (W(K) — > ey h-n(h, K)) > B. In this case,
we assume without loss of generality that all the small jalesseheduled. Thus in this case we only
need to make sure that constraint (4) holds. This last cainstholds because the total size of the
large jobs which are unscheduled is exactly,;; / - yx, and thus such a feasible solution satisfies
both constraints[{3) andl(4). In the other case there arel $obal which are not scheduled by the
solution. Since we allow fractional scheduling of smallgptheir total size is exactlp — > ;- 7x -
(0(K) =Y pep b - n(h,K)) which is positive. Thus the total size of the large jobs whichy be
unscheduled is at most — (B — Y e 2k - (0(K) — > ,cpq b - n(h, K))) and thus constrainf](3)
holds, and by the assumption of this case, we conclude thatraint [4) holds as well.

p
Let (z*, y*) be an optimal solution for the above integer program, an&ltet > <%) T
KeK
be its objective function value.

Claim 10 Denote byoPT;,, the optimal solution for this bounded ratio minimizatioroplem as well as
the value of its objective function. We ha¥é < (1 + ¢)? - OPT,.
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The following integer program is used for solving our maxdation problem.

max Y Kek (%)pw’ﬂ}(
s.t. Do Keks(K)=o, LK = V(0k) Vk=1,2,...7()(6)
Ykexn(h, K) -z +yn =ny Vh e H (7)
Shen bt = Siearc o - (0(K) = Speh-n(h, K)) = A~ B ®)
Stk (H(K) = Speg hen(h, K)) < B ©)
Tr,yp > 0 VK € K,Vh € 10)

The family of constraints[(6) enforce that we use only;) machines with speed;. The family

of constraints[{[7) enforce that exacty jobs of sizeh are unscheduled by our solution. Constraints
(@) and [9) enforce the condition on the total size of jobsalwhare unscheduled. To see this last
claim first we observe that a machine which is scheduled watifiguration K leaves a gap of size
W(K) =Y pen h-n(h, K) which must be covered by small jobs. Therefore, the total sfamall jobs
should be sufficient to fill all these gaps. This enforces taimg (3). The remaining small jobs together
with the unscheduled large jobs need to be of total size @&amttid. Thus constrain{{8) holds as well.

Let (z*, y*) be an optimal solution for the above integer program, an&ltet= > (%)p XY
Kek

be its objective function value.

Claim 11 Denote byoprT, the optimal solution for this bounded ratio optimizatioroblem as well as

the value of its objective function. For the maximizatioolgem X > e

For each of our problems, we first solve the correspondiregartprogram. We show that given the
solution (z*, y*) to the integer program, we can construct a feasible soldtoBR whose objective
function value is at least as good &S. Then large jobs are assigned to the machines according to th
configurations of the machines. Small jobs are assigned (&arctional) next-fit to the remaining gaps.
In fractional next-fit we assign the jobs one by one until thgrent gap does not have a sufficient room
for the next job, in which case we assign a fraction of the @the current gap, so as to fill exactly the
gap, and the remaining of the current job is assigned to thegap (of the next machine). The work
of a configurationk is assumed to be&(K'). This procedure fills exactly all the gaps until one of the
following two cases occurs. Either, there are no additionathines and there are still small jobs to be
assigned, or there are no additional small jobs, but remgig@ps. By constraint(9) in the maximization
problem only the second case may occur. In the minimizatioblpm the first case does not cause any
problem as it gives a feasible solution to problem BR sinea#maining small jobs are counted towards
A in Constraint[(B). In the second case for maximization gohlthe unscheduled small jobs (or parts
of these) are counted towards the total size of unschedolesigs well. This assignment algorithm
is clearly a polynomial time algorithm. By the above clairhsuffices to show that we can solve the
integer programs in polynomial time.

Claim 12 The integer programs can be solved in strongly polynomiaéti

Proposition 13 Problem BR has an EPTAS.

We next consider a variation of problem BR in which the smatlisj which are scheduled on one
of the ¢ machines need to be scheduled integrally. We call the nreguttoblem NTEGER BOUNDED
RATIO (IBR). In order to obtain the EPTAS for IBR, we note that in algorithm for BR, each machine
receives at most two small jobs fractionally. For the maxatibn problem of IBR we simply remove
the fractional parts. This decreases the completion tineaoh machine by at mo2t)V;, and thus the
completion time of each machine is decreased by a multiplzgactor of at mosi — 2¢. This gives an
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EPTAS for the maximization problem of IBR. For the minimipat problem we assign (integrally) each
small job to the first machine which gets a fraction of the jolthie solution to BR. This may increase
the completion time of a machine by at me3¥;. Therefore, the completion time of each machine
increases by a multiplicative factor of at mast ¢ (it may decrease for some machines as well). Hence,
in this case the total cost of the resulting solution to IBRtimost(1 + ¢)? times the cost of the solution

to BR. Thus, this gives an EPTAS for the minimization probleihBR as well, and the following result

is established.

Theorem 14 Problem IBR has an EPTAS.

4 Applying the shifting technique

In this section we use the shifting technique of HochbaumMads [22]. We modify the total weight
of a machine if it lies withinllegal intervals We will choose the set of illegal intervals (which imply a
set of valid intervals) such that the following propertiedch First, the value of the objective function
of an optimal solution using the modified weights will be @ds its value according to the objective
function of the original instance. Second, the ratio of a&sgof two values which are not separated by
an illegal interval that is, belong to one valid interval Mie bounded by a function(e). Finally, the
ratio between the two extreme points of an illegal intergahi Ieast%. The set of illegal intervals is
finite, and each such interval is bounded.

Given such a set of illegal interval$ = {(ao, bo), (a1,b1), ..., (ar,b.)} whereb, < ay, for all
0 </¢<r-1anday > min;p; andb, < Z;;lpj. We consider a schedule and assume that when a

: : . o . I\ P o .
machinei; gets an allocation of a total weighit;, it will contribute (M) to the objective function.

i
We next define the functioq.

For the maximization problem whege < 1, we defineg(xz) = =z if ¢ (ay,by) for all ¢, and
otherwiseg(z) = 0. For the minimization problem wheye> 1, we defineg(z) = = if = ¢ (ay, by) for
all ¢, and otherwise if: € (ay, by) we letg(xz) = 2b,. By using the value of instead of the total weight,
the objective function value of any feasible solution magdme worse (larger for the minimization
problem and smaller for the maximization problem). We derimtp,,;, the minimum size of a job in
the instance.

Our algorithm will choose the best outcome among a constamtber of iterations. In each such
iteration we will use a different set of illegal intervalsetlp = -+ > - (where equality holds for
p < 1), then forn = 0,1,...,p — 1, in iterationn we will use the following set of illegal intervals:
(ag;be) = (Pumin - (%)UMP . Penin - (%)WM”“), for the non-negative values 6tuch thab, < >°7_, p;.

The number of non-negative powersiofor which we define an interval in all iterations is at most

2 1/p
NPmax NPmax n--m
log% = +1 log% . +1 log% Ry

min

+1,

and this is a polynomial im, m and % We denote by, the functiong in the n-th iteration, and we
denote bysS,, the set of illegal intervals of iteration

We next show that there is a valuerp§uch that the objective function value of the optimal soluiti
to the problem with the modified weights is within a factorief ¢ of the objective function value of an
optimal solution to the original instance.

Lemma 15 Denote byoprT, the objective function value of an optimal solution withpest to the
modified weightg,,. Then, for the maximization problem there is a valug stich thatopT > oPT, >
OPT- (1 — 53) > ?TPJ, and for the minimization problem there is a valueyafuch thatopT < opPT, <
OPT(1 +¢).



We next show that given an instance where the value or cossoliiéion is computed using,, we
can restrict ourselves to solutions which (almost) do netwsights froms,,. More precisely we show
the following claim.

Lemma 16 Consider the optimal solutiooPT, for the instance with the modified weights Without
loss of generality, there is at most one machimeéhose weight?; belongs to one of the intervals §f,.

Note that the number of machines of weight zero can be arjitra
Proof. Denote by, the set of machines whose weight belong to an interval fiym Consider
the maximization problem. If the claim does not hold, thenasgumptionAZ,| > 2. We modify
the solution so that all the jobs which were assigned to orteeofmachines in\/, are assigned to the
maximum index machine af/,,. The machines ai/,, did not contribute a positive value to the objective
function inopPT, (since the modified objective function is used), and henisentiodification did not hurt
the optimality ofopT,. The claim holds for the new solution.

Consider the minimization problem. We repeat the followmgdification of opT, as long as
|M,| > 2. Leti € M, be a most loaded machine @PT, among the machines dif,,. Leti’ # i
be another member aff,,. Then, the weight of in oPT, is at mostiV;. We modify opPT,, by assigning
to machinei all jobs which were assigned previously to eithier /. This modification will at most
double the weight of, and hence the solution remains optimal (eithe@mains in)M,, and in this case
it pays the same as in the original solution @hgays nothing, ot is removed from\/,, and in this case
its work is at most double the infimum point of the followindoa¥ed interval so it now pays at most its
payment in the original solution, antipays nothing). Repeating the process decreases the diydina
of M, (¢’ is removed from\/,, after its weight becomes zeroh

Next, given such a value of, we can guess the parity of the indéxof the interval(a,, by) € S,
which contains a weight of a machine@pT, if it exists). By the previous lemma there is at most one
such value of. Given such a guess, we allow the use of intervals of the samity ps/. That is, if/ is
an odd number, we remove froffj the intervals of the fornfas; 1, b2;—1), and if£ is an even number,
we remove fromS,, the intervals of the fornfas;, b2;). We denote the resulting set of illegal intervals
by S, 4 where¢ € {odd,eveny. The number of possibilities for this guess (pand¢) is polynomial
in 2. Hence, we can assume that the Sg, satisfies thabPT, does not have a machine whose weight
belongs to an interval frorfy,, 5. Moreover, the following observation holds.

Observation 17 The ratio between two weight® < W’ which are not separated by an interval from
Sy.¢ 1S bounded by a functiof(e) = 82,,%1 (i.e., W < ~(¢e)), and the ratio betweeH/’ and WV if they
are separated by an interval frosy, 4 is at Ieast%.

Using this set of intervals), ,, we can evaluate all the solutions which satisfy the propidt they do
not use weights from the sét, ,,, according to the weights and not the modified weights. Tarsot
harm the quality of the solution with respect to the modifiegeotive functions. We conclude that using
such solutions which do not use a weight fréiy, does not hurt the approximation algorithm too much.
That is, we establish the following lemma.

Lemma 18 There is a value of) and ¢, such thatorT, does not use a weight which belong to an
interval ofS,, 4, and such that the objective function valueo®ft, (with respect to the original objective
function) in terms of the weights (i.e., as a solution to thiginal instance) is within a factor of + ¢ of
OPT.

5 Dynamic programming to approximate OPT,,

Given fixed values of) and¢, the set of illegal weights,, ,, leaves a set of valid intervals whose pos-
sible weights denoted by = {[wo,w1], [w2,ws], ..., [w—1,w |} Where the sequence is monotone
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increasingwy > pmin, andr’ < r. Recall that some machines may get a zero weight in an optimal
solution, but we can guess their number and remove the sbesé tmachines (of lowest indices) from
the instance. Hence, without loss of generality it sufficesansider solutions which assign at least one
job to each machine, and therefore the minimum weight of ehinads at least.

By Observatiof 17, we conclude that for any vaIquUff:j—fl =1 and“ijZz1 < v(g). We define a
linear order on the intervals 6f saying that an intervdlve, we 1] is smaller tharwe, weri 1] if £ < ¢,
and an intervalwe, we1] is at most an intervalve, wer 1] if £ < & We next describe an allocation
of jobs to intervals of2. A job j of sizep; is associated with an intervabe_;,we] if p; < we and
pj > we—2 Where we use the conventian ; = 0. We define an assignment of intervals of (consecutive)
machines to intervals d® in the following sense. An interval of machingsi’] with parametersd, B
is assigned to an intervale, we 1] € Q if the following four conditions hold: 1) the weight of each
machinei € [i, i’ — 1] is in the intervalwe, we+1]; 2) no other machine has weight in this interval; 3) the
total size of jobs associated with smaller intervals andsaheduled by a machine of index at leagt
B; and similarly 4) the total size of jobs associated withrivéds at mosf{w,,w¢1] and are scheduled
by a machine of index at leastis A. Here A and B are integer multiples qf.. We say thatd and B are
the parameters of the interval of machirigg'].

Claim 19 The number of possibilities of a machine interval and a pdiparameters is polynomial in
the input size.

Note that given an interval of machings:’] and values4, B we get an instance of the IBR problem
for which we presented an EPTAS (this IBR instance has an\esgit of machines if = i/ and
otherwise at least one machine). Thus our scheme appleEBTAS for each possibility of a machine
interval [¢,7'] such that < i’ corresponding to weight intervab, we 1] with valuesA, B. We denote
by IBRcpias(i,7' — 1,€, A, B) the solution returned by the EPTAS for the IBR instance a$ aglts
objective function value. If = i’ andA = B, thenIBR.pqs(i,7 — 1,£, A, B) = 0, and ifi = ¢ and
A # BthenIBR.pas(i,i — 1,, A, B) returnsrALSE. If the returned output isALSE, then the value
is oo for the minimization problem and oo for the maximization problem.

To find the approximated solution for the minimization peshlwe find a shortest (minimum cost)
path in the following layered grapt, and to find the approximated solution for the maximization
problem we find a longest (maximum cost) path in this gr&pfsinceG is a layered graph, it is acyclic
and hence both the shortest path problem and the longesippattlem are solvable in linear time).
We have a layer for each value §fsuch thatiwe,we11] € € (that is, we will have a layer for every
even value of). Each such layer correspondingé&das a vertex for each machine (and one additional
dummy machine of index: + 1), and each possibility for the value df(i.e., for each integer multiple
of 1). Given a vertexi, b) in layer¢ and a verteXi’, a) in layer¢ + 2, there is an arc from the former
vertex to the later vertex if < ¢/, and the cost associated with such an atdB3R,,s(i,7' — 1, &, a, b).
The construction ofr takes polynomial time, and it has a polynomial size.

We next find a shortest or longest pathGinfrom the vertex(1, 0) of the layer with index) to the
vertex (m + 1,0) in the last layer. We schedule the jobs according to the paibhmve found. That
is, if the path uses the arc frofw b) of layer¢ to (i, a) of layer¢ + 2 wherei < 7/, then we schedule
large and small jobs as defined by the solutidhR,.s(i,i" — 1,&,a,b). The total size of jobs which
are associated with the interviale, we41] or smaller intervals, and are not scheduled to machines of
index at most’ — 1 is indeed at most for the minimization problem and at leasfor the maximization
problem. The EPTAS for IBR may use at most one small job whiaeeds the total oB3. This job is
scheduled in the case of minimization to the machine 1 and discarded in the case of maximization.
In addition, since we use only some values 4K ), in the case of minimization we have too large
room for small jobs, and in the case of maximization too sm@dim for small jobs. Thus, for the
minimization problem, it can be the case that too many jolessaheduled and as a result no small
available jobs remain. In this case, the algorithm movesetd dith the next arc of the path (or stops
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if this is the last arc). Similarly, for the maximization flem, since discarded jobs remain available,
there are always sufficiently many small jobs to cover alldbefigurations (and some small jobs may
remain unassign upon the termination (at the end of the phtbie that every job is scheduled by one
of the solutions corresponding to this path, and hence wairadad a feasible solution whose objective
function value is the total cost of the arcs in the path.

We next note thadPT, also corresponds to a pathéhin the following sense. I6PT, uses machines
i,i+1,...,7 — 1 with weight in the intervalwe, we1], the total size of the jobs allocated to smaller
intervals and are not scheduled byT, to machines with index at most— 1 is b, and the total size
of the jobs allocated to intervals at most this interval aredreot scheduled bgPT, to machines with
index at most’ — 1 is a, then we say that the arc frofw b) of layer¢ to (i/, a) of layer§ + 2 belongs
to the path associated witheT,. SinceoPT,, is a feasible solution, this set of arcs can be augmented to
form a path by adding zero cost arcs (frdinb) of layer¢ to (¢, b) of layer¢ + 2). Moreover, the cost
of oPT, can be also partitioned into its arcs, by assigning the @stofding taoprT,) of the machines
i,i+1,...,7 — 1to the arc from(s,b) of layer¢ to (i’,a) of layer¢ + 2. By the correctness of the
EPTAS to IBR we conclude that the cost assigned to such as aiithin a multiplicative factor of + ¢
of the cost of the arc. Hence, the cost of this pat&iis within a factor ofl + ¢ of the objective function
value ofopT,. Since we use the optimal path, we are not worse than thisgfadieT,, and thus we
established the following result.

Theorem 20 Both the problem of minimiziny_;” , C? and the problem of maximiziny_!" , C? for
real finite values op have efficient polynomial time approximation schemes.
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A Omitted proofs

A.1 Proof of LemmalZ

Assume by contradiction thd¥; > 6. The solution pays at Iea{t%)p for this pair of machines.

We move all the jobs which were scheduled on machit® machine:’. It suffices to show that the
completion time of machin€ in this new solution is smaller tha%{ii. This last claim holds because the

completion time of’ in the new solution ig" X < 2We < 2Ws . (5) = Wi \yhere the first inequality

holds becaus&/;; < WT ando < 1, the second inequality holds because< «(9) - s;7, and the equality
holds by the definition ofv(¢).

A.2 Proof of Lemmal3

Assume by contradiction that the claim does not hold, thathisre exist such machineésand:’ with
W; > dW;. We compare the current solution with a new solution thaedates all the jobs (which
were previously scheduled on eitheor ') to machines’. It suffices to show that this new solution

. : o : W\ P A\ P A\ P '
is better, that is, that the following inequality hoIdé%) > <m> + (W—> . We first note

that (f—)p < (vsv_)P - ((1+46)?» —1). This claim holds becaus®#’; < W ands; < «(0) - s;,
and therefore(‘f—;)p < (?—)p - (a(8))?, and the claim holds by the definition of ). Therefore,
to get a contradiction it suffices to show tk(aWj—W“)p > (?—/)p - (1 + 6)P, which is equivalent
to (W; + Wy )P > (W - (1+4))? which holds usingV; > éW;, sincez? is a strictly monotone
increasing function of (for 0 < z < co and anyp > 0).

A.3 Proof of Lemmal7

The first claim holds because we round down the size of eaclWelprove the second claim. Consider
a machine whose work insoL is denoted by¥V;. If W; < nu then its new work is at least Otherwise,
its new work is at leastl’; — nu. Consider the case wheVg; > nu. Then, the contribution of machine

. o p \P p \P D A\ P P
i 10 SOL,,0y, IS at Ieast(M) > (m) — <9’i) = (m) — Pmax > <m) — Sbmax where the
Si Si Si Sq m-s; Sq m-s

first inequality holds by concavity ai? for p < 1, and the last one holds usirg> s,,. "

Consider the case whel®; < nu. Then, the contribution of machineto soL,.,, is at least
0> (‘f—)p — (% 8 > (‘f—)p — f—g{; where the second inequality holds similarly to the presiou
case. Thus, the decrease of the contribution of each mathiveeds the objective function value of
soL, is at mostfﬁ?,: < ES%LM, where the inequality holds becausel,;; > <%)p which is the

value of a solution that places the largest job on the slomeshine, and ignores all the other jobs.

A.4 Proof of Claim[10

First, note thabPT,, induces a feasible solution for the integer program. To lgistinduced solution
we apply the following rounding for each machine in the ogtiisolution: for each machine we define
a configuration/’ by first counting the number of large jobs of each size, arehitains to definey(K).
w(K) is arounded up value of the total weight of the jobs assigoekle machine to the closest integer
power of1 + . We next argue that the total work of this machineoirT, is at mostw(K). This is
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so because otherwise, a machine with total work of opT,,. has a configuratiod with w(K) > 6
which is an integer power of + ¢, andw(K) = 6 such thaty’ < 6. However, since is an integer
multiple of u we havet = p - L%J <pu- L#J = ¢, that is a contradiction. The total size of the gaps
for scheduling the small jobs does not decrease, and thustieize of the unscheduled jobs is at most
A. This results in a feasible solution to the integer progradime value of the objective function of this
rounded solution is at most + ¢)? - OPT,., and at leas*, and thus the claim holds.

A.5 Proof of Clam[11

First, note thabPT,, induces a feasible solution for the integer program. To lgistinduced solution
we apply the following rounding for each machine in the optiisolution: for each machine we define
a configuration/s’ by first counting the number of large jobs of each size, arehitains to definey(K).
w(K) is a rounded down value of the total weight of the jobs assignethe machine to the closest
integer power ofl + . We next argue that the total work of this machinew,. is at leasto(K'). This

is so because otherwise, a machine with total work iof OPT,,. has a configuratiod” with w(K) < 6
which is an integer power of + ¢, andw(K) = 6 such thaty’ > 6. However, since is an integer
multiple of  we havef) = p - (%1 > - [#1 = ¢’, that is a contradiction. The total size of the gaps
for scheduling the small jobs does not increase, and thus thsufficient total size of small jobs to fill
in all the gaps, and the total size of the unscheduled jobsléaat A. This results a feasible solution to
the integer program. The value of the objective functionhes tounded solution is at lea: +I§;, and
at mostX*, and thus the claim holds.

A.6 Proof of Claim[12

First, the construction of the integer programs takes pmtyial time since the set of all configurations
can be enumerated in polynomial time (using the factXhbts at most a constant number of configura-
tions which is upper bounded by a functions)f Next, we observe that the dimension of each of these
programs (the number of variables) S| + |H |, and as explained above, bdtf| and|H| are bounded
by a function of%. Thus the integer program has a fixed dimension, and we cathegolynomial time
algorithms for solving such a problem. The number of coirsisdbeside the non-negativity constraints)
is7(e) 4+ |H| + 2 which is again bounded by a function @1‘ Therefore, using Lenstra’s algorithin [27]
or one of its improvements, give a polynomial time algoritftunsolving (exactly) the integer programs
(recall that the time complexity of solving an integer pragrof dimensionl is f(d) - poly wheref is an
exponential function of the dimension, apaly is a polynomial in the binary encoding of the program).
To obtain a strongly polynomial time we use the following etvations. First, the coefficients in the
objective function are integer powers bfi- £ and can be scaled to be at most a function (gince the
ratios $22 and W%*I are bounded). Next, we scale constraifis (3), (4), (8), @pdby dividing the
constraints by the factqr. In the resulting constraint matrices and right hand sidkshe coefficients
are strongly polynomial (i.e., do not depend on the mageitnfdhe numbers in the instance).

A.7 Proof of Lemmallg

Fix an optimal solutionopT to the original instance, and associate the value of eacthimado a
corresponding value of as follows. Assume that a machindas weightlV;, and assume thav; <
(Pmin - (%)mMp, min - (%)"OH”H), then we associaté‘f—;)p with this valuery, of 7. Note that for a
machinei there is at most one such corresponding value. df there is no such corresponding value of
n then we associaté‘f—ii)p with an arbitrary value of;. By the pigeonhole principle, there is a valuge

of n which is associated with at moSET.
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Consider first the maximization problem. Using the valyef n, oPTis a feasible solution to the
problem with the modified value functiagp,, whose objective function value is at leastT- (1 — %) =

oPT(1 — %), and thus the claim holds.

Next, consider the minimization problem. Using the vailgdeof 1, OPT is a feasible solution to
the problem with the modified cosf,, whose objective function value is at mas®T + OTPT . (%)p <
OPT+OTPT- Eép < opPT(1+-¢), where the firstinequality holds because the modified weihtmachine

whose corresponding value 9fis g is at most% times its weight. Thus, the claim holds.

A.8 Proof of Claim[19

The number of pairs of machingésndi’ is at mostn?, and the number of possibilities for the valde

n2-mt/p

(and similarly forB) is at most”'p:‘ax < 57 Thus, the claim holds.
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