Skip to main content
Log in

Tree metrics and edge-disjoint \(S\)-paths

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Given an undirected graph \(G=(V,E)\) with a terminal set \(S \subseteq V\), a weight function on terminal pairs, and an edge-cost \(a: E \rightarrow \mathbf{Z}_+\), the \(\mu \)-weighted minimum-cost edge-disjoint \(S\)-paths problem (\(\mu \)-CEDP) is to maximize \(\sum \nolimits _{P \in \mathcal{P}} \mu (s_P,t_P) - a(P)\) over all edge-disjoint sets \(\mathcal{P}\) of \(S\)-paths, where \(s_P,t_P\) denote the ends of \(P\) and \(a(P)\) is the sum of edge-cost \(a(e)\) over edges \(e\) in \(P\). Our main result is a complete characterization of terminal weights \(\mu \) for which \(\mu \)-CEDP is tractable and admits a combinatorial min–max theorem. We prove that if \(\mu \) is a tree metric, then \(\mu \)-CEDP is solvable in polynomial time and has a combinatorial min–max formula, which extends Mader’s edge-disjoint \(S\)-paths theorem and its minimum-cost generalization by Karzanov. Our min–max theorem includes the dual half-integrality, which was earlier conjectured by Karzanov for a special case. We also prove that \(\mu \)-EDP, which is \(\mu \)-CEDP with \(a = 0\), is NP-hard if \(\mu \) is not a truncated tree metric, where a truncated tree metric is a weight function represented as pairwise distances between balls in a tree. On the other hand, \(\mu \)-CEDP for a truncated tree metric \(\mu \) reduces to \(\mu '\)-CEDP for a tree metric \(\mu '\). Thus our result is best possible unless P = NP. As an application, we obtain a good approximation algorithm for \(\mu \)-EDP with “near” tree metric \(\mu \) by utilizing results from the theory of low-distortion embedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bartal, Y.: On approximating arbitrary metrics by tree metrics. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC 98), pp. 161–168. ACM, New York (1999)

  2. Bădoiu, M., Indyk, P., Sidiropoulos, A.: Approximation algorithms for embedding general metrics into trees. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 07), pp. 512–521. ACM, New York (2007)

  3. Brunetta, L., Conforti, M., Fischetti, M.: A polyhedral approach to an integer multicommodity flow problem. Discrete Appl. Math. 101, 13–36 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chekuri, C., Khanna, S., Shepherd, F.B.: An \(O(\sqrt{n})\) approximation and integrality gap for disjoint paths and unsplittable flow. Theory Comput. 2, 137–146 (2006)

  5. Cherkassky, B.V.: Solution of a problem of multiproduct flows in a network. Ékonomika i Matematicheskie Metody 13, 143–151 (1977) (in Russian)

  6. Chepoi, V., Dragan, F., Newman, I., Rabinovich, Y., Vaxes, Y.: Constant approximation algorithms for embedding graph metrics into trees and outerplanar graphs. Discrete Comput. Geom. 47, 187–214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chudnovsky, M., Cunningham, W.H., Geelen, J.: An algorithm for packing non-zero \(A\)-paths in group-labelled graphs. Combinatorica 28, 145–161 (2008)

    Google Scholar 

  8. Chudnovsky, M., Geelen, J., Gerards, B., Goddyn, L., Lohman, M., Seymour, P.: Packing non-zero \(A\)-paths in group-labelled graphs. Combinatorica 26, 521–532 (2006)

    Google Scholar 

  9. Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Math. Program. 5, 88–124 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM J. Comput. 5, 691–703 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frank, A., Karzanov, A.V., Sebö, A.: On integer multiflow maximization. SIAM J. Discrete Math. 10, 158–170 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  14. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems. J. Comput. Syst. Sci. 67, 473–496 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hirai, H.: Characterization of the distance between subtrees of a tree by the associated tight span. Ann. Combin. 10, 111–128 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hirai, H.: Tight spans of distances and the dual fractionality of undirected multiflow problems. J. Comb. Theory, Ser. B 99, 843–868 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hirai, H.: Folder complexes and multiflow combinatorial dualities. SIAM J. Discrete Math. 25, 1119–1143 (2011)

    Google Scholar 

  18. Hirai, H.: The maximum multiflow problems with bounded fractionality. Math. Oper. Res (to appear)

  19. Hirai, H.: Half-integrality of node-capacitated multiflows and tree-shaped facility locations on trees. Math. Program. Ser. A 137, 503–530 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, T.C.: Multi-commodity network flows. Oper. Res. 11, 344–360 (1963)

    Article  MATH  Google Scholar 

  21. Ibaraki, T., Karzanov, A.V., Nagamochi, H.: A fast algorithm for finding a maximum free multiflow in an inner Eulerian network and some generalizations. Combinatorica 18, 61–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Karzanov, A.V.: Polyhedra related to undirected multicommodity flows. Linear Algebra Appl. 114(115), 293–328 (1989)

    Article  MathSciNet  Google Scholar 

  23. Karzanov, A.V.: Undirected multiflow problems and related topics—some recent developments and results. In: Proceedings of the International Congress of Mathematician, Volume II, Kyoto, Japan, pp. 1561–1571 (1991)

  24. Karzanov, A.: Edge-disjoint \(T\)-paths of minimum total cost. Report No. STAN-CS-92-1465, Department of Computer Science, Stanford University, Stanford, California, 1993, p. 66. Available at http://alexander-karzanov.net/

  25. Karzanov, A.V.: How to tidy up a symmetric set-system by use of uncrossing operations. Theor. Comput. Sci. 157, 215–225 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Karzanov, A.V.: Multiflows and disjoint paths of minimum total cost. Math. Program. 78, 219–242 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Karzanov, A.V., Lomonosov, M.V.: Systems of flows in undirected networks. In: Larichev, O.I. (ed.) Mathematical Programming. Institute for System Studies, Moscow, 1978, 59–66 (in Russian)

  28. Keijsper, J.C.M., Pendavingh, R.A., Stougie, L.A.: A linear programming formulation of Mader’s edge-disjoint paths problem. J. Comb. Theory Ser. B 96, 159–163 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Korte, B., Vygen, J.: Combinatorial Optimization—Theory and Algorithms, 3rd edn. Springer, Berlin (2006)

    Google Scholar 

  30. Lovász, L.: On some connectivity properties of Eulerian graphs. Acta Math. Acad. Sci. Hungar. 28, 129–138 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lovász, L.: Selecting independent lines from a family of lines in a space. Acta Sci. Math. (Szeged) 42, 121–131 (1980)

    MathSciNet  MATH  Google Scholar 

  32. Lovász, L.: Matroid matching and some applications. J. Comb. Theory Ser. B 28, 208–236 (1980)

    Article  MATH  Google Scholar 

  33. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 215–245 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mader, W.: Über die Maximalzahl kantendisjunkter \(A\)-Wege. Archiv der Math. 30, 325–336 (1978)

  35. Mader, W.: Über die Maximalzahl kreuzungsfreier \(H\)-Wege. Archiv der Math. 31, 387–402 (1978/1979)

  36. Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matching. Math. Oper. Res. 7, 67–80 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pap, G.: Packing non-returning \(A\)-paths. Combinatorica 27, 247–251 (2007)

    Google Scholar 

  38. Pap, G.: Packing non-returning \(A\)-paths algorithmically. Discrete Math. 308, 1472–1488 (2008)

    Google Scholar 

  39. Pap, G.: A polynomial time algorithm for weighted node-disjoint \(S\)-paths. In: Proceedings of the 7th Hungarian–Japanese Symposium on Discrete Mathematics and Its Applications, pp. 322–331, Kyoto, (2011)

  40. Rabinovich, Y., Raz, R.: Lower bounds on the distortion of embedding finite metric spaces in graphs. Discrete Comput. Geom. 19, 79–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rothschild, B., Whinston, A.: On two-commodity network flows. Oper. Res. 14, 377–387 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schrijver, A.: A short proof of Mader’s \(\cal S\)-paths theorem. J. Comb. Theory Ser. B 82, 319–321 (2001)

    Google Scholar 

  43. Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  44. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  45. Seymour, P.D.: On odd cuts and plane multicommodity flows. Proc. Lond. Math. Soc. 42, 178–192 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yamaguchi, Y., Tanigawa, S.: Packing non-zero \(A\)-paths via matroid matching, preprint, METR 2013–08, Department of Mathematical Informatics, The University of Tokyo (2013)

  47. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

    Google Scholar 

Download references

Acknowledgments

We thank Alexander Karzanov for remarks on the earlier version of the paper, and thank the referees for helpful comments. The first author is supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and is partially supported by Aihara Project, the FIRST program from JSPS. The second author is supported by the Hungarian National Foundation for Scientific Research (OTKA) grant CK80124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hirai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, H., Pap, G. Tree metrics and edge-disjoint \(S\)-paths. Math. Program. 147, 81–123 (2014). https://doi.org/10.1007/s10107-013-0713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0713-5

Mathematics Subject Classification

Navigation