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A simple randomised algorithm for convex

optimisation

Application to two-stage stochastic programming

M. Dyer, 1 R. Kannan 2 and L. Stougie 3

Abstract

We consider maximising a concave function over a convex set by a simple randomised algo-
rithm. The strength of the algorithm is that it requires only approximate function evaluations
for the concave function and a weak membership oracle for the convex set. Under smooth-
ness conditions on the function and the feasible set, we show that our algorithm computes a
near-optimal point in a number of operations which is bounded by a polynomial function of all
relevant input parameters and the reciprocal of the desired precision, with high probability.

As an application to which the features of our algorithm are particularly useful we study
two-stage stochastic programming problems. These problems have the property that evaluation
of the objective function is #P-hard under appropriate assumptions on the models. Therefore,
as a tool within our randomised algorithm, we devise a fully polynomial randomised approx-
imation scheme for these function evaluations, under appropriate assumptions on the models.
Moreover, we deal with smoothing the feasible set, which in two-stage stochastic programming
is a polyhedron.

Keywords and phrases: Convex optimisation, stochastic programming, randomised algorithms, poly-
nomial time randomised approximation scheme

Mathematics Subject Classification: 90C25, 90C15, 68W20, 68Q25

1 Introduction

In this paper we develop a randomised approximation algorithm for certain convex optimisation
problems, defined as

max G(x)

subject to x ∈ S,

where G : Rn → R is a concave function and S ⊂ R
n is a convex set. The weak optimisation

version of this problem, finding a point x ∈ S with function value within ǫ of the optimal (cf. [12]),
can be solved in a polynomial number of basic computer operations [12, 22]. Generally, known
polynomial time algorithms use a separation oracle for S (and level sets of G(·)). While this can
be simulated by a membership oracle for S (and function evaluations for G(·)), in polynomial time,
the simulation is very expensive. We wish to avoid altogether the use of separation oracles.
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As an alternative, we present a simple randomised algorithm based on local moves. At each
iteration, we choose a random point in a small ball centred at the current feasible point. We move
to it if it is feasible and the objective function is strictly better. Otherwise, we stay at the current
point and repeat the random selection.

The algorithm requires only a membership oracle for S and an approximate evaluation oracle for
G(·) (which returns an approximate function value in the queried point). We show that with high
probability our algorithm outputs a solution that is within ǫ of the optimal solution value. Under
reasonable smoothness conditions on the feasible region and the function to be optimised, the
number of oracle calls required is bounded by a polynomial function of the size of various input
parameters. In Section 2 we present and analyse our randomised convex optimisation algorithm.

An important application of our result is to stochastic programming. We consider randomised
approximations to optimal solutions of two-stage stochastic programming problems. Problems of
this type have been studied since they were proposed in the 1950’s [2], [4], [30]. They model
optimisation under uncertainty. In Section 3 we give a brief introduction to these problems. In
Section ?? we review their complexity.

In sharp contrast to ordinary linear programs, two-stage stochastic programs are hard to solve in
a well defined sense. In fact, even a single evaluation of the objective function is #-P hard already
for a subclass of rather simple two-stage stochastic linear programs [9]. Thus, simply assuming the
existence of (even) an approximate function evaluation oracle for these evaluations conceals the
intrinsic complexity of the problem: it is at least as hard as exact counting. Assuming higher order
function information is also undesirable, since derivatives are numerically unstable with respect
to relative approximation. Therefore, an application of the usual solution methods for convex
optimisation is problematic.

On the other hand, although exact counting is usually hard, there are situations where randomised
approximate counting is possible. See, for example, [14]. Therefore we might guess that a similar
type of approximation would be possible here. We show in Section 4 that this intuition is justi-
fied. In particular, we design a subroutine for approximate evaluations of the objective function
of two-stage stochastic programming problems. This subroutine is again a randomised algorithm,
which, with high probability, produces a function value that is within any prescribed precision. Un-
der appropriate assumptions on the randomness in the two-stage stochastic programming problem
and under a given uniform bound on the directional derivatives of the second stage random value
function, the number of steps required is bounded by a polynomial function of the size of input
parameters of the function to be evaluated and of the logarithm of the reciprocal of the desired
precision, making our subroutine a fully polynomial randomised approximation scheme in the abso-
lute sense. The uniform bound assumption is a strong assumption but seems hard to avoid. Other
studies with the same aim [29, 24] required bounds of some kind, as we will discuss in Section 6. We
achieve our result by drawing on known techniques, but to our best knowledge it is a new result.

In Section 5 we combine the subroutine of Section 4 with the randomised convex optimisation
algorithm developed in Section 2 to yield an algorithm for solving two-stage stochastic programming
problems. It turns out that the conditions we place on the input of the stochastic programming
problem, in order to get approximate function values, imply the smoothness requirement on the
objective function which we need for our convex optimisation algorithm to converge in a polynomial
number of steps.

We conclude in Section 6 with a comparison of our paper with similar approaches that have appeared
in the literature, notably the papers [29] and [24], giving the advantages and disadvantages of our
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approach. We postpone this comparison to the end for a better appreciation by the reader. We also
review relevant literature which has appeared subsequent to the completion of the work described
in this paper.

2 Random local improvement

In this section we consider the general problem of maximizing a twice differentiable concave real-
valued function G : Rn → R, over a compact convex set S ⊂ R

n. We will assume little about the
function G and the set S. We assume S is given only by a membership oracle, which can decide,
for a given x ∈ R

n, whether or not x ∈ S. We assume G is given by an approximation oracle,
which, for x ∈ R

n and a given error parameter ǫ0 > 0, returns a number Ĝ(x) in the interval
[G(x) − ǫ0, G(x) + ǫ0]. In the sequel we denote by x∗ an optimal solution of the maximisation
problem.

We propose a very simple solution strategy. Starting from a given initial feasible point x0 ∈ S,
we successively generate points in S as follows. At x ∈ S, we generate a point z uniformly at
random in a ball of a certain radius r and centre x. If this point is feasible (i.e. in S) and has a
significantly better objective function value than x, we move to it and iterate. Otherwise, we repeat
the random generation. We stop the algorithm if a certain number of successive trials have not
given a significantly better point. Thus we look simply for a local random move which improves
the objective function. We call this the “Ball Walk algorithm”.

This strategy does not lead to an efficient method for general concave functions and convex sets. For
example, if S = R

n
+, and our current point is the origin, we have an exponentially small probability

of hitting S. This example illustrates one problem - poor local conductance in the terminology of
[21]. However, we will show that, under mild smoothness conditions, the method converges rapidly.

In the sequel we denote the volume of a set S by vol(S), and B(x, r) denotes a ball with radius
r and centre x. A cap of B(x, r) is the subset cut off by a half-space which excludes x. We
denote the unit n-ball by Bn. We use ∂S to denote the boundary of a set S. We denote the
first and second directional derivatives of a function F : R

n → R in direction w by F ′(w;x)
and F ′′(w;x), respectively. The gradient of a function F at a point x ∈ R

n will be denoted by
∇F (x), and its Hessian by ∇2F (x). We denote the Euclidean norm of a vector x by ‖x‖, and
the L2-norm of a matrix A by ‖A‖, i.e., ‖A‖ = maxx:‖x‖=1 ‖Ax‖. Thus |F ′(w;x)| ≤ ‖∇F (x)‖ and
|F ′′(w;x)| ≤ ‖∇2F (x))‖ for all x and w ∈ ∂Bn, and equality holds in both cases for every x and
some w(x) ∈ ∂Bn. We now list the assumptions that we make.

Assumptions A:

1. G is concave and S ⊂ R
n is convex and and has diameter bounded above by a constant D;

2. there exists τ > 0 such that, for all x ∈ S, ‖∇G(x)‖ ≤ τ ;

3. there exists ν > 0, such that, for all x ∈ S, ‖∇2G(x)‖ ≤ ν;

4. there exist σ, r0 > 0, such that, for all r ≤ r0, x ∈ S,

vol(B(x, r) ∩ S)

vol(B(x, r))
≥ 1

2
− σr;

5. Some point x0 ∈ S is given.

3



Procedure Ball Walk
begin x ← x0 and counter ← 1;

while counter ≤ 4200
√
nD ln(1/ǫ) ln(1/η)

σr2
;

generate z ∈ B(x, r) uniformly at random;

if z ∈ S and Ĝ(z) > Ĝ(x) + ǫτr
12

√
n
then x ← z;

set counter ← counter + 1;
return x as the approximate solution.

end;

Figure 1: The Ball Walk Algorithm

The Ball Walk algorithm aims at finding a point x for which G(x) ≥ G(x∗)− ǫτD with probability
at least 1 − η. The choices of the various parameters that we make now, may seem magic at this
point of the text, but their justification will become clear later. Because of the uncertainty in the

estimation of G, we must choose ǫ ≥ 24
√
nǫ0

τr , so ǫ0 ≤ ǫτr
24

√
n
. The algorithm is described in Figure

1, where we choose r = min{r0, D√
n
, ǫτ
90στ+3ν

√
n
}. Note that it might appear at first sight that

assumption A.4 could be satisfied by simply choosing a large value of σ. However, the value of r
must then be very small, and so the running time of the algorithm will be large.

The improvement we get in one step of Ball Walk will be examined below in Theorem 2.1. But
first we give some preliminary elementary estimates which will prove useful.

Lemma 2.1. For n ≥ 2,
√
n/3 ≤ vol(Bn−1)/vol(Bn) ≤ 2

√
n/3.

Proof. Since vol(Bn) = πn/2/Γ(n/2 + 1),

vol(Bn−1)

vol(Bn)
=

Γ(n/2 + 1)√
π(Γ((n− 1)/2 + 1)

.

Stirling’s approximation to the Gamma function values gives the conclusion after some calculation.

Lemma 2.2. For n ≥ 2, let U = {x = (x1, . . . , xn) ∈ B(0, r)|0 ≤ x1 ≤ cr/
√
n} be a slice of

B(0, r) ⊂ R
n, where 0 < c < 1. Then c/5 ≤ vol(U)/vol(B(0, r)) ≤ 2c/3.

Proof. Since c ≤ 1, elementary estimates give

c√
n

(
1− 1

n

)n−1

2 vol(Bn−1)

vol(Bn)
≤ vol(U)

vol(B)
≤ c√

n

vol(Bn−1)

vol(Bn)
.

Using Lemma 2.1 and (1− 1/n)n−1 ≥ e−1 now gives the conclusion.

Theorem 2.1. Let n ≥ 3, and x ∈ S be such that G(x) ≤ G(x∗)− ǫτD. With probability at least
σr/120 a point z is found in one step with

G(z) ≥ G(x) +
ǫτr

6
√
n
,

and the Ball Walk will accept this step.
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Proof. First shrink B(x, r) to B(x, r′), with r′ = (1− β)r, and β = 2
n . We write B and B′ shortly

for B(x, r) and B(x, r′), respectively. Notice that

vol(B′) = (1− β)nvol(B).

Define g(x) = ∇G(x)
‖∇G(x)‖ , and v = x∗−x

‖x∗−x‖ . Consider the set

T1 = B′ ∩ S ∩ {y|(y − x)T g(x) ≥ −5c1r
′

√
n

} ∩ {y|(y − x)T v ≤ 5c2r
′

√
n

},

with c1 = 3σr′ and c2 = 1
2 − σr′. Note that the bound on r implies that c1 < ǫ/2 ≤ 1

2 , and clearly
c2 < 1

2 . Now T1 is obtained from B′ by cutting off the union of two caps and therefore, using
Lemma 2.2,

vol(T1) ≥ vol(B′ ∩ S)− (
1

2
− c2)vol(B

′)− (
1

2
− c1)vol(B

′).

Thus, using assumption A.4 and the definition of c1 and c2,

vol(T1)

vol(B′)
≥ 1

2
− σr′ − σr′ − 1

2
+ 3σr′ = σr′.

Let α = r
3D

√
n
, and define the set

T2 = {αx∗ + (1− α)y|y ∈ T1}.

We claim that T2 is a subset of B, each point of which gives the improvement stated in the theorem.
Thus, its relative volume is a lower bound on the probability that such an improvement is attained
in one step of the Ball Walk algorithm. This relative volume is in turn bounded as follows:

vol(T2)

vol(B)
≥ (1− α)nvol(T1)

(1− β)−nvol(B′)
≥ (1− α)n(1− β)nσr′

= (1− α)n(1− β)n+1σr

≥ (8/9)3(1/3)4σr

≥ σr/120,

where the last but one inequality is implied by r ≤ D√
n
, n ≥ 3, and the choices for α and β.

To show that T2 ⊂ B, we take z = αx∗ + (1− α)y for some y ∈ T1. and show that ‖z − x‖ ≤ r.

‖z − x‖2 = α2‖x∗ − x‖2 + (1− α)2‖y − x‖2 + 2α(1 − α)(x∗ − x)T (y − x). (1)

To bound the first term of the right-hand side of (1), we use the definition of α and the fact that
‖x∗ − x‖ ≤ D, giving

α2‖x∗ − x‖2 ≤
(

r

3D
√
n

)2

D2 =
r2

9n
. (2)

Since y ∈ B′ implies that ‖y− x‖ ≤ r′ = (1− β)r and 0 ≤ α, β ≤ 1 implies that (1−α)2(1− β)2 ≤
(1− β), the second term of the right-hand side is bounded by

(1− α)2‖y − x‖2 ≤ (1− β)r2 = (1− 2

n
)r2. (3)
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Finally, the definitions of α, v, c2 and T1 imply

2α(1 − α)(x∗ − x)T (y − x) ≤ 10

3
(1− β)c2

r2

n
≤ 5r2

3n
. (4)

(2), (3), (4) inserted in (1) yields

‖z − x‖2 ≤
(

1

9n
+ 1− 2

n
+

5

3n

)
r2 ≤ r2.

Next we show that z gives the desired improvement over x. By concavity of G

G(z) −G(x) ≥ α(G(x∗)−G(x)) + (1− α)(G(y) −G(x)). (5)

The second order Taylor expansion of G in y around x yields

G(y)−G(x) = ∇G(x)T (y − x) +
1

2
G′′(w;x′)‖y − x‖2

≥ −5c1r
′

√
n

‖∇G(x)‖ − 1

2
νr′2

≥ −5c1r√
n
‖∇G(x)‖ − 1

2
νr2

≥ −15σr2√
n

‖∇G(x)‖ − 1

2
νr2, (6)

where x′ ∈ [x, y], w = (y − x)/‖y − x‖, and we used assumption A.3 for the first inequality. Using
the definition of α, (5) and (6) yield

G(z)−G(x) ≥ r

3D
√
n
(G(x∗)−G(x)) −

(
15σ√
n
‖∇G(x)‖ + 1

2
ν

)
r2.

Since we assumed G(x∗)−G(x) ≥ ǫτD, using ‖∇G(x)‖ ≤ τ (assumption A.2), leads to

G(z)−G(x)

G(x∗)−G(x)
≥ r

3D
√
n
−

(
15στ/

√
n

ǫτD
+

ν/2

ǫτD

)
r2.

Since r ≤ ǫτ
90στ+3ν

√
n
, a simple calculation now gives

G(z)−G(x)

G(x∗)−G(x)
≥ r

6D
√
n

(7)

Hence
G(z) −G(x) ≥ r

6D
√
n

(
G(x∗)−G(x)

)
≥ ǫτr

6
√
n
,

as required. In this event,

Ĝ(z) − Ĝ(x) ≥ G(z) −G(x)− 2ǫ0 ≥ ǫτr

6
√
n
− ǫτr

12
√
n

=
ǫτr

12
√
n
,

so the Ball Walk will accept.
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If the Ball Walk accepts, then we know that

G(z) −G(x) ≥ Ĝ(z)− Ĝ(x)− 2ǫ0 ≥ ǫτr

12
√
n
− ǫτr

12
√
n

= 0, (8)

thus the Ball Walk algorithm never causes the value of G(x) to decrease.

Theorem 2.2. With probability at least 1 − η, the number of samples from a ball that the Ball
Walk algorithm requires to reach a point x with G(x∗)−G(x) ≤ ǫτD is bounded from above by

4200
√
nD ln(1/ǫ) ln(1/η)

σr2
.

Proof. From (7) in the proof of Theorem 2.1, with probability at least 120
σr we have

G(x∗)−G(z)

G(x∗)−G(x)
= 1− G(z) −G(x)

G(x∗)−G(x)
≤ 1− r

6D
√
n
,

and the Ball Walk accepts the step. Moreover, the concavity of G and assumption A.2 imply that
G(x∗) −G(y) ≤ τD for all feasible y, hence also for the starting point x0. Let us call a good step
one in which the improvement is as in (7), and note that no step results in a decrease in G(x).
Then, after k good steps, we obtain a point xk with

G(x∗)−G(xk) ≤
(
1− r

6D
√
n

)k
τD ≤ τD exp

(
− kr

6D
√
n

)
≤ ǫτD.

when

k ≥ 6
√
nD log(1/ǫ)

r
.

Let K = 700k ln(1/η)/(σr). Then, using Chernoff’s inequality, the probability that in K steps
there are fewer than k good steps is at most

exp
(
− 1

3

(5k ln(1/η) − k

5k ln(1/η)

)2
5k ln(1/η)

)
= exp

(
− k

(
5 ln(1/η) − 1

)2

15 ln(1/η)

)

≤ exp
(
− k ln(1/η)

)
= ηk ≤ η,

provided η ≤ e−1 and k ≥ 1.

Note that the bound of Theorem 2.2 is indeed polynomial in the parameters of the problem, since
r is a rational function of the problem parameters.

3 Two-stage stochastic programming

In this section we describe briefly stochastic linear programming problems. Problems of this type
have been studied since they were proposed in the mid 1950’s [2], [4], [30]. They model optimi-
sation under uncertainty. Such models are useful in many practical situations. Obtaining exact
information about all parameters in a practical optimisation problem is often impossible.

As an example, think of allocating funds to a variety of possible investments so as to maximise
profit under a budget restriction. Usually at the moment the investment decision is to be made
there is no certainty at all about the future yields of the various investments. Neither might there
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be exact information about the amounts needed to invest in a certain given project. At best one
might hope to have some idea of what these parameter values could be, and to express this in the
form of probability distributions. In this way we arrive at stochastic programming problems.

Suppose that we have a linear programming problem in which some parameters are random. The
random variables we indicate by putting a tilde over them.

max px

subject to Ax ≤ b

T̃ x ≤ ξ̃

with b ∈ R
m, ξ̃ ∈ R

d, and A an m× n matrix, T̃ an d× n matrix, and p ∈ R
n.

We assume that probability distributions are given for the random matrix T̃ and the random vector
ξ̃. The above model is clearly ill-defined since a solution x that is optimal for one realisation of T̃
and ξ̃ may even be infeasible for another.

Two main directions have been taken in the literature to arrive at sensible models. In the con-
ceptually easiest, violation of the uncertain constraints is allowed to occur with a probability that
does not exceed a prespecified level, giving the so-called probabilistic constraints problem. The best
comprehensive survey of this field is [25]. The paper of Kannan and Nolte [17] takes a similar
approach to the probabilistic constraints problem that we take here for the model described next.

The other direction is the one we consider in this paper and is called the two-stage stochastic
programming problem or the stochastic recourse problem. Conceptually one should think of the
decision process taking place in two stages. In the first, values for the first stage variables x are
chosen. In the second, upon a realisation of the random parameters, a recourse action is to be
taken in case of infeasibilities. Costs are attached to the various possible recourse actions leading
to the second stage (or recourse) problem, to choose the optimal action given the infeasibilities.
The expected cost of the optimal recourse action is then added to the objective function. For a
comprehensive review of the extensive literature we refer to [3], [11], [25].

A generic mathematical programming formulation for this problem is

max px+E[max{q̃y | Wy ≤ T̃ x− ξ̃, y ∈ R
n1}]

subject to Ax ≤ b.
(9)

with q̃ ∈ R
n1 and W an d × n1 matrix. In the literature W is sometimes allowed to be a random

matrix. However, this may cause the feasible region to be non-convex in terms of x (see [31]). We
concentrate on the so-called fixed recourse model in which W is fixed. Moreover, we assume that
W is such that for any x and any realisation of T̃ and ξ̃ there exists a feasible solution y in the
second stage problem. This property of W is called the complete recourse property, and the model
is accordingly called the complete recourse model (see e.g. [3]).

It is well known that the objective function of (9) is concave (see [32, 31]). Therefore, the two-
stage stochastic programming problem boils down to maximising a concave function over a convex
(polyhedral) set. Thus, we can use our Ball Walk algorithm to solve this problem if we know that
the objective function and the convex feasible set satisfy our smoothness conditions. It will be clear
that this is not true for the feasible set, which is a polyhedron. We will come to this point later,

8



in Section 5. However, another serious obstruction against using Ball Walk is that this algorithm
requires an oracle that gives function values on request. As will be clear from the next section, it is
exactly the evaluation of the objective function which makes the two-stage stochastic programming
problem so excessively hard to solve. Therefore, the assumption that a function evaluation oracle
exists for these problems significantly hides their computational difficulty.

Therefore, before adapting the Ball Walk algorithm to solve two-stage stochastic programming
problems in Section 5, we first devise a suitable function evaluation oracle in Section 4.

Our Ball Walk algorithm algorithm is certainly not among the first randomised approaches to
solving two-stage stochastic programming problems. There is an extensive literature on sampling
based methods, see a.o. [5, 13, 18, 20, 26]. In all these papers statistical convergence of the methods
is analysed, but none considers complexity issues. The first one in that sense was the work by
Kleiwegt, Shapiro and Honem-de-Mello, [19] in a version of the so-called sample average method,
in which scenarios of the random parameters are sampled and then an approximate problem is
solved, the so-called deterministic equivalent problem, with discrete distributions estimated by the
samples. They give a bound on the number of samples needed to to find a near-optimal solution
that is polynomial in the dimension of the problem. The running time is however also a function
of a parameter based on the distribution of the scenarios. It was in [27] and the aforementioned
papers of [29] and [23] that running times became independent of distribution functions.

4 Computation of the objective function

As we pointed out in the Introduction, the main difficulty in solving the two-stage stochastic
programming problem is the computation of the objective function. We concentrate in the rest of
the paper on the version of (9) in which only the right hand side coefficients ξ̃ are random. Thus, q
and T are fixed. We also suppress the tilde on ξ. We use the notation G for the objective function,
i.e.

max
x∈S

G(x) = px+Q(x), (10)

with
Q(x) = Eξ[max{qy|Wy ≤ Tx− ξ, y ∈ R

n1}].
and

S = {x ∈ R
n|Ax ≤ b}

In this section we describe a fpras for evaluating Q(x) and therefore for evaluating the objective
function G(x). It is based on a Markov chain approach, where we sample approximately according
to the known density function of ξ, compute the value of the linear program and take the average
over the values obtained from the sample.

The only source of randomness is ξ, which we assume is described by a given density function
f : Rd → R. Thus,

Q(x) =

∫
v(Tx− ξ)f(ξ)dξ

with
v(Tx− ξ) = max{qy|Wy ≤ Tx− ξ, y ∈ R

n1}.

We require some mild conditions on f . We cannot expect to approximate Q efficiently for arbitrary
f , since it is known that there exist counting functions which are NP-hard to approximate, even
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in the relative sense [14]. Therefore we assume the following conditions, borrowed from volume
computation [1].

Assumptions B:

1. f is log-concave, i.e. log f is concave on its support supp f ;

2. f has a negligible measure outside B(0, R), i.e. for all ϕ > 0, there exists R ≥ 4d such that∫
‖ξ‖≥R f(ξ)dξ ≤ ϕ;

3. log f is Lipschitz-continuous, i.e. there exists θ > 0 such that | log f(ξ)− log f(ξ′)| ≤ θ‖ξ−ξ′‖
for all ξ, ξ′ ∈ supp f ;

4. We are given a ξ0 ∈ B(0, R) with f(ξ0) ≥ R−γd for some absolute constant γ, where R is as
chosen in B.2 above. This implies that we know a good starting point for the Markov chain,
a so called “warm start”;4

5. the directional derivative v′(w;Tx− ξ) is uniformly bounded for all unit vectors w ∈ R
d, i.e.

there exists λ > 0 such that for all ξ ∈ supp f and x ∈ S, |v′(w;Tx− ξ)| ≤ λ;

6. The rows of T are scaled to have unit norm. Thus ‖T‖ ≤
√
d.

7. There exist x0 ∈ R
n, Rin, Rout ∈ R+ such that B(x0, Rin) ⊆ S ⊆ B(x0, Rout). Let κ =

Rout/Rin be the rounding number or aspect ratio of the polytope S.

Conditions B.1–B.4 do not severely restrict the instances, since (with minor technical changes)
all the most important distributions, for example those from the exponential family, meet the
requirements.

Condition B.5 requires that the function v(·) does not vary too rapidly. Condition B.6 is clearly
not restrictive, and B.7 is discussed in the next section. We don’t use either of B.6 or B.7 until the
following section, but give them here to have a complete overview of all our conditions.

To sample according to f , we define a Metropolis random walk that has f restricted to B(0, R) as
its steady state density function. Note that, by assumption B.2, the restricted density f̂ satisfies
f ≤ f̂ ≤ f/(1 − ϕ). If ϕ is assumed negligible, then by B.1 and B.5 we can suppose that this
simply contributes a negligible amount to the approximation error for Q(x). Thus we will not need
to draw a distinction between f and f̂ in what follows and we will use the notation f , though it
should read f̂ .

To sample from f we define a random walk that has f as its steady state density. One step of the
random walk is defined as follows. Suppose the walk is at x ∈ B(0, R). We choose uniformly at
random a point y in a ball with center x and radius δ, to be specified later. If y is not in B(0, R), we
stay at x. Otherwise, if f(y) ≥ f(x), we move to y, else we move to y with probability f (y)/f(x).
Formally, the transition kernel p(x, y) (x 
= y) for moving from x to y in one step of the random
walk is given by

p(x, y) =

⎧
⎨
⎩

1

vol(B(0, δ))
min

{
1,

f(y)

f(x)

}
if y ∈ B(0, R), 0 < ‖x− y‖ ≤ δ,

0 otherwise.

4If necessary, such a point can be found with a preliminary convex optimisation.
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Note that p(x, x) is an atom 1 −
∫
y 	=x p(x, y) dy. It is easy to see, by time reversibility, that the

steady state distribution of this random walk has density proportional to f(x).

In the following we will use techniques and results from volume estimation [7, 16] to prove that this
chain mixes rapidly, i.e. converges fast to the steady state. We first introduce some notation and
state the relevant results from the literature.

Theorem 4.1. Dyer and Frieze [6]
Let S ⊂ R

d be a convex body with diameter D and f be a log-concave function defined on S with π
the induced probability measure on S. Let S1, S2 ⊂ S, t ≤ dist (S1, S2) = minx∈S1,y∈S2

‖x − y‖. If
S0 = S \ (S1 ∪ S2)), then

min{π(S1), π(S2)} ≤ D

2t
π(S0). �

The quantity 2/D is called the isoperimetric constant Iso(S) of S.
Given a random walk with stationary distribution π defined on a set S, its conductance is defined
as

Φ = inf
{S⊂S|0<π(S)≤1/2}

∫
S Pu(S̄)dπ(u)

π(S)
,

where Pu(S̄) is the probability of moving in one step from point u in S ⊂ S to a point in S̄, the
complement of S in S.
The local conductance of a Markov chain at a point x is defined as the probability of moving to
any point y 
= x in one step.

Theorem 4.2. Kannan [15]
Consider a Metropolis random walk using balls of radius δ in a convex set S ⊂ R

d which has local
conductance at least χ at every point. Then the conductance Φ of the walk is at least

Iso(S)χ2δ

32
√
d

. �

Theorem 4.3. Lovasz and Simonovits [21]
Let f0 be the initial density of a Metropolis random walk on R

d with stationary density f . Define

M(f0, f) = sup
{S⊂Rd|0<

∫
S
f≤1/2}

|
∫
S f −

∫
S f0|√∫

S f
.

Let fk be the density of the Markov chain after k steps. Then

sup
S⊂Rd

∣∣∣∣
∫

S
f −

∫

S
fk

∣∣∣∣ < M(f0, f)

(
1− Φ2

2

)k

. �

Theorem 4.4. Using the Metropolis random walk, we can sample in B(0, R) ⊂ R
d according to a

density f ′ with supS⊂Rd |
∫
S f −

∫
S f ′| < ǫ in K ′ steps, where

K ′ = 8 · 104R2d3e4θ
(
ln

1

ǫ
+ (γ + 1)d lnR

)
.
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Procedure Estimate
begin

Q ← 0;

K ←
⌈
8λ2R2 ln(2/ρ)

ǫ2

⌉
;

for ℓ ← 1, . . . ,K do;
run the Metropolis walk for K ′ steps,
starting from ξ0;
compute v(Tx− ξ) for the resulting sample ξ;

Q ← Q+ v(Tx− ξ);
endfor;

Q ← Q
K ;

end;

Figure 2: The approximation algorithm for Q(x)

Proof. Theorem 4.1 gives an isoperimetric constant of 1
R for a random walk on B(0, R). The

Lipschitz continuity (assumption B.3) implies that the acceptance function varies only by a factor
e−θδ ≥ e−θδ over B(x, δ). Moreover, vol(B(x, δ) ∩ B(0, R)) ≥ 0.4B(x, δ), if x ∈ B(0, R). To see
this note that the intersection contains a cap of B(x, δ) at distance at most δ2/(2R) from x, by
elementary geometry. Lemma 2.2 with c = 1/(2R) now implies the volume of the cap is at least
1/2−1/(3R) > 0.4, by assumption B.2. Thus, choosing δ = 1√

d
implies a constant local conductance

χ ≥ 0.4e−θ√
d

.

Applying these results, Theorem 4.2 implies a lower bound on the conductance Φ of the walk of
1

200Rd
√
de2θ

. Theorem 4.3 then yields

sup
S⊂Rd

∣∣∣∣
∫

S
f −

∫

S
f ′
∣∣∣∣ < M(f0, f)

(
1− Φ2

2

)K ′

We choose the uniform distribution on B(ξ0, δ) as the initial density f0, where ξ0 is the point guar-
anteed by assumption B.4. assumption B.3 again implies that the acceptance function varies over
B(ξ0, δ) only by a factor θδ. These, together with assumption B.2, imply M(f0, f) = e−θR(γ+1)d,
after some calculation.

# . . . . . . . . . I admit that I could not reproduce the calculations, so I just replaced
the θ by e−θ, supposing that our previous calculations were correct and using the
correct bound e−θδ ≥ e−θδ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .#

In Figure 2 we define the procedure Estimate based on the Markov chain described above to compute
an approximation of the value of Q(x).

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In the algorithm and in the
theorem below we had not changed the L, which we had in the first version as the
uniform bound on the value of v(Tx − ξ) i.o. the present assumption B.5 (a bound
on the directional derivative (to be more in line with Shmoys-Swamy)). I changed

12



this at various places. Maybe you see a better way to use the new Assumption B.5
#

Theorem 4.5. With probability 1− ρ, procedure Estimate computes QK(x) ∈ [Q(x)− ǫ,Q(x) + ǫ]

in K =
⌈
8L2 ln(2/ρ)

ǫ2

⌉
samples.

Proof. Let QK(x) = 1
K

∑K
i=1 v(Tx − ξi), with ξ1, · · · , ξK independent samples generated by the

Metropolis random walk. Thus, E[QK(x)] =
∫
v(Tx−ξ)fK ′(ξ)dξ, where fK ′ is the density produced

by the Metropolis random walk when run with error parameter ǫ′ = ǫ/4λ. Since we assume that
the directional derivative of v is uniformly bounded by λ by assumption B.5, Hoeffding’s inequality
implies

Pr{|QK(x)−E[QK(x)]| > 1
2ǫ} ≤ 2 exp

(
− ǫ2K2

8(λR)2

)
,

# . . . . . . . . . . .Check Hoeffding’s. Should be K2 i.o. K if I am right. This would have
implications for the choice of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #

since K ≥ 8λ2R2 ln(2/ρ)ǫ−2. Theorem 4.4 yields

|E[QK(x)]−Q(x)| =

∣∣∣∣
∫

v(Tx− ξ)fK ′(ξ)dξ −
∫

v(Tx− ξ)f(ξ)dξ

∣∣∣∣

≤ λR

∫
|f(ξ)− fK ′(ξ)|dξ

= 2λR

∫

f≤f
K′

(fK ′(ξ)− f(ξ))dξ

≤ 2λRǫ′ = 1
2ǫ,

Combining these, we see that Pr{|QK(x)−Q(x)| > ǫ} ≤ ρ.

Corollary 4.1. In K · K ′ = O
(
γR4d3λ2e4θ

ǫ2
log 1

ǫ logR log 1
ρ

)
steps, procedure Estimate computes

QK(x) ∈ [Q(x)− ǫ,Q(x) + ǫ]. �

Using the approximation algorithm for the objective function G and applying the ellipsoid algorithm
in [12] to our problem, under our assumptions we would have a fpras for the stochastic recourse
problem. The following theorem follows easily from taking ρ = ζ/N in Theorem 4.5, where N is
the required number of steps of the ellipsoid algorithm.

Theorem 4.6. Under assumptions B.1–B.5, with probability at least 1 − ζ, the ellipsoid algo-
rithm, using procedure Estimate to approximately evaluate G, will solve the two-stage stochastic
programming problem (10) to within additive error ǫ, in a number of arithmetic operations bounded
polynomially in the input parameters, 1/ǫ and log 1/ζ. �

The ellipsoid algorithm is complicated to apply and can be very slow. Therefore we combine the
method for approximate function evaluations with the method of Section 2 to obtain a simple
randomized local improvement algorithm. Our earlier results will then imply that, with high
probability, a solution is obtained that is close to optimal.
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5 Random directions for two-stage stochastic programming

In this section we will extend the Ball Walk approach to solve the two stage stochastic programming
problem. Recall the formulation (10) in Section 4. We assume conditions B.1–B.5, which we
required previously for the randomized approximate computation of Q(x), and now we also assume
that condition B.6 is satisfied.

It turns out that these conditions on the density function also imply smoothness of the objective
function, required for the Ball Walk algorithm of Section 2, as we will show.

Lemma 5.1. Suppose x ∈ S. Under assumptions B.1–B.6, we have

‖∇G(x)‖ ≤ ‖p‖+ λ
√
d, and ‖∇2G(x)‖ ≤ λθd.

As a result we may choose the smoothness parameters τ and ν of G (assumptions A.2, A.3) to be
‖p‖+ λ

√
d and λθd, respectively.

Proof. Let w be a unit vector and u = Tw/‖Tw‖. Then

|Q′(w;x)| =

∣∣∣∣ limt→0

∫
v(Tx+ tTw − ξ)f(ξ)− v(Tx− ξ)f(ξ)

t
dξ

∣∣∣∣

=

∣∣∣∣
∫

lim
t→0

v(Tx+ tTw − ξ)− v(Tx− ξ)

t
f(ξ)dξ

∣∣∣∣

= ‖Tw‖
∣∣∣∣
∫

v′(u;Tx− ξ)f(ξ)dξ

∣∣∣∣

≤ ‖Tw‖
∫

|v′(u;Tx− ξ)|f(ξ)dξ

≤ λ‖Tw‖
∫

f(ξ)dξ

≤ λ
√
d,

where we have used B.6 to give ‖Tw‖ ≤
√
d. Also

|Q′′(w;x)| = ‖Tw‖
∣∣∣∣ limt→0

∫
v′(u;Tx+ tTw − ξ)f(ξ)− v′(u;Tx− ξ)f(ξ)

t
dξ

∣∣∣∣

= ‖Tw‖
∣∣∣∣ limt→0

∫
v′(u;Tx− ξ)f(ξ + tTw)− v′(u;Tx− ξ)f(ξ)

t
dξ

∣∣∣∣

= ‖Tw‖2
∣∣∣∣
∫

v′(u;Tx− ξ)f ′(u; ξ)dξ

∣∣∣∣

≤ ‖Tw‖2
∫

|v′(u;Tx− ξ)| · |f ′(u; ξ)|dξ

≤ θ‖Tw‖2
∫

|v′(u;Tx− ξ)|f(ξ)dξ

≤ λθ‖Tw‖2
∫

f(ξ)dξ

≤ λθd,

where we have used that assumption B.3 implies |f ′| ≤ θf . The lemma follows.
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Thus, assumptions A.2 and A.3 in Section 2 are satisfied. We know that G is concave, satisfying
also assumption A.1. Therefore, we need to be concerned now with smoothing the underlying
feasible set S = {x ∈ R

n|Ax ≤ b}. Since S is a polyhedron, it is not smooth. Therefore we use the
“roundedness” assumption B.7 on S. This allows us to consider a slightly larger (non-polyhedral)
set, which is indeed smooth, and apply the Ball Walk to this larger set.

Recall κ = Rout/Rin. Note that κ resembles a “condition number”: it is small if the polytope is
“well-rounded” and large if it is not. Thus we will assume κ is not too large. In fact any polytope
can be “rounded” to have κ = O(

√
n), but here this may be undesirable since it can adversely

affect the parameters of G. From now on we assume that S satisfies the above assumption.

To facilitate the exposition, let A(i) denote the ith row of A, and suppose A is normalised so that
‖A(i)‖ = 1 (i = 1, . . . ,m). Then, for x ∈ R

n, let

(A(i)x− bi)
+ =

{
A(i)x− bi if A(i)x > bi,
0 otherwise,

be the distance from x to the halfspace A(i)y ≤ bi. Consider the function F (x) =
∑m

i=1((A
(i)x −

bi)
+)2, and, for a given μ > 0, define the set Sµ = {x ∈ R

n|F (x) ≤ μ}. Note that S ⊆ Sµ and Sµ

is convex. The following lemmas establish the required smoothness condition for Sµ.

Lemma 5.2. For all x, z ∈ R
n, ‖z‖ = 1, 0 ≤ F ′′(z;x) ≤ 2m.

Proof. We have

∇F (x) = 2
∑

i∈I(x)
(A(i)x− bi)A

(i), (11)

where I(x) = {i : A(i)x > bi}. Since F ′(z;x) = ∇F (x).z,

F ′′(z;x) = 2
∑

i∈I(x)
(A(i)z)2. (12)

Clearly F ′′(z;x) ≥ 0, and the upper bound follows from |I(x)| ≤ m and the Cauchy-Schwarz
inequality.

In particular, it follows that F is a convex function.

Lemma 5.3. Let S have rounding number κ and 0 < μ ≤ 1. Then, for all x ∈ Sµ,

κ‖∇F (x)‖ ≥
√

F (x).

Proof. Assume without loss that x0 = 0 and Rin = 1, so Rout = κ. Also bi ≥ 1 (i = 1, . . . ,m), by
considering the points A(i) ∈ ∂B(0, 1). Fix x ∈ Sµ, let

ψ = min
1≤i≤m

{‖x‖bi
A(i)x

: A(i)x > 0

}
,

and let ℓ be the minimizing i. Let x̃ = ψx/‖x‖, so ψ = ‖x̃‖. Clearly ψ ≤ κ, since otherwise
A(i)x̃ ≤ bi (i = 1, . . . ,m), but x̃ /∈ B(0, κ). Now

√
μ ≥ √

μ/bℓ ≥ (A(ℓ)x− bℓ)/bℓ = ‖x‖/ψ − 1 = ‖x‖/‖x̃‖ − 1.
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Thus ‖x‖ ≤ (1 +
√
μ)‖x̃‖ ≤ 2κ. Thus, from (11),

∇F (x).x = 2
∑

i∈I(x)
(A(i)x− bi)A

(i)x ≥ 2
∑

i∈I(x)
(A(i)x− bi) ≥ 2

√
F (x),

since A(i)x > bi ≥ 1 for i ∈ I(x) and F (x) =
∑

i∈I(x)(A
(i)x−bi)

2. Therefore, using Cauchy-Schwarz,

‖∇F (x)‖ ≥ 2
√

F (x)/‖x‖ ≥
√

F (x)/κ,

and the result follows.

Lemma 5.4. Let 0 < μ ≤ 1, and σ = (2mκ/3)
√

n/μ. Then, for all x ∈ Sµ,

vol(B(x, r) ∩ Sµ)/vol(B(x, r)) ≥ 1
2 − σr.

Proof. Assume without loss that x is on the boundary of Sµ. Using Taylor’s theorem and Lemma 5.2,
for any displacement z,

F (x+ z) ≤ F (x) +∇F (x).z +mz2 = μ+∇F (x).z +mz2,

and the subgradient inequality gives

F (x+ z) ≥ F (x) +∇F (x).z = μ+∇F (x).z.

Thus, if F (x+ z) = μ, −mz2 ≤ ∇F (x).z ≤ 0. Let H denote the half-space ∇F (x).z ≤ 0, and ∂H
its boundary. Then, using Lemma 5.3,

dist (z, ∂H) =
−∇F (x).z

‖∇F (x)‖ ≤ mz2

‖∇F (x)‖ ≤ mκz2√
F (x)

=
mκz2√

μ
.

Letting B denote B(x, r), we see that B ∩ Sµ contains a cap of B at distance at most mκr2/
√
μ

from x. Thus, by Lemma 2.2,

vol(B ∩ Sµ)

vol(B)
≥ 1

2
− 2mκ

√
n

3
√
μ

r.

Using the last two lemmas we can now apply the Ball Walk to optimize G over Sµ. But, we are
of course interested in optimizing G over the set S ⊂ Sµ. Thus, we will use Procedure Near (see
Figure 5), which finds a point arbitrarily close to S after we have optimized over the larger set
Sµ. The idea is to go repeatedly along the gradient of F , which is easy to compute, until we are
exponentially close to S. We will show that this procedure yields a point that is not much worse
than the point resulting from the Ball Walk Algorithm, for an appropriate choice of μ.

Theorem 5.1. Let x ∈ Sµ. Then, for any β < μ, procedure Near finds a y ∈ Sβ such that
‖x− y‖ ≤ 2

√
μ/β ln(μ/β). The running time is O(κ2m2n ln(μ/β)).

Proof. The claim on the running time is easy to verify. Without loss, we will prove the lemma for
a point x on the boundary of Sµ, i.e. F (x) = μ. We start the procedure at x with F (x) = μ and

x̂ = x−
√

F (x)

2κm

∇F (x)

‖∇F (x)‖ .
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Procedure Near(x, β)
begin

For i = 1 to ⌈4κ2m ln(μ/β)⌉ do;

Calculate F (x),∇F (x)

x̂ = x−
√

F (x)

2κm
∇F (x)

‖∇F (x)‖
x = x̂;

endfor;
return x;

end;

Figure 3: The Procedure Near

Using Lemma 5.2, the Taylor expansion yields

F (x̂) ≤ F (x)−
√

F (x)

2κm
‖∇F (x)‖+m

(√
F (x)

2κm

)2

.

Now, using Lemma 5.3, this implies

F (x̂) ≤ F (x)− (
√

F (x))2

2κ2m
+

F (x)

4κ2m
= F (x)

(
1− 1

4κ2m

)
.

We repeat this process k = 4κ2m log(μ/β) times to get a point y with

F (y) ≤ F (x)

(
1− 1

4κ2m

)k

≤ μ

(
1− 1

4κ2m

)k

≤ β.

Furthermore, letting y be the final point returned by Near,

‖y − x‖ ≤ k

√
μ

2κm
≤ 2κ

√
μ ln(μ/β).

Hence, using the subgradient inequality,

G(y) ≥ G(x) − τ‖y − x‖ ≥ G(x)− 2τκ
√
μ ln(μ/β).

Thus, since μ ≤ 1, we will have G(y) ≥ G(x)− ǫ provided

μ ≤
(

ǫ

2τκ ln(1/β)

)2

. (13)

Note that this is polynomial in the relevant parameters, in particular the number of bits of accuracy
required.

Collecting the last results and inserting the right parameters in the general time bounds of the Ball
Walk we get our final result.
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Theorem 5.2. Under the assumptions B.1–B.7, with probability at least (1− ζ), an application of
the Ball Walk combined with the procedures Estimate and Near will find y with

G(y) ≥ G(x∗)− ǫ

and
Ay ≤ b+

√
β,

in time polynomial in the parameters of the problem, 1/ǫ, log(1/β) and log(1/ζ).

Proof. By using a small enough error probability at each step, the probability of making an error
can be made at most ζ over any polynomial number of steps (cf. the discussion before Theorem 4.6).

Choose μ =
(

ǫ
2τκ ln(1/β)

)2
. Lemmas 5.1, 5.4 and Theorems 4.5, 5.1 then imply the theorem.

6 Postlude

We have described a simple randomized approximation scheme for convex optimisation problems,
with two-stage stochastic programming problems as the main application.

There have been several proposals to use random walks for convex optimisation since this paper
was first written. The algorithm of Bertsimas and Vempala [?] uses random walks to generate
hyperplanes which “bisect” the solution space. Repeating this sufficiently many times locates the
solution to any desired precision. This is a very different approach from the algorithm given here.
The computational complexity of Bertsimas and Vempala’s algorithm is polynomial in terms of a
standard measure of the size of the input, whereas we have worked with a different, less standard,
measure of input size.

In [?], Lovász and Vempala adapt their “hit-and-run” algorithm for sampling from convex sets
to optimise a logconcave function. The algorithm proceeds in phases, by modifying the objective
function and sampling from the associated logconcave distribution, until an almost-optimal point
is identified. The algorithm is shown to have polynomial time complexity in the standard model.

The paper of Kannan and Narayanan [?] uses random walks, similarly to the way they are used
here, to optimize over polytopes. However, their steps are adaptive - they depend on the shape
of the “Dikin ellipsoid” at the current point. These ellipsoids depend on knowing all the linear
constraints and so the method only works for polytopes. It is an open question whether such an
adaptive method exists for general convex sets, and hence to improve the algorithm presented here.

With respect to the application, it was as early as 1968 that Ermoliev and Shor proposed a random
walk, based on stochastic gradients, to solve the two-stage stochastic programming model and ana-
lyzed global convergence [10]. As for the analysis of randomised algorithms for two-stage stochastic
programming problems from a complexity theoretic point of view, some other papers close to our
approach have appeared in the literature more recently [27, 29, 23]. We compare our paper to the
ones by Shmoys and Swamy [29] and by Nesterov and Vial [23]. We refer to [23] for a comparison
to the results on the sample average method by Shapiro and Nemirovski [27].

In fact, the results by Nesterov and Vial were obtained already before, [24], but as they notice, in
the introduction of [23], “at that time worst-case complexity analysis in Stochastic Programming
was not a common practice.” Similarly, the work done on our paper dates back to the turn of
the millenium [8]. “It was the attention received by the work of Shapiro and Nemirovski [27] (and
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Shmoys and Swamy [28]) that confirmed that the community became ready to accept these new
notions.”

Both [29] and [23] use stochastic subgradients. In [23] this is employed in a subgradient-descent
approach for optimization of the convex objective function, whereas in [29] it is employed in an
ellipsoid method. In this way expensive function evaluations can be avoided to find the near-optimal
solution. Indeed in [29] the optimal solution value does not belong to the output of their method.
In [23] only in the final solution the function evaluation is made, by sampling from the distribution
of the stochastic parameters. Of course, this could be done as well in [29] but it would reduce the
strength of their complexity result (that we discuss below), which in fact it does also in [23]. We
use the simple Ball Walk algorithm, which is more stable than the ellipsoid algorithm, and outputs
both solution and its value. At this stage of their development all three algorithms are only of
academic interest.

A limitation of [29] is that their result applies only to problems in which the first and the second
stage decisions are of exactly the same quality. The second stage cost coefficients are higher than
the first stage ones. The algorithm of [23] and our algorithm apply to any setting, including
hierarchical planning models, where the first stage concerns a longer term strategic decision and
the second stage short term operational decisions.

All three approaches yield an fpras under more or less severe assumptions. The advantage of the
limitation in [29] is that it allows a very elegant complexity result: it suffices to assume that a
bound on the maximum ratio between the second and first stage cost coefficients is given as a fixed
parameter; the running time of their algorithm is polynomial in this parameter. They even show
that essentially this cannot be improved. In our case the fixed parameter is the uniform bound on
directional derivatives of the value function. Similarly, in [23] a uniform bound on the Euclidean
norm of the stochastic subgradients is the fixed parameter if, as in [29], only the solution is output.
In order to compute also the value of the solution the running time of the algorithm becomes also
a polynomial function of a bound on the variation of the objective value over its feasible domain
and over the probability space of the stochastic parameters.

All three approaches give an fpras (under the various above restrictions) under the “black box
model” as it was called in [29]. Under this model the size of the input needed to describe the
probability distributions of the random problem parameters is not taken into account in the running
time. In [29] and in [23] an oracle is assumed to give realisations of the random parameters. We
specify how to sample form the distributions. To avoid computational problems we restrict to
specific classes of probability distributions.

As it holds for the other methods, it remains to be seen whether the method that we propose here
is a practically efficient method for solving two-stage stochastic programming problems. In any
case it may provide a starting point for a more practical method. For example, it is likely that
function evaluations do not have to be so precise if we are still far away from the optimum. Indeed,
stochastic programmers have proposed methods that work with more and more accurate function
evaluations as their methods proceed. It remains a challenge to incorporate these and other ideas
that have been developed in stochastic programming research into our algorithmic framework.

Acknowledgements. We thank David Shmoys for stimulation to update and resubmit our tech-
nical report [8] to a journal (the first submission in 2002 was apparently too early).
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[5] Dupačovà, J., Wets, R.J.-B. Asymptotic behavior of statistical estimators and of optimal
solutions of stochastic optimization problems. Annals of Statistics 16, 1988, pp 1517-1549.

[6] Dyer, M. and Frieze, A. Computing the volume of convex bodies: a case where randomness
provably helps. Probabilistic Combinatorics and its Applications, Proceedings of AMS Sym-
posia in Applied Mathematics Vol. 44, 1991, pp. 123-169.

[7] Dyer, M., Frieze, A., Kannan, R. A random polynomial time algorithm for approximating the
volume of convex bodies. Journal of the ACM 38, 1991, pp. 1–17.

[8] Dyer, M., Kannan, R., Stougie, L. A simple algorithm randomised algorithm for convex
optimis; Application to two-stage stochastic programming. Technical Report SPOR-Report
2002-05, Department of Mathematics and Computer Science, Eindhoven Tecnical Universtiy,
Eindhoven, 2002.

[9] Dyer, M., Stougie, L. A note on the complexity of some stochastic optimization problems,
Mathematical Programming 106, 2006, pp. 423–432.

[10] Ermoliev, Y., Shor, N.Z. Method of random walk for the two-stage problem of stochastic
programming and its generalization. Kibernetica 4, 1968, pp. 59–60.

[11] Ermoliev, Y., Wets, R.J-B, (eds.) Numerical techniques for stochastic optimization, Springer-
Verlag, Berlin, 1988.

[12] Grötschel, M., Lovasz, L., Schrijver, A. Geometric algorithms and combinatorial optimization.
Springer Verlag, New York, 1988.

[13] Higle, J.L., Sen, S. Stochastic decomposition: An algorithm for two stage linear programs with
recourse. Mathematics of Operations Research 16, 1991, pp 650-699.

[14] Jerrum, M., Sinclair, A. The Markov chain Monte Carlo method: an approach to approximate
counting and integration. In Approximation algorithms for NP-hard problems, D. S. Hochbaum
(ed.), PWS Publishing, Boston, 1996, pp. 482–520.

[15] Kannan, R. Markov chains and polynomial time algorithms. Proceedings of the 35th Symposium
on Foundations of Computer Science, 1994, pp. 656–671.

[16] Kannan, R., Lovasz, L., Simonovits, M. Random walks and an O∗(n5) volume algorithm for
convex bodies. Random Structures and Algorithms 11, 1997, pp. 1–50.

20



[17] Kannan, R., Nolte, A. Local search in smooth convex sets. Proceedings of the 39th Symposium
on Foundations of Computer Science, 1998, pp. 218–226.

[18] King, A.J., Rockafellar, R.T. Asymptotic theory for solutions in statistical estimation and
stochastic optimization. Mathematics of Operations Research 18, 1993, pp 148-162.

[19] Kleywegt, A.J., Shapiro, A., Homem-De-Mello, T. The sample average approximation method
for stochastic discrete optimization. SIAM Journal of Optimization 12, 2001, pp. 479–502.

[20] Mak, W.-K., Morton, D.P., Wood, R.K. Monte-Carlo bounding techniques for determining
solution quality in stochastic programs. Operations Research Letters 24, 1999, pp 47-56.

[21] Lovasz, L., Simonovits, M. Random walks in a convex body and an improved volume algorithm.
Random Structures and Algorithms 4, 1993, pp. 359–412.

[22] Nemirovski, A., Nesterov, Y. Interior point polynomial methods in convex programming, SIAM
Press, 1994.

[23] Nesterov, Y., Vial, J-P. Confidence level solutions for stochastic programming. Automatica 6,
2008, pp. 1559–1568.

[24] Nesterov, Y., Vial, J-P. Confidence level solutions for stochastic programming, Technical Re-
port Core Discussion Papers, 2000. http://www.core.ucl.ac.be/services/psfiles/dp00/dp2000-
13.pdf

[25] Prekopa, A., Stochastic programming, Mathematics and its applications Vol. 324, Kluwer,
Dordrecht, 1995.

[26] Shapiro, A., Homem-de-Mello, T. A simulation-based approach to two-stage stochastic pro-
gramming with recourse. Mathematical Programming 81, 1998, pp 301-325.

[27] On complexity of stochastic programming problems. In Jeyakumar, V., Rubinov, A.M. (eds.)
Continuous optimization: Current trends and applications, Springer Verlag, Berlin, 2005,
pp 111–144.

[28] Shmoys, D.B., Swamy, C. Stochastic optimization is (almost) as easy as deterministic opti-
mization. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, 2004, pp. 228237.

[29] Shmoys, D.B., Swamy, C. An approximation scheme for stochastic linear programming and its
applications to stochastic integer programs. Journal of the ACM 53, 2006, pp. 978–1012.

[30] Tintner, G. Stochastic linear programming with applications to agricultural economics. In
Antosiewicz, H.A. (ed.) Proceedings of the Second Symposium on Linear Programming, Wash-
ington, 1955, pp. 197–207.

[31] Wets, R. Stochastic programming: solution techniques and approximation. In Bachem, A.,
Groetschel M., Korte, B. (eds.) Mathematical programming: the state of the art (Bonn, 1982),
Springer, Berlin, 1983, pp. 566–603.

[32] Wets, R. Stochastic programming. In Optimization, Handbooks of Operations Research and
Management Science Vol. 1, North-Holland, Amsterdam, 1989, pp. 573–629.

21


