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We consider the k-disjoint-clique problem. The input is an undirected graph G in which
the nodes represent data items, and edges indicate a similarity between the corresponding
items. The problem is to find within the graph k disjoint cliques that cover the maximum
number of nodes of G. This problem may be understood as a general way to pose the
classical ‘clustering’ problem. In clustering, one is given data items and a distance function,
and one wishes to partition the data into disjoint clusters of data items, such that the items
in each cluster are close to each other. Our formulation additionally allows ‘noise’ nodes to
be present in the input data that are not part of any of the cliques.

The k-disjoint-clique problem is NP-hard, but we show that a convex relaxation can solve
it in polynomial time for input instances constructed in a certain way. The input instances
for which our algorithm finds the optimal solution consist of k disjoint large cliques (called
‘planted cliques’) that are then obscured by noise edges inserted either at random or by an
adversary, as well as additional nodes not belonging to any of the k planted cliques.

1 Introduction

Given a set of data, clustering seeks to partition the data into sets of similar objects. These
subsets are called ‘clusters’, and the goal is to find a few large clusters covering as much
of the data as possible. Clustering plays a significant role in a wide range of applications;
including, but not limited to, information retrieval, pattern recognition, computational biol-
ogy, and image processing. For a recent survey of clustering techniques and algorithms with
a particular focus on applications in data mining see [3].

In this paper, we consider the following graph-based representation of data. Given a set
of data where each pair of objects is known to be similar or dissimilar, we consider the graph
G = (V,E) where the objects in the given data set are the set of nodes of G and any two
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nodes are adjacent if and only if their corresponding objects are similar. Hence, for this
representation of the data, clustering is equivalent to partitioning G into disjoint cliques.
Therefore, for any integer k, the problem of identifying k clusters in the data containing the
maximum number of objects is equivalent to the maximum node k-disjoint-clique problem of
the corresponding graph G. Given an undirected graph G = (V,E) and integer k ∈ [1, |V |],
the maximum node k-disjoint-clique problem refers to the problem of finding the subgraph
K of G composed of a collection of k disjoint cliques, called a k-disjoint-clique subgraph,
maximizing the number of nodes in K. Unfortunately, since the k = 1 case is exactly the
maximum clique problem, well-known to be NP-hard [10], the maximum node k-disjoint-
clique problem is NP-hard.

In Section 2, we relax the maximum node k-disjoint-clique problem to a semidefinite
program. We show that this convex relaxation can recover the exact solution in two cases.
In the first case, presented in Section 3, the input graph is constructed deterministically
as follows. The input graph consists of k disjoint cliques C1, . . . , Ck, each of size at least
r̂, plus a number of diversionary nodes and edges inserted by an adversary. We show that
the algorithm can tolerate up to O(r̂2) diversionary edges and nodes provided that, for
each i = 1, . . . , k, each node in the clique Ci is adjacent to at most O(min{|Ci|, |Cj|})
nodes in the clique Cj for each j = 1, . . . , k such that i 6= j. In Section 4, we suppose
that the graph contains a k-disjoint-clique subgraph K and some additional nodes, and
the remaining nonclique edges are added to the graph independently at random with fixed
probability p. We give a general formula for clique sizes that can be recovered by the
algorithm; for example, if the graph contains N nodes total and N1/4 planted cliques each of
size Ω(N1/2), then the convex relaxation will find them. We develop the necessary optimality
and uniqueness theorems in Section 2 and provide the necessary background on random
matrices in Section 4.1.

The rationale for this line of analysis is that in real-world applications of clustering, it
is often the case that the sought-after clusters are present in the input data but are hidden
by the presence of noisy data. Therefore, it is of interest to find cases of clustering data in
which the clusters are hidden by noise and yet can still be found in polynomial time.

Our analysis is related in an indirect manner to work on measuring ‘clusterability’ of data,
e.g., Ostrovsky et al. [16]. In that work, the authors prove that a certain clustering algorithm
works well if the data has k ‘good’ clusters. Our assumptions and analysis, however, differ
substantially from [16] (for example, we do not require all the data items to be placed in
clusters), so there is no direct relationship between our result and theirs.

Our results and techniques can be seen as an extension of those in [2] from the maximum
clique problem to the maximum node k-disjoint-clique problem. Indeed, in the k = 1 case,
our results agree with those presented in [2], as well as those found in earlier work by Alon
et al. [1], and by Feige and Krauthgamer [8]. Recent papers by Oymak and Hassibi [17]
and Jalali et al. [14] written subsequently to the initial prepublication release of this paper
extend our results to a more general model for clustered data. Specifically, in [17] and [14] the
authors independently propose new heuristics for partitioning an input graph G into densely
connected subgraphs based on the heuristic for decomposition of a matrix into low-rank and
sparse components considered in [7] and [5]. Under certain assumptions on the input graph,
Oymak and Hassibi [17] and Jalali et al. [14] show that this approach successfully recovers
the correct partition of the graph G into densely connected subgraphs. In particular, the

2



correct partition is recovered when the input graph is composed of several disjoint cliques
obscured by noise in the form of random edge additions and deletions. It is important to
note that our approach can only tolerate noise in the form of edge additions. The lower
bound on the minimum clique size ensuring exact recovery provided by [17] and [14] is equal
to that provided in Section 4, although the conditions ensuring exact recovery provided in
[17] and [14] do not require any explicit upper bound on the number of planted cliques to be
satisfied. On the other hand, exact recovery is guaranteed for our approach in the prescence
of up to O(r̂2) diversionary nodes, while [17] and [14] do not consider noise of this form.

More generally, our results follow in the spirit of several recent papers, in particular
Recht et al. [18] and Candès and Recht [6], which consider nuclear norm minimization, a
special case of semidefinite programming, as a convex relaxation of matrix rank minimization.
Matrix rank minimization refers to the problem of finding a minimum rank solution of a given
linear system. These papers have results of the following general form. Suppose that it is
known that the constraints of the given linear system are random in some sense and that it
is known that a solution of very low rank exists. Then the nuclear norm relaxation recovers
the (unique) solution of minimum rank. We will argue that, in the case that the graph
G contains a planted k-disjoint-clique subgraph K and not too many diversionary edges, a
rank k solution, corresponding to the adjacency matrix of K, of a system of linear equations
defined by the input graph G can be recovered exactly by solving a semidefinite program.

Like many of the papers mentioned in the previous paragraph, the proof that the convex
relaxation exactly recovers the combinatorial solution constructs multipliers to establish that
the combinatorial solution satisfies the KKT optimality conditions of the convex problem.
Herein we introduce a new technical method for the construction of multipliers. In [2], the
multipliers are constructed according to simple formulas because of the fairly simple nature
of the problem. On the other hand, in [6], the multipliers are constructed by projection
(i.e., solving a linear least-squares problem), which entails a quite difficult analysis. This
paper introduces a technique of intermediate complexity: we construct the multipliers as the
solution to a system of invertible linear equations. We show that the equations are within
a certain norm distance of much simpler (diagonal plus rank-one) linear equations. Finally,
the result is obtained from standard bounds on the perturbation of the solution of a linear
system due to perturbation in its coefficients.

2 The Maximum Node k-disjoint-clique Problem

Let G = (V,E) be a simple graph. The maximum node k-disjoint-clique problem
focuses on finding k disjoint cliques in G such that the total number of nodes in these cliques
is maximized. We call a subgraph of G composed of k disjoint cliques a “k-disjoint-clique
subgraph”. This problem is clearly NP-hard since it is equivalent to the maximum clique
problem in the case that k = 1.

The problem of maximizing the number of nodes in a k-disjoint-clique subgraph of G can
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be formulated as the following combinatorial optimization problem

max
S={v1,...,vk}

k∑
i=1

vTi e (1)

s.t. vTi vj = 0, ∀ i, j = 1, . . . , k, i 6= j (2)

[viv
T
i ]uv = 0, if uv /∈ E, u 6= v, ∀ i = 1, . . . , k (3)

vi ∈ {0, 1}V , ∀ i = 1, . . . , k. (4)

Here e denotes the all-ones vector in RN . A feasible solution S = {v1, . . . ,vk} for (1) is the
collection of characteristic vectors of a set of disjoint cliques of G. Indeed, the constraint
(2) ensures that the sets of nodes indexed by S are disjoint and the constraint (3) ensures
that the sets of nodes indexed by S induce complete subgraphs of G and, hence, are cliques
of G. Note that a feasible solution S = {v1, . . . ,vk} need not define a partition of V .
That is, a feasible solution need not correspond to a k-disjoint-clique subgraph of G that
contains every node in V . Unfortunately, finding the solution to a nonlinear program with
binary constraints is NP-hard in general. The formulation (1) may be relaxed to the rank
constrained semidefinite program

max
∑N

i=1

∑N
j=1 Xij

s.t. Xe ≤ e,
Xij = 0, ∀ (i, j) /∈ E s.t. i 6= j
rank (X) = k,
X � 0

(5)

where N = |V |, X is an N×N real symmetric matrix, and the notation “X � 0” means that
X is positive semidefinite. To see that (5) is a relaxation of (1), suppose that {C1, . . . , Ck} ⊆
V defines a k-disjoint-clique subgraph of G. Let S = {v1, . . . ,vk} be the set of characteristic
vectors of {C1, . . . , Ck}. The matrix

X =
k∑
i=1

viv
T
i

|Ci|
(6)

is positive semidefinite with rank equal to k. Note that
∑k

i=1 vi ≤ e since v1, . . . ,vk are
orthogonal binary vectors. It follows that

Xe =
k∑
i=1

(
vi
|Ci|

)
vTi e =

k∑
i=1

vi ≤ e (7)

since vTi e = |Ci|. Moreover,

N∑
i=1

N∑
j=1

Xij = eTXe =
k∑
i=1

vTi e. (8)

Therefore, every feasible solution S for (1) defines a feasible solution of (5) with objective
value equal to the number of nodes in the k-disjoint-clique subgraph defined by S. The
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nonconvex program (5) may be relaxed further to a semidefinite program by replacing the
nonconvex constraint rank (X) = k with the linear constraint tr (X) = k:

max
∑N

i=1

∑N
j=1 Xij

s.t. Xe ≤ e,
Xij = 0, ∀ (i, j) /∈ E s.t. i 6= j
tr (X) = k,
X � 0.

(9)

For every k-disjoint-clique subgraph of G composed of cliques of sizes r1, . . . , rk, (6) defines
a feasible solution X∗ ∈ RN×N for (9) such that

X∗ij =

{
1/r` if both i, j belong to clique `
0 otherwise.

By construction, the objective value of (9) corresponding to X∗ is equal to the number
of nodes in the k-disjoint-clique subgraph and rank (X∗) = k. Using the Karush-Kuhn-
Tucker conditions, we will derive conditions for which X∗ corresponding to a k-disjoint-clique
subgraph of G, as defined by (6), is optimal for the convex relaxation of maximum node k-
disjoint-clique problem given by (9). In particular, these conditions are summarized by the
following theorem.

Theorem 2.1 Let X∗ be feasible for (9). Suppose also that there exists λ ∈ RN
+ , µ ∈ R,

η ∈ RN×N and S ∈ ΣN
+ such that

−eeT + λeT + eλT + µI +
∑

(i,j)/∈E
i 6=j

ηijeie
T
j = S, (10)

λT (X∗e− e) = 0, (11)

〈S,X∗〉 = 0. (12)

Here ΣN
+ is the cone of N ×N positive semidefinite matrices, 〈·, ·〉 is the trace inner product

on RN×N defined by
〈Y, Z〉 = tr (Y ZT )

for all Y, Z ∈ RN×N , ei denotes the ith column of the identity matrix in RN×N for all
i = 1, . . . , N , and e is the all-ones vector in RN . Then X∗ is an optimal solution of (9).

We omit the proof of this theorem, as it is nothing more than the specialization of the
KKT conditions [4] in convex programming to (9).

2.1 Construction of the auxiliary matrix S̃

Our proof technique to show that X∗ is optimal for (6) is to construct multipliers to sat-
isfy Theorem 2.1. The difficult multiplier to construct is S, the dual semidefinite matrix.
The reason is that S must simultaneously satisfy homogeneous linear equations given by
〈S,X∗〉 = 0, requirements on its entries given by the gradient equation (10), and positive
semidefiniteness.
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In this subsection, we will lay the groundwork for our definition of S; in particular, we
construct an auxiliary matrix S̃. The actual multipliers used to prove the optimality of X∗,
as well as the proof itself, are in the next subsection.

Our strategy for satisfying the requirements on S is as follows. The matrix S will be
constructed in blocks with sizes inherited from the blocks of X∗. In particular, let the nodes
contained in the k planted cliques be denoted C1, . . . , Ck, and let the remaining nodes be
Ck+1. Then according to (6), X∗ has diagonal blocks X∗Cq ,Cq

for q = 1, . . . , k consisting of
multiples of the all 1’s matrix. The remaining blocks of X∗ are 0’s. The diagonal blocks of S
will be perturbations of the identity matrix, with the rank-one perturbation chosen so that
each diagonal block of S, say SCq ,Cq is orthogonal to XCq ,Cq .

The entries of an off-diagonal block, say SCq ,Cs must satisfy, first of all, (10). This
constraint, however, is binding only on the entries corresponding to edges in G, since entries
corresponding to absent edges are not constrained by (10) thanks to the presence of the
unbounded multiplier ηij on the left hand side. These entries that are free in (10) are chosen
so that (12) is satisfied. It is a well known result in semidefinite programming that the
requirements 〈S,X〉 = 0, X,S ∈ ΣN

+ together imply SX = XS = 0. Thus, the remaining
entries of S must be chosen so that X∗S = SX∗ = 0. Because of the special form of X∗,
this is equivalent to requiring all row and column sums of SCq ,Cs to equal zero.

We parametrize the entries of SCq ,Cs that are not predetermined by (10) using the entries
of two vectors yq,s and zq,s. These vectors are chosen to be the solutions to systems of linear
equations, namely, those imposed by the requirement that X∗S = SX∗ = 0. We show that
the system of linear equations may be written as a perturbation of a linear system with
a known solution, and we can thus get bounds on yq,s and zq,s. The bounds on yq,s and
zq,s in turn translate to bounds on ‖SCq ,Cs‖, which are necessary to establish the positive
semidefiniteness of S. This semidefiniteness is established by proving that the diagonal
blocks, which are identity matrices plus rank-one perturbations, dominate the off-diagonal
blocks.

Recalling our notation introduced earlier, G = (V,E) has a k-disjoint-clique subgraph K
composed of cliques C1, C2, . . . , Ck of sizes r1, r2, . . . , rk respectively. Let Ck+1 := V \(∪ki=1Ci)
be the set of nodes of G not in K and let rk+1 := |Ck+1|. Let N := |V |. Let r̂ :=
min{r1, r2, . . . , rk}. For each v ∈ V , let nsv denote the number of nodes adjacent to v in Cs
for all s ∈ {1, . . . , k + 1}, and let cl(v) denote index i ∈ {1, . . . , k + 1} such that v ∈ Ci.

Let A(Ḡ) ∈ RN×N be the adjacency matrix of the complement Ḡ of G; that is [A(Ḡ)]i,j =
1 if (i, j) /∈ E and 0 otherwise. Next, fix q, s ∈ {1, . . . , k + 1} such that q 6= s. Let
H = Hq,s ∈ RCq×Cs be the block of A(Ḡ) with entries indexed by the vertex sets Cq and Cs,
and let D = Dq,s ∈ RCq×Cq be the diagonal matrix such that, for each i ∈ Cq, the (i, i)th
entry of D is equal to the number of nodes in Cs not adjacent to i. That is

D = rsI −Diag (nsCq
)

where nsCq
∈ RCq is the vector with ith entry equal to nsi for each i ∈ Cq. Let F = Fq,s = Ds,q.
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Next, define the scalar

c = cq,s :=


r̂

2

(
1

rq
+

1

rs

)
, if s ≤ k

r̂

2

(
1

r̂
+

1

rq

)
, otherwise.

Next, for each q, s = 1, . . . , k + 1 such that q 6= s let b = bq,s ∈ RCq∪Cs be defined by

[bq,s]i = c ·
{
nsi , if i ∈ Cq
nqi , if i ∈ Cs.

Note that the matrix (
D H
HT F

)
is weakly diagonally dominant since the ith row of H contains exactly rs−nsi 1’s, and, hence,
positive semidefinite. Further, let y = yq,s and z = zq,s be a solution of the perturbed system(

D + θeeT H − θeeT

HT − θeeT F + θeeT

)(
y

z

)
= b (13)

for some scalar θ > 0 to be defined later.
The rationale for this system of equations (13) is as follows. Below in (18), we shall

define the matrix S̃Cq ,Cs according to the formula that entries (i, j) corresponding to edges
in E are set to −cq,s, while entries (i, j) corresponding to absent edges are set to the sum
[yq,s]i + [zq,s]j. Matrix SCq ,Cs has the same formula; refer to (25) below.

As mentioned earlier, it is required that all row and column sums of SCq ,Cs equal zero.
Consider, e.g., the sum of the entries in a particular row i ∈ Cq. This sum consists of rs
terms; of these terms, nsi of them are −cq,s (corresponding to edges from i to Cs) while the
other rs − nsi have the form [yq,s]i + [zq,s]j. Thus, the requirement that the row sum to zero
is written

−nsi cq,s +
∑

j∈Cs;(i,j)/∈E

([yq,s]i + [zq,s]j) = 0

which may be rewritten

(rs − nsi )[yq,s]i +
∑

j∈Cs;(i,j)/∈E

[zq,s]j = nsi cq,s. (14)

Equation (14) is exactly a row of (13) in the case θ = 0 because of the formulas used to
define D,F,H,b.

In the case that θ is not zero, the equation for the ith row in (13) has an additional
term of the form θ(eTyq,s − eTzq,s). This additional term does not affect the result, as the
following argument shows. The version of (13) with θ = 0 is singular because the vector
(e;−e) is in its null space. Now fix θ > 0 such that (13) is nonsingular. By the fact that
(e;−e) is in the null space of the coefficient matrix(

D H
HT F

)
,
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taking the inner product of each side of (13) with (e;−e) yields

θ(rq + rs)(e
Ty − eTz) = bT1 e− bT2 e,

where b1 ∈ RCq , b2 ∈ RCs are the vectors of entries of b corresponding to Cq and Cs
respectively. Moreover,

bT1 e− bT2 e =
∑
i∈Cq

nsi −
∑
j∈Cs

nqj = 0

because the number of edges entering Cq from Cs is equal to the number of edges entering Cs
from Cq. Therefore, if for some θ > 0 we are able to show that (13) is nonsingular (which we
shall establish in Section 3 and again in Section 4) then this particular (yq,s, zq,s) satisfying
(13) will also be a solution to (14) since the additional term θ(eTyq,s − eTzq,s) is zero.

For the remainder of this section, in order to formulate definitions for the remaining
multipliers, assume that θ > 0 and that (13) is nonsingular. Furthermore, assume that
Dii > 0 for all i ∈ Cq and Fii > 0 for all i ∈ Cs. Let

A = A(θ) :=

(
D + θeeT 0

0 F + θeeT

)
, P = P (θ) :=

(
0 H − θeeT

HT − θeeT 0

)
;

then we have assumed that A+ P is nonsingular, and(
y
z

)
= (A+ P )−1b.

The proof technique in Sections 3 and 4 is to show that Q := (A+P )−1−A−1 is small so that
(y, z) is close to A−1b. Let Q = (QT

1 , Q
T
2 )T where Q1 ∈ RCq×(Cq∪Cs) and Q2 ∈ RCs×(Cq∪Cs).

Then, under this notation,(
y
z

)
= A−1b +

(
Q1

Q2

)
b

=

(
(D + θeeT )−1 0

0 (F + θeeT )−1

)(
b1

b2

)
+

(
Q1

Q2

)
b.

Therefore, if D, F and A+ P are nonsingular,

y = (D + θeeT )−1b1 +Q1b = (I + θD−1eeT )−1D−1b1 +Q1b

and
z = (I + θF−1eeT )−1F−1b2 +Q2b.

Let ȳ := y−Q1b and z̄ := z−Q2b. In order to give explicit formulas for ȳ and z̄ we use the
well-known Sherman-Morrison-Woodbury formula (see, for example, [12, Equation 2.1.4]),
stated in the following lemma, to calculate (I + θD−1eeT )−1 and (I + θF−1eeT )−1.

Lemma 2.1 If A is a nonsingular matrix in Rn×n and u,v ∈ Rn satisfy vTA−1u 6= −1
then

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (15)
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As an immediate corollary of Lemma 2.1, notice that

ȳ =

(
D−1 − θD−1eeTD−1

1 + θeTD−1e

)
b1 = D−1

(
I − θeeTD−1

1 + θeTD−1e

)
b1. (16)

and

z̄ =

(
F−1 − θF−1eeTF−1

1 + θeTF−1e

)
b2 = F−1

(
I − θeeTF−1

1 + θeTF−1e

)
b2. (17)

Finally, we define the (k + 1)× (k + 1) block matrix S̃ ∈ RN×N as follows:

(σ̃1) For all q ∈ {1, . . . , k}, let S̃Cq ,Cq = 0.

(σ̃2) For all q, s ∈ {1, . . . , k} such that q 6= s, let

S̃Cq ,Cs = Hq,s ◦ (yq,seT + e(zq,s)T ) + cq,s(Hq,s − eeT ). (18)

(σ̃3) For all q ∈ {1, . . . , k} and i ∈ Cq, j ∈ Ck+1, let

[S̃Cq ,Ck+1
]ij = [S̃Ck+1,Cq ]ji =


−cq,k+1, if (i, j) ∈ E

cq,k+1 n
q
j/(rq − n

q
j), otherwise.

(σ̃4) Finally, for all i, j ∈ Ck+1, choose

[S̃Ck+1,Ck+1
]ij =

{
−1, if (i, j) ∈ E or i = j
γ, if (i, j) /∈ E (19)

for some scalar γ to be defined later.

We make a couple of remarks about (σ̃2). As already noted earlier, this formula defines
entries of S̃Cq ,Cs to be −cq,s in positions corresponding to edges, and [yq,s]i + [zq,s]j in other
positions. The vectors yq,s and zq,s are defined by (13) precisely so that, when used in this
manner to define S̃Cq ,Cs , its row and column sums are all 0 (so that X∗S = SX∗ = 0;

the relationship SCq ,Cs ≡ S̃Cq ,Cs is given by (25) below). The system is square because the
number of constraints on Sq,s imposed by X∗S = SX∗ = 0 after the predetermined entries
are filled in is |Cq|+ |Cs| (one constraint for each row and column), which is the total number
of entries in yq,s and zq,s. As mentioned earlier, there is the slight additional complexity that
these |Cq|+ |Cs| equations have a dependence of dimension 1, which explains why we needed
to regularize (13) with the addition of the θeeT terms.

As a second remark about σ̃2, we note that S̃Cq ,Cs = S̃TCs,Cq
. This is a consequence of our

construction detailed above. In particular, yq,s = zs,q, Hq,s = HT
s,q, and Dq,s = Fs,q for all

q, s = 1, . . . , k such that q 6= s.
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2.2 Definition of the multipliers, optimality and uniqueness

We finally come to the main theorem of this section, which provides a sufficient condition for
when the k-disjoint-clique subgraph of G composed of the cliques C1, . . . , Ck is the maximum
node k-disjoint-clique subgraph of G.

Theorem 2.2 Suppose that G = (V,E) has a k-disjoint-clique subgraph G∗ composed of the
disjoint cliques C1, . . . , Ck and let Ck+1 := V \ (∪ki=1Ci). Let ri = |Ci| for all i = 1, . . . , k+1,
and let r̂ = mini=1,...,k{ri}. Let X∗ be the matrix of the form (6) corresponding to the k-
disjoint-clique subgraph generated by C1, . . . , Ck. Moreover, suppose that the matrix S̃ as
defined by (σ̃1), . . . , (σ̃4) satisfies

‖S̃‖ ≤ r̂. (20)

Then X∗ is optimal for (9), and G∗ is the maximum node k-disjoint-clique subgraph of G.
Moreover, if ‖S̃‖ < r̂ and

nqv < rq (21)

for all v ∈ V and q ∈ {1, . . . , k} − cl(v) then X∗ is the unique optimal solution of (9) and
G∗ is the unique maximum node k-disjoint-clique subgraph of G.

Proof: We will prove that (20) is a sufficient condition for optimality of X∗ by defining
multipliers µ, λ, η, and S and proving that if (20) holds then these multipliers satisfy the
optimality conditions given by Theorem 2.1. Let us define the multipliers µ and λ by

µ = r̂ = min{r1, r2, . . . , rk}, (22)

λi =
(1− r̂/rq)

2
for all i ∈ Cq, (23)

for all q = 1, . . . , k and
λi = 0. (24)

for all i ∈ Ck+1. Notice that by our choice of µ and λ we have

SCq ,Cq = r̂I − (r̂/rq)eeT

for all q = 1, . . . , k by (10). Moreover, we choose η such that

ηij =

{
S̃ij − λi − λj + 1, if (i, j) /∈ E, i 6= j
0, otherwise

for all i, j ∈ V . Note that, by our choice of η, we have

SCq ,Cs =

{
S̃Cq ,Cs , if q, s ∈ {1, . . . , k + 1}, q 6= s

S̃Ck+1,Ck+1
+ r̂I, if q = s = k + 1.

(25)

by (10).

10



By construction, µ, λ, η, and S satisfy (10). Since the ith row sum of X∗ is equal to 1
for all i ∈ Cq for all q = 1, . . . k and is equal to 0 for all i ∈ Ck+1, X∗ and λ satisfy the
complementary slackness condition (11). Moreover,

〈X∗, S〉 =
k∑
q=1

∑
i∈Cq

∑
j∈Cq

1

rq
[SCq ,Cq ]i,j

 =
k∑
q=1

1

rq

(
rqr̂ − r2

q

(
r̂

rq

))
= 0,

and thus X∗ and S satisfy (12). It remains to prove that (20) implies that S is positive
semidefinite.

To prove that S is positive semidefinite we show that xTSx ≥ 0 for all x ∈ RN if S̃
satisfies (20). Fix x ∈ RN and decompose x as x = x1 + x2 where

x1(Ci) =

{
φi e, i ∈ {1, . . . , k}
0, i = k + 1

for φ ∈ Rk chosen so that x2(Ci)
Te = 0 for i = 1 . . . , k, x2(Ck+1) = x(Ck+1). Here, x(Ci),

x1(Ci), and x2(Ci) denote the vectors in RCi composed of the entries indexed by Ci of x,
x1, and x2 respectively, for each i = 1, . . . , k+ 1. Note that x1 is in the column space of X∗.
Then x1 is in the null space of S and we have

xTSx = xT2 Sx2 = r̂‖x2‖2 + xT2 S̃x2 ≥ (r̂ − ‖S̃‖)‖x2‖2,

since x2(Ci) is orthogonal to e for all i = 1, . . . , k. Therefore, S is positive semidefinite, and,
hence, X∗ is optimal for (9) if ‖S̃‖ ≤ r̂.

Now suppose that ‖S̃‖ < r̂ and, for all i = 1, . . . , k, no node in Ci is adjacent to every
node in some other clique. Then X∗ is optimal for (9). For all i = 1, . . . , k, let vi ∈ RN be
the characteristic vector of Ci. That is,

[vi]j =

{
1, if j ∈ Ci
0, otherwise.

Notice that X∗ =
∑k

i=1(1/ri)vi(vi)
T . Moreover, by complementary slackness, 〈X∗, S〉 = 0

and, thus, vi is in the null space of S for all i = 1, . . . , k. On the other hand, consider
nonzero x ∈ RN such that xTvi = 0 for all i = 1, . . . , k. That is, x is orthogonal to the span
of {vi : i = 1, . . . , k}. Then

xTSx = r̂‖x‖2 + xT S̃x ≥ (r̂ − ‖S̃‖)‖x‖2 > 0.

Therefore, Null(S) = span{vi : i = 1, . . . , k} and rank (S) = N − k.
Now suppose that X̂ is also optimal for (9). Then, by complementary slackness, 〈X̂, S〉 =

0 which holds if and only if X̂S = 0. Therefore, the row and column spaces of X̂ lie in the
null space of S. It follows immediately, since X̂ � 0, that X̂ can be written in the form

X̂ =
k∑
i=1

σiviv
T
i +

k∑
i=1

k∑
j=1
j 6=i

ωi,jviv
T
j

11



for some σ ∈ Rk
+ and ω ∈ Σk, where Σk denotes the set of k × k symmetric matrices. Now,

if ωi,j 6= 0 for some i 6= j then every entry in the block X̂(Ci, Cj) = X̂(Cj, Ci)
T must be

equal to ωi,j. Since each of these entries is nonzero, this implies that each node in Ci is

adjacent to every node in Cj, contradicting Assumption (21). Therefore, X̂ has singular

value decomposition X̂ = σ1v1v
T
1 + · · · + σkvkv

T
k . Moreover, since X̂ is optimal for (9) it

must have objective value equal to that of X∗ and thus

k∑
i=1

ri =
N∑
i=1

N∑
j=1

X∗i,j =
N∑
i=1

N∑
j=1

X̂i,j =
k∑
i=1

σir
2
i . (26)

Further, since X̂ is feasible for (9),
σiri ≤ 1 (27)

for all i = 1, . . . , k. Combining (26) and (27) shows that σi = 1/ri for all i = 1, . . . , k and,
hence, X̂ = X∗ as required.

3 The Adversarial Case

Suppose that the graph G = (V,E) is generated as follows. We first add k disjoint cliques
with vertex sets C1, . . . , Ck of size r1, r2, . . . , rk respectively. Then, an adversary is allowed
to add a set Ck+1 of additional vertices and a number of the remaining potential edges
to the graph. We will show that our adversary can add up to O(r̂2) noise edges where
r̂ = min{r1, . . . , rk} and the k-disjoint-clique subgraph composed of C1, . . . , Ck will still be
the unique maximum k-disjoint-clique subgraph of G.

The main theorem concerning the adversarial case is as follows.

Theorem 3.1 Consider an instance of the k-disjoint-clique problem constructed according
to the preceding description, namely, G contains a k-disjoint-clique graph G∗ whose nodes
are partitioned as C1 ∪ · · · ∪ Ck where |Cq| = rq, q = 1, . . . , k, plus additional nodes denoted
Ck+1 and additional edges (which may have endpoints chosen from any of C1, . . . , Ck+1). Let
r̂ = min(r1, . . . , rk). Assume the following conditions are satisfied:

1. For all q = 1, . . . , k, i ∈ Cq, for all s ∈ {1, . . . , k + 1} − q,

nsi ≤ δmin(rq, rs). (28)

Here, δ is a scalar satisfying (29) below.

2. |E(G) \ E(G∗)| ≤ ρr̂2, where ρ is a positive scalar depending on δ.

Then X∗ given by (6) is the unique optimal solution to (9), and G∗ is the unique optimal
solution of the k-disjoint clique problem.

12



We remark that two of the conditions imposed in this theorem are, up to the constant
factors, the best possible according to the following information-theoretic arguments. First,
if nsi = rs, then node i could be inserted into clique s, so the partitioning between Cs
and Cq would no longer be uniquely determined. This shows the necessity of the condition
nsi ≤ O(rs). The condition that |E(G)\E(G∗)| ≤ ρr̂2 is necessary, up to the constant factor,
because if |E(G) \ E(G∗)| ≥ r̂(r̂ − 1)/2, then we could interconnect an arbitrary set of r̂
nodes chosen from among the existing cliques with edges to make a new clique out of them,
again spoiling the uniqueness of the decomposition.

An argument for the necessity of the condition that nsi ≤ δrq is not apparent, so possibly
there is a strengthening of this theorem that drops that condition.

The remainder of this section is the proof of this theorem. As might be expected, the
proof hinges on establishing (20); once this inequality is established, then Theorem 2.2
completes the argument.

As before, let rk+1 denote |Ck+1|. For the remainder of the proof, to simplify the notation,
we assume that rk+1 ≤ 2ρr̂2. The reason is that since |E(G)\E(G∗)| ≤ ρr̂2 by assumption, if
rk+1 > 2ρr̂2 then Ck+1 would include one or more isolated nodes (i.e, nodes of degree 0), and
these nodes can simply be deleted in a preliminary phase of the algorithm. (The algorithm
still works with an arbitrary number of isolated nodes in G \ G∗, but the notation in the
proof requires some needless additional complexity.)

Recall that the construction of the multipliers presented in Section 2 depended on two
scalars θ in (13) and γ in (19): choose θ = 1 and γ = 0.

We impose the assumption that δ ∈ (0, 0.382). The constant 0.382 is chosen so that

0 < δ < (1− δ)2. (29)

We will show that, under this assumption, there exists some β > 0 depending only on δ such
that

‖S̃Cq ,Cs‖2 ≤ β‖bq,s‖1

for all q, s ∈ {1, . . . , k} such that q 6= s.
Choose q, s ∈ {1, . . . , k} such that q 6= s and let D, F , H, b, and c be defined as in

Section 2.1. Without loss of generality we may assume that rq ≤ rs. Moreover, let y and z
be the solution of the system (13) and define A,Q, P as in Section 2.1.

We begin by showing that, under this assumption, y and z are uniquely determined.
Note that, since nsi = rs −Dii ≤ δrs for all i ∈ Cq and nqi = rq − Fii ≤ δrq for all i ∈ Cs by
Assumption (28), D and F are nonsingular and hence A is nonsingular. Moreover,

A+ P = A(I + A−1P )

and, hence, A+ P is nonsingular if ‖A−1P‖ < 1. Note that, for all t > 0, we have

λmin(D + teeT ) ≥ λmin(D) = min
i∈Cq

Dii (30)

since eeT � 0 where λmin(D + teeT ) is the smallest eigenvalue of the symmetric matrix
D + teeT . Taking t = 1 in (30) shows that

‖(D + eeT )−1‖ ≤ ‖D−1‖ =
1

mini∈Cq Dii

≤ 1

(1− δ)rs
(31)

13



since, for each i ∈ Cq, we have
(1− δ)rs ≤ Dii ≤ rs

by Assumption (28). Similarly,

‖(F + eeT )−1‖ ≤ ‖F−1‖ =
1

minj∈Cs Fii
≤ 1

(1− δ)rq
. (32)

Combining (31) and (32) we have

‖A−1‖ = max{‖(D + eeT )−1‖, ‖(F + eeT )−1‖}

≤ 1

(1− δ) min{rq, rs}

=
1

(1− δ)rq
. (33)

On the other hand,

‖P‖ = ‖H − eeT‖ ≤ ‖H − eeT‖F =

∑
i∈Cq

∑
j∈Cs

(Hij − 1)2

1/2

≤
√
δrq (34)

since Hij−1 is equal to −1 in the case that (i, j) ∈ E and 0 otherwise and there at most δr2
q

edges between Cq and Cs by Assumption (28). Therefore, since δ < (1− δ)2 by Assumption
(29), we have

‖A−1P‖ ≤ ‖A−1‖‖P‖ ≤
√
δ

1− δ
< 1

and, thus, A+ P is nonsingular and y and z are uniquely determined.
Now, recall that

S̃Cq ,Cs = H ◦ (yeT + ezT )− c(eeT −H).

In order to calculate an upper bound on ‖S̃Cq ,Cs‖ we write S̃Cq ,Cs as

S̃Cq ,Cs = m1 +m2 +m3 +m4 +m5 (35)

where
m1 := H ◦ (ȳeT ), m2 := H ◦ (ez̄T ), m3 := H ◦ (Q1beT ),

m4 := H ◦ (e(Q2b)T ), m5 := −c(eeT −H)
(36)

and apply the triangle inequality to obtain

‖S̃Cq ,Cs‖ ≤
5∑
i=1

‖mi‖. (37)

Throughout our analysis of ‖S̃Cq ,Cs‖ we will use the following series of inequalities. For any
W ∈ Rm×n, u ∈ Rm and v ∈ Rn, we have

‖W ◦ uvT‖ = ‖Diag (u) ·W ·Diag (v)‖ ≤ ‖Diag (u)‖‖Diag (v)‖‖W‖
= ‖u‖∞‖v‖∞‖W‖. (38)
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On the other hand,

‖W ◦ uvT‖ = ‖Diag (u) ·W ·Diag (v)‖
≤ ‖v‖∞‖Diag (u) ·W‖ ≤ ‖v‖∞‖Diag (u) ·W‖F

= ‖v‖∞

(
m∑
i=1

u2
i ‖W (i, :)‖2

)1/2

(39)

≤ ‖u‖‖v‖∞ max
i=1,...,m

‖W (i, :)‖ (40)

and
‖W ◦ uvT‖ ≤ ‖u‖∞‖v‖ max

j=1,...,n
‖W (:, j)‖ (41)

where W (i, :) and W (:, j) denote the ith and jth row and column of W .
We begin with ‖m1‖. Applying the bound (40) with W = H, u = ȳ, and v = e we have

‖m1‖2 ≤ max
i∈Cq

Dii‖ȳ‖2. (42)

Here, we used the fact that maxi∈Cq ‖H(i, :)‖ = maxi∈Cq D
1/2
ii since the ith row of H contains

exactly rs − nsi 1’s. Thus, since

‖ȳ‖ ≤ ‖(D + eeT )−1‖‖b1‖ ≤
‖b1‖

mini∈Cq Dii

≤ ‖b1‖
(1− δ)rs

,

it follows immediately that

‖m1‖2 ≤ 1

(1− δ)2rs
‖b1‖2 (43)

since Dii ≤ rs for all i ∈ Cq. By an identical calculation, we have

‖m2‖2 ≤ 1

(1− δ)2rq
‖b2‖2. (44)

Next, applying (40) with W = H, u = Q1b, v = e yields

‖m3‖2 ≤ max
i∈Cq

Dii‖Q1b‖2 ≤ rs‖Q1b‖2 ≤ rs‖Q1‖2‖b‖2

since maxiDii ≤ rs. To derive an upper bound on ‖m3‖2 we first derive an upper bound on
‖Q1‖.

Note that

Q = (A+ P )−1 − A−1 = ((I + A−1P )−1 − I)A−1 =
∞∑
`=1

(−A−1P )`A−1 (45)

since (I + X)−1 =
∑∞

`=0(−X)` for all X such that ‖X‖ < 1 by Taylor’s Theorem. Notice
that

A−1P =

(
0 P1

P2 0

)
15



where

P1 = (D + θeeT )−1(H − θeeT ), P2 = (F + θeeT )−1(HT − θeeT ).

It follows immediately that

Q =
∞∑
`=0

((
(P1P2)`+1 0

0 (P2P1)`+1

)
−
(

0 (P1P2)`P1

(P2P1)`P2 0

))
A−1 (46)

since, for any integer ` ≥ 1

(
0 P1

P2 0

)`
=


(

(P1P2)`/2 0
0 (P2P1)`/2

)
, if ` even(

0 (P1P2)(`−1)/2P1

(P2P1)(`−1)/2P2 0

)
, if ` odd.

Therefore,

‖Q1‖ ≤ ‖(D + θeeT )−1‖
∞∑
`=1

‖P1P2‖` + ‖P1‖‖(F + θeeT )−1‖
∞∑
`=0

‖P1P2‖` (47)

and

‖Q2‖ ≤ ‖(F + θeeT )−1‖
∞∑
`=1

‖P1P2‖` + ‖P2‖‖(D + θeeT )−1‖
∞∑
`=0

‖P1P2‖`. (48)

Substituting (31), (32) and (34) into (47) yields

‖Q1‖ ≤
1

(1− δ)rs

∞∑
`=1

(
δ

(1− δ)2

)`
+

δ1/2

(1− δ)2rs

∞∑
`=0

(
δ

(1− δ)2

)`
≤ c̃/rs (49)

where

c̃ =
2 max{δ/(1− δ),

√
δ}

(1− δ)2 − δ
since

‖P1P2‖ ≤ ‖H − eeT‖2‖D−1‖‖F−1‖ ≤ δ

(1− δ)2
.

Note that Assumption (29) ensures that the infinite series in (49) converge. It follows that

‖m3‖2 ≤ c̃2

rq
‖b‖2. (50)

On the other hand,

‖Q2‖ ≤
1

(1− δ)rq

∞∑
`=1

(
δ

(1− δ)2

)`
+

√
δ

(1− δ)2rs

∞∑
`=0

(
δ

(1− δ)2

)`
≤ c̃/rq (51)
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since rs ≥ rq. Thus, applying (41) with W = H, u = e, v = Q2b we have

‖m4‖2 ≤ rq‖Q2‖2‖b‖2 ≤ c̃2

rq
‖b‖2. (52)

Finally,

‖m5‖2 = ‖c(H − eeT )‖2 ≤ ‖c(H − eeT )‖2
F

= c
∑
i∈Cq

∑
j∈Cs

(Hij − 1)2

= c
∑
i∈Cq

nsi = ‖b1‖1. (53)

Therefore, there exists β ∈ R such that

‖S̃Cq ,Cs‖2 ≤ β
‖b‖2

rq
+ ‖b‖1 (54)

where β depends only on δ. Moreover, since ‖b‖2 ≤ ‖b‖1‖b‖∞ and

‖b‖∞ = c ·max

{
max
i∈Cq

nsi ,max
i∈Cs

nqi

}
≤ δcmin{rq, rs} = δcrq (55)

by Assumption (28), there exists β̃ depending only on δ such that

‖S̃Cq ,Cs‖2 ≤ β̃‖b‖1 (56)

as required.
Next, consider S̃Cq ,Ck+1

for some q ∈ {1, . . . , k}. Recall that

[S̃Cq ,Ck+1
]ij =

{
−c, if (i, j) ∈ E
cnj/(rq − nj), otherwise

where nj = nqj is the number of edges from j ∈ Ck+1 to Cq for each j ∈ Ck+1. Hence,

‖S̃Cq ,Ck+1
‖2 ≤ ‖S̃Cq ,Ck+1

‖2
F

=
∑

j∈Ck+1

(
njc

2 + (rq − nj)
(

njc

rq − nj

)2
)

≤ c2
∑

j∈Ck+1

(
nj +

δnj
(1− δ)

)

=
c2

1− δ
|E(Cq, Ck+1)| (57)

where E(Cq, Ck+1) is the set of edges from Cq to Ck+1. Similarly, by our choice of γ = 0 in
(σ̃4), we have

‖S̃Ck+1,Ck+1
‖2 ≤ ‖S̃Ck+1,Ck+1

‖2
F = rk+1 + 2|E(Ck+1, Ck+1)|. (58)
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Let B be the vector obtained by concatenating bq,s for all q, s ∈ {1, . . . , k}. Then, there exist
scalars ĉ1, ĉ2 ∈ R depending only on δ such that

k+1∑
q=1

k+1∑
s=1

‖S̃Cq ,Cs‖2 =
∑

q,s∈{1,...,k}
q 6=s

‖S̃Cq ,Cs‖2 + 2
k∑
q=1

‖S̃Cq ,Ck+1
‖2 + ‖S̃Ck+1,Ck+1

‖2

≤ ĉ1‖B‖1 + ĉ2

k+1∑
q=1

|E(Cq, Ck+1)|+ rk+1

by (56), (57) and (58). It follows that, since ‖bq,s‖1 ≤ 2|E(Cq, Cs)| for all q, s ∈ {1, . . . , k}
such that q 6= s, there exists ĉ3 ≥ 0 depending only on δ such that

k+1∑
q=1

k+1∑
s=1

‖S̃Cq ,Cs‖2 ≤ ĉ3R + rk+1

where R := |E(G)\E(G∗)| is the number of edges of G not contained in the k-disjoint-clique
subgraph G∗ composed of C1, . . . , Ck. The hypothesis of the theorem is that R ≤ ρr̂2. We
have also assumed earlier that rk+1 ≤ 2ρr̂2. Hence the sum of the squares of the 2-norms of
the blocks of S̃ is at most (ĉ3 + 2)ρr̂2. Therefore, there exists some ρ > 0 depending only on
δ such that the preceding inequality implies ‖S̃‖ ≤ r̂. This proves the theorem.

4 The Randomized Case

Let C1, C2, . . . , Ck+1 be disjoint vertex sets of sizes r1, . . . , rk+1 respectively, and let V =
∪k+1
i=1Ci. We construct the edge set of the graph G = (V,E) as follows:

(Ω1) For each q = 1, . . . , k, and each i ∈ Cq, j ∈ Cq such that i 6= j we add (i, j) to E.

(Ω2) Each of the remaining possible edges is added to E independently at random with
probability p ∈ (0, 1).

Notice that, by our construction of E, the graph G = (V,E) has a k-disjoint-clique sub-
graph G∗ with cliques indexed by the vertex sets C1, . . . , Ck. We wish to determine which
random graphs G generated according to (Ω1) and (Ω2) have maximum node k-disjoint-
clique subgraph equal to G∗ and can be found with high probability via solving (9). We
begin by providing a few results concerning random matrices with independently identically
distributed (i.i.d.) entries of mean 0.

4.1 Results on norms of random matrices

Consider the probability distribution P for a random variable x defined as follows:

x =

{
1 with probability p,
−p/(1− p) with probability 1− p.
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It is easy to check that the mean of x is 0 and the variance of x is σ2 = p/(1 − p). In
this section we provide a few results concerning random matrices with entries independently
identically distributed (i.i.d.) according to P. We first recall a theorem of Geman [11]
which provides a bound on the largest singular value of a random matrix with independently
identically distributed (i.i.d.) entries of mean 0.

Theorem 4.1 Let A be a dyne×n matrix whose entries are chosen according to P for fixed
y ∈ R+. Then, with probability at least 1− c1 exp(−c2n

c3) where c1 > 0, c2 > 0, and c3 > 0
are constants depending on p and y,

‖A‖ ≤ c4

√
n

for some constant c4.

Note that this theorem is not stated exactly in this form in [11], but can be deduced
by taking k = nq for a q satisfying (2α + 4)q < 1 in the equations on pp. 255-256. A
similar theorem due to Füredi and Komlós [9] exists for symmetric matrices A with entries
distributed according to P.

Theorem 4.2 For all integers i, j, 1 ≤ j ≤ i ≤ n, let Aij be distributed according to P.
Define symmetrically Aij = Aji for all i < j.

Then the random symmetric matrix A = [Aij] satisfies

‖A‖ ≤ 3σ
√
n

with probability at least to 1− exp(−cn1/6) for some c > 0 that depends on σ.

As in Theorem 4.1, the theorem is not stated exactly in this manner in [9]; the stated form
of the theorem can be deduced by taking k = (σ/K)1/3n1/6 and v = σ

√
n in the inequality

P (max |λ| > 2σ
√
n+ v) <

√
n exp(−kv/(2

√
n+ v))

on p. 237.
Next, we state a version of the well-known Chernoff bounds which provides a bound on

the tail distribution of a sum of independent Bernoulli trials (see [15, Theorems 4.4 and 4.5]).

Theorem 4.3 (Chernoff Bounds) Let X1, . . . , Xk be a sequence of k independent Bernoulli
trials, each succeeding with probability p so that E(Xi) = p. Let S =

∑k
i=1Xi be the binomi-

ally distributed variable describing the total number of successes. Then for δ > 0

P
(
S > (1 + δ)pk

)
≤
(

eδ

(1 + δ)(1+δ)

)pk
. (59)

It follows that for all a ∈ (0, p
√
k),

P (|S − pk| > a
√
k) ≤ 2 exp(−a2/p). (60)

The final theorem of this section is as follows (see [2, Theorem 4]).
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Theorem 4.4 Let A be an n×N matrix whose entries are chosen according to P. Suppose
also that logN ≤

√
n. Let Ã be defined as follows. For (i, j) such that Aij = 1, we define

Ãij = 1. For entries (i, j) such that Aij = −p/(1 − p), we take Ãij = −nj/(n − nj), where
nj is the number of 1’s in column j of A. Then there exist c1 > 0 and c2 ∈ (0, 1) depending
on p such that

P (‖A− Ã‖2
F ≤ c1N) ≥ 1− (2/3)N −Ncn2 . (61)

4.2 A bound on ‖S̃‖ in the randomized case

Suppose that the random graph G = (V,E) containing k-disjoint-clique subgraph G∗ com-
posed of cliques C1, . . . , Ck is constructed according to (Ω1) and (Ω2) with probability p. Let
Ck+1, r1, . . . , rk+1, r̂, and N be defined as in Section 2.1. Further, let θ = 1− p in (13) and
γ = p/(1− p) in (19). We begin by stating the main theorem of the section.

Theorem 4.5 Suppose that G = (V,E) has a k-disjoint-clique subgraph G∗ composed of the
cliques C1, . . . , Ck and let Ck+1 := V \ (∪ki=1Ci). Let ri = |Ci| for all i = 1, . . . , k + 1 and
suppose that rq ≤ r̂3/2 for all q = 1, 2, . . . , k where r̂ = mini=1,...,k{ri}. Then there exists
some β1, β2 > 0 depending only on p such that

‖S̃‖ ≤ β1

(
k∑
s=1

r2
s

)1/2( k∑
q=1

1

rq

)1/2

+ β2

√
N (62)

with probability tending exponentially to 1 as r̂ approaches ∞.

This theorem is meant to be used in conjunction with Theorem 2.2. In particular, if the
right-hand side of (62) is less than r̂, then the planted graph G∗ may be recovered.

It is clear from (20) and the second term on the right-hand side of (62) that the sufficient
conditions for uniqueness and optimality given by Theorem 2.2 cannot be satisfied unless
N = O(r̂2). We now give a few examples of values for r1, . . . , rk+1 that fulfill (62).

1. Consider the case k = 1, i.e., a single large clique. In this case, taking r1 = const ·N1/2

satisfies (20) since the first term on the right is O(N1/4).

2. Suppose k > 1 and r1 = . . . = rk = const · Nα. In this case, the first parenthesized
factor on the right in (62) is O(k1/2Nα) while the second is O(k1/2N−α/2), and therefore
the first term is O(kNα/2). For (20) to hold, we need this term to be O(r̂) = O(Nα),
which is valid as long as k = O(Nα/2). We also need α ≥ 1/2 as noted above to handle
the second term on the right. For example, for α = 1/2 the algorithm can find as
many as O(N1/4) cliques of this size. For α = 2/3, the algorithm can find as many
as O(N1/3) cliques of this size, which is the maximum possible since the cliques are
disjoint and N is the number of nodes.

3. The cliques may also be of different sizes. For example, if there is one large clique
of size O(N2/3) and N1/6 smaller cliques of size O(N1/2), then r̂ = O(N1/2), the first
parenthesized factor in (62) is N2/3 while the second is N−1/6, so the entire first factor
is O(N1/2) = O(r̂).
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We note that the results for random noise in the k-disjoint-clique problem are much
better than the results for adversary-chosen noise. In the case of adversary-chosen noise, the
number of allowable noise edges is bounded above by a constant times the number of edges
in the smallest clique. In the case of random noise, the number of allowable noise edges is
bounded above by a scalar multiple of the number of potential edges in the complement of
the planted k-disjoint-clique subgraph. Thus, the number of allowable random noise edges
can be as much as the square of the number of edges in the smallest clique (e.g., if there
are N1/4 cliques each of size N1/2, then the smallest clique has O(N) edges versus O(N2)
random noise edges).

We do not know whether the bound in (20) is the best possible. For instance, there is no
obvious barrier preventing the algorithm from recovering as many as N1/2 planted cliques of
size N1/2 in a random graph, but our analysis does not carry through to this case.

The remainder of this section is devoted to the proof of Theorem 4.5. We write S̃ as

S̃ = S̃1 + S̃2 + S̃3 + S̃4 + S̃T4

where S̃i ∈ RN×N , i = 1, . . . , 4 are (k + 1) by (k + 1) block matrices such that

[S̃1]Cq ,Cs =

{
S̃Cq ,Cs , if q, s ∈ {1, . . . , k}, q 6= s
0, otherwise

[S̃2]Cq ,Cs =


RCq ,Cs , if q, s ∈ {1, . . . , k}
ŜCq ,Ck+1

, if s = k + 1

ŜCk+1,Cs , if q = k + 1

S̃Ck+1,Ck+1
, if q = s = k + 1

[S̃3]Cq ,Cs =

{
−RCq ,Cs , if q, s ∈ {1, . . . , k}
0, otherwise

[S̃4]Cq ,Cs =

{
S̃Cq ,Ck+1

− ŜCq ,Ck+1
, if s = k + 1, q ∈ {1, . . . , k}

0, otherwise

where R ∈ RN×N is a symmetric random matrix with independently identically distributed
entries such that

Rij =

{
−1, with probability p
p/(1− p), with probability 1− p

and Ŝ ∈ RN×N such that

Ŝij =

{
−1, if (i, j) ∈ E
p/(1− p), otherwise.

Notice that, by Theorem 4.2, there exists some κ1, κ2, κ3 > 0 such that

P
(
‖S̃2‖+ ‖S̃3‖ ≥ κ1

√
N
)
≤ κ2 exp(−κ3N

1/6). (63)

Moreover, by Theorem 4.4, there exists κ4 > 0 and κ5, κ6,∈ (0, 1) such that

P
(
‖S̃4‖ ≥ κ4

√
N
)
≤ κN5 +NκN6 . (64)
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Hence, there exists some scalar β2 depending only on p such that

‖S̃‖ ≤ ‖S̃1‖+ β2

√
N

with probability tending exponentially to 1 as r̂ →∞. It remains to prove that

‖S̃1‖ = O

( k∑
s=1

r2
s

)1/2( k∑
q=1

1

rq

)1/2


with probability tending exponentially to 1 as r̂ approaches ∞.
To do so, consider two vertex sets Cq and Cs such that q 6= s. Without loss of generality

we may assume that rq ≤ rs. Define H = Hq,s, D = Dq,s, F = Ds,q, b = bq,s, c = cq,s,
y, z, A, and P as in Section 2.1. The following theorem provides an upper bound on the
spectral norm of S̃Cq ,Cs for q 6= s, that holds with probability tending exponentially to 1 as
r̂ approaches ∞.

Theorem 4.6 Suppose that rq and rs satisfy

rq ≤ rs ≤ r3/2
q . (65)

Then there exists B̃1 > 0 depending only on p such that

‖[S̃1]Cq ,Cs‖ = ‖S̃Cq ,Cs‖ ≤ B̃1
rs√
rq

(66)

with probability tending exponentially to 1 as r̂ approaches ∞.

The remainder of this section is devoted to the proof of Theorem 4.6; Theorem 4.5 will
then be established as an immediate consequence.

Recall that S̃Cq ,Cs = H ◦ (yeT + ezT )− c(eeT −H). We begin by showing that A+ P is
nonsingular and, hence, y and z are uniquely determined. Let δ := (1− p)/(2p). Recall that
nsi = rs−Dii corresponds to rs independent Bernoulli trials each succeeding with probability
equal to p and, hence,

P (nsi ≥ (1 + δ)prs) = P (rs −Dii ≥ (1 + δ)prs) ≤
(

eδ

(1 + δ)(1+δ)

)prs
(67)

for each i ∈ Cq by Theorem 4.3. Rearranging, we have that Dii ≥ (θ−δp)rs with probability
at least

1−
(

eδ

(1 + δ)(1+δ)

)prs
for each i ∈ Cq. Similarly,

P (nqi ≤ (1 + δ)prq) = P (Fii ≥ (θ − δp)rq) ≥ 1−
(

eδ

(1 + δ)(1+δ)

)prq
(68)
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for all i ∈ Cs. Therefore, by the union bound, rs − Dii ≤ (1 + δ)prs for all i ∈ Cq and
rq − Fii ≤ (1 + δ)prq for all i ∈ Cs, and, hence, D, F are nonsingular with probability at
least

1−rs
(

eδ

(1 + δ)(1+δ)

)prq
− rq

(
eδ

(1 + δ)(1+δ)

)prs
≥ 1− (rq + rs)

(
eδ

(1 + δ)(1+δ)

)pr̂
. (69)

Moreover, applying (30) shows that D + θeeT and F + θeeT are nonsingular and

‖(D + θeeT )−1‖ ≤ ‖D−1‖ ≤ 1

(θ − δp)rs
, (70)

‖(F + θeeT )−1‖ ≤ ‖F−1‖ ≤ 1

(θ − δp)rq
, (71)

with probability at least (69). It follows immediately that A is nonsingular and

‖A−1‖ = max{‖(D + θeeT )−1‖, ‖(F + θeeT )−1‖}

≤ 1

(θ − δp) min{rq, rs}
=

1

(θ − δp)rq
(72)

with probability at least (69).
Recall that, in the case that A is nonsingular, it suffices to prove that ‖A−1‖‖P‖ < 1 to

show that A+P is nonsingular. Moreover, recall that θ = 1− p is chosen to ensure that the
entries of H − θeeT have expected value equal to 0. We can extend H − θeeT to an rs × rs
random matrix P̃ with entries i.i.d. with expected value equal to 0 by adding rs − rq rows
with entries i.i.d. such that each additional entry takes value equal to −θ with probability
p and value equal to p with probability 1− p. Therefore, by Theorem 4.1

‖P‖ = ‖H − θeeT‖ ≤ ‖P̃‖ ≤ γ1

√
rs (73)

for some γ1 > 0 depending only on p with probability at least 1− c̄1 exp(−c̄2r
c̄3
s ) where c̄i > 0

depend only on p. Combining (72), (73), (65) and applying the union bound shows that

‖A−1‖‖P‖ =
γ1
√
rs

(θ − δp)rq
< 1

with probability at least

1− (rq + rs)

(
eδ

(1 + δ)(1+δ)

)pr̂
− c̄1 exp(−c̄2r

c̄3
s )

for sufficiently large rq. Therefore, A+P is nonsingular and y and z are uniquely determined
with probability tending exponentially to 1 as r̂ →∞.

For the remainder of the section we assume that A+P is nonsingular. We define Q, Q1,
Q2, ȳ and z̄ as in Section 2.1. To find an upper bound on ‖S̃Cq ,Cs‖, we decompose S̃Cq ,Cs as

S̃Cq ,Cs = M1 +M2
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where M1 := H ◦ (ȳeT + ez̄T )− c(eeT −H) and M2 := H ◦ (Q1beT + ebTQT
2 )

We first obtain an upper bound on the norm of M1. We define d ∈ RCq to be the vector
such that the entry di is the difference between the number of edges added between the node
i and Cs and the expected number of such edges for each i ∈ Cq. That is,

d = nsCq
− E[nsCq

] = nsCq
− prse.

Similarly, we let f := nqCs
− prqe. Note that, by our choice of d and f , we have rsI −

D = prsI + Diag (d) and rqI − F = prqI + Diag (f). Notice that for θ = 1 − p we have
D = θrsI −Diag (d). Expanding (16) we have

ȳ =

(
D−1 − θD−1eeTD−1

1 + θeTD−1e

)
b1

=
D−1

1 + θeTD−1e
(b1 + θb1e

TD−1e− θeeTD−1b1)

=
D−1

1 + θeTD−1e
(b1 + θ(b1e

T − ebT1 )D−1e)

since eTD−1b1 = bT1D
−1e. Substituting b1 = c(rse− d̄), where d̄ := diag (D), we have

b1e
T − ebT1 = c(ed̄T − d̄eT )

and, hence,

ȳ =
cD−1

1 + θeTD−1e
(rse− d̄ + θ(ed̄T − d̄eT )D−1e)

=
cD−1

1 + θeTD−1e
(rse− d̄ + θeeTe− θd̄eTD−1e)

=
cD−1

1 + θeTD−1e
(rse + θrqe)− ce

=
c(rs + θrq)D

−1

1 + θeTD−1e

(
1

θrs
(D + Diag (d))

)
e− ce

=

(
c(rs + θrq)

(1 + θeTD−1e)θrs
− c
)

e +
c(rs + θrq)

(1 + θeTD−1e)θrs
D−1d

since

I =
1

θrs
(D + Diag (d)).

Let ȳ1 := ω1e, ȳ2 := υ1e where

ω1 =
c(θrq + rs)

θ(rs + rq)
− c

υ1 =
c(θrq + rs)

(1 + θeTD−1e)θrs
− c− ω1

and let

ȳ3 :=
c(θrq + rs)

(1 + θeTD−1e)θrs
D−1d.
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Hence, ȳ = ȳ1 + ȳ2 + ȳ3. Similarly, z̄ = z̄1 + z̄2 + z̄3 where z̄1 := ω2e, z̄2 := υ2e where

ω2 =
c(rq + θrs)

θ(rs + rq)
− c

υ2 =
c(rq + θrs)

(1 + θeTF−1e)θrq
− c− ω2

and

z̄3 :=
c(rq + θrs)

(1 + θeTF−1e)θrq
F−1f .

Therefore, we can further decompose M1 as M1 = M̃1 + M̃2 + M̃3 where

M̃1 := H ◦ (ȳ1e
T + ez̄T1 )− c(eeT −H),

M̃2 := H ◦ (ȳ2e
T + ez̄T2 ), M̃3 := H ◦ (ȳ3e

T + ez̄T3 ).

Notice that the matrix M̃1 has entries corresponding to edges equal to −c and remaining
entries equal to cp/(1− p) since

ω1 + ω2 =
c(1 + θ)(rq + rs)

θ(rq + rs)
− 2c =

cp

θ
.

Therefore, each entry of the matrix M̃1 has expected value equal to 0. Moreover, each entry
of the random block matrix M̂ of the form

M̂ =

[
M̃1

R̃

]
has expected value equal to 0 if R̃ has identically independently distributed entries such that

R̃i,j =

{
−c, with probability p
cp/(1− p), with probability 1− p.

Therefore, there exists c1, c2, c3, c4 > 0 such that

‖M̃1‖ ≤ ‖M̂‖ ≤ c4

√
rs (74)

with probability at least 1− c1 exp(−c2r
c3
s ) by Theorem 4.1.

Next, to obtain upper bounds on ‖M̃2‖ and ‖M̃3‖ we will use the following lemma.

Lemma 4.1 There exists B > 0 depending only on p such that∑
i∈Cq

|θrs −Dii|α

Dii

≤ B
rq

r
1−α/2
s

(75)

and ∑
i∈Cs

|θrq − Fii|α

Fii
≤ B

rs

r
1−α/2
q

(76)

for α = 1, 2 with probability at least

1− (rq + rs)v
r̂
p − 2(2/3)r̂ (77)

where vp = (eδ/(1 + δ)(1+δ))p and δ = min{p,√p− p}.
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Proof: We first prove (75). For each j ∈ Cq, let nj := nsj . The random numbers {nj :
j ∈ Cq} are independent, and each is the result of rs Bernoulli trials, each with probability
of success equal to p. We define Ψ to be the event that at least one nj is very far from
its expected value. That is, Ψ is the event that there exists j ∈ Cq such that nj > trs,
where t = min{√p, 2p}. Moreover, we define Ψ̃ to be its complement, and let ψ̃(nj) be the
indicator function such that

ψ̃(nj) =

{
1, if nj ≤ trs
0, otherwise.

Let B be a positive scalar depending on p to be determined later. Then

P

∑
i∈Cq

|θrs −Dii|α

Dii

≥ B
rq

r
1−α/2
s

)
= P

∑
i∈Cq

|ni − prs|α

rs − ni
≥ B

rq

r
1−α/2
s


≤ P

∑
i∈Cq

|ni − prs|α

rs − ni
≥ B

rq

r
1−α/2
s

∧ Ψ̃

+ P (Ψ). (78)

We will analyze the two terms separately. For the first term we use a technique of Bernstein
(see [13]). Let φ be the indicator function of the nonnegative reals. Then,

P

∑
j∈Cq

|nj − prs|α

rs − nj
≥ B

rq

r
1−α/2
s

∧ Ψ̃

)

= P

∑
j∈Cq

|nj − prs|α

rs − nj
−B rq

r
1−α/2
s

≥ 0 ∧ ψ̃(nj) = 1 ∀ j ∈ Cq


= P

∑
j∈Cq

r
1−α/2
s |nj − prs|α

rs − nj
−Brq ≥ 0 ∧ ψ̃(nj) = 1 ∀ j ∈ Cq


= E

φ
∑
j∈Cq

r
1−α/2
s |nj − prs|α

rs − nj
−Brq

 · ∏
j∈Cq

ψ̃(nj)

 .

Let h be a positive scalar depending p to be determined later. Notice that for any h > 0
and all x ∈ R, φ(x) ≤ exp(hx). Thus, by the independence of the nj’s,

P

∑
i∈Cq

|ni − prs|α

rs − ni
≥ B

rq

r
1−α/2
s

∧ Ψ̃

)

≤ E

exp

h∑
j∈Cq

(
|nj − prs|α

r
α/2−1
s (rs − nj)

−B

) · ∏
j∈Cq

ψ̃(nj)


=
∏
j∈Cq

E

(
exp

(
h

(
|nj − prs|α

r
α/2−1
s (rs − nj)

−B

))
ψ̃(nj)

)
= f1 · · · frq
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where

fj = E

(
exp

(
h

(
|nj − prs|α

r
α/2−1
s (rs − nj)

−B

))
ψ̃(nj)

)
.

We now analyze each fj individually. Fix j ∈ Cq. Then

fj =

btrsc∑
i=0

exp

(
h

(
|nj − prs|α

r
α/2−1
s (rs − nj)

−B

))
P (nj = i)

≤
btrsc∑
i=0

exp

(
h

(
|i− prs|α

(1−√p)rsα/2
−B

))
P (nj = i)

since i ≤ trs and, hence, i ≤ √prs. We now reorganize this summation by considering i such
that |i− prs| <

√
rs, then i such that

√
rs ≤ |i− prs| < 2

√
rs and so on. Notice that, since

i ≤ trs ≤ 2prs, we need only to consider intervals until |i− prs| reaches prs. Hence,

fj ≤
bp√rsc∑
k=0

∑
i:|i−prs|∈[k

√
rs,(k+1)

√
rs)

exp

(
h

(
|i− prs|α

(1−√p)r
α/2
s

−B

))
P (nj = i)

≤
bp√rsc∑
k=0

∑
i:|i−prs|∈[k

√
rs,(k+1)

√
rs)

exp

(
h

(
(k + 1)α

1−√p
−B

))
P (nj = i)

≤ 2

bp√rsc∑
k=0

exp

(
h

(
(k + 1)α

1−√p
−B

))
exp(−k2/p)

by (60). Overestimating the finite sum with an infinite sum, we have

fj ≤ 2 exp(−hB) ·
∞∑
k=0

exp

(
h(k + 1)α

1−√p
− k2/p

)
.

Choosing h such that h ≤ (1−√p)/(8p) ensures that

h(k + 1)α

1−√p
− k2/p ≤ −k2/(2p)

for all rq, rs and k ≥ 1. Hence, splitting off the k = 0 term, we have

fj ≤ 2 exp

(
h

1−√p
− hB

)
+ 2 exp(−hB) ·

∞∑
k=1

exp(−k2/(2p)). (79)

Since
∑∞

k=1 exp(−k2/(2p)) is dominated by a geometric series, the summation in (79) is
a finite number depending on p. Therefore, once h is chosen, it is possible to choose B,
depending only on p and h, sufficiently large so that each of the two terms in (79) is at
most 1/3. Therefore, we can choose h and B so that fj ≤ 2/3 for all j ∈ Cq. It follows
immediately that

P

∑
i∈Cq

|θrs −Dii|α

Dii

≥ B
rq

r
1−α/2
s

∧ Ψ̃

 ≤ (2/3)rq ≤ (2/3)r̂. (80)
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To obtain a bound on the second term in (78), notice that the probability that nj > trs
is at most vrsp ≤ vr̂p where vp = (eδ/(1 + δ)(1+δ))p by Theorem 4.3, where δ = t/p − 1 =
min{p,√p− p}. Thus, applying the union bound shows that

P

∑
i∈Cq

|θrs −Dii|α

Dii

≥ B
rq

r
1−α/2
s

 ≤ (2/3)r̂ + rqv
r̂
p.

By an identical argument

P

(∑
i∈Cs

|θrq − Fii|α

Fii
≥ B

rs

r
1−α/2
q

)
≤ (2/3)r̂ + rsv

r̂
p.

Applying the union bound one last time shows that (75) and (76) hold simultaneously with
probability at least 1− (rq + rs)v

r̂
p − 2(2/3)r̂ as required.

As an immediate corollary of Lemma 4.1, we have the following bound on |υ1| and |υ2|.

Corollary 4.1 There exists B1 > 0 depending only on p such that

|υ1|+ |υ2| ≤ B1
r

3/2
q + r

3/2
s

(rq + rs)(rqrs)1/2

with probability at least 1− (rq + rs)v
r̂
p − 2(2/3)r̂.

Proof: We begin with υ1. Notice that

υ1 =
c(θrq + rs)

θ

(
1

(1 + θeTD−1e)rs
− 1

rq + rs

)
=
c(θrq + rs)(rq − θrseTD−1e)

θrs(rq + rs)(1 + θeTD−1e)
.

Moreover,

|θrseTD−1e− rq| =

∣∣∣∣∣∣
∑
i∈Cq

θrs
Dii

−
∑
i∈Cq

1

∣∣∣∣∣∣ ≤
∑
i∈Cq

∣∣∣∣θrsDii

− 1

∣∣∣∣ =
∑
i∈Cq

|θrs −Dii|
Dii

and, since Dii ≤ rs for all i ∈ Cq, we have

rs(1 + θeTD−1e) ≥ rs

(
1 +

θrq
rs

)
= θrq + rs. (81)

Therefore, setting α = 1 in (75) shows that

|υ1| ≤
c(θrq + rs)Brq

θr
3/2
s (rq + rs)(1 + θeTD−1e)

(82)

≤ cB(θrq + rs)rq
θ
√
rs(rq + rs)(θrq + rs)

≤ B1
rq√

rs(rq + rs)
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where B1 := B/θ and where (82) holds with probability at least 1 − (2/3)r̂ − rqvr̂p. By an
identical calculation

|υ2| ≤
B1rs√

rq(rq + rs)
(83)

with probability at least 1− (2/3)r̂ − rsvr̂p. Applying the union bound completes the proof.

Observe that, as an immediate consequence of Corollary 4.1 and the facts that H ◦eeT =
H and ‖H‖F ≤

√
rqrs, we have

‖M̃2‖ = ‖H ◦ (ȳ2e
T + ez̄T2 )‖ ≤ (|υ1|+ |υ2|)‖H‖F

≤ B1
rq

3/2 + rs
3/2

rq + rs
≤ 2B1

√
rs (84)

with probability at least 1− (rq + rs)v
r̂
p − 2(2/3)r̂.

The following corollary of Lemma 4.1 provides an an upper bound on ‖M̃3‖.

Corollary 4.2 There exists B2 depending only on p such that

‖M̃3‖ ≤ ‖H ◦ (ȳ3e
T + ez̄T3 )‖ ≤ B2(

√
rq +

√
rs) (85)

with probability at least 1− (rq + rs)v
r̂
p − 2(2/3)r̂.

Proof: To obtain an upper bound on ‖M̃3‖, we first obtain upper bounds on ‖H ◦ (ȳ3e
T )‖

and ‖H ◦ (ez̄T3 )‖. We begin with ‖H ◦ (ȳ3e
T )‖. Since∑

i∈Cq

Dii(D
−1d)2

i =
∑
i∈Cq

|θrs −Dii|2

Dii

applying (75) with α = 2 and (39) with W = H, u = ȳ3, and v = e shows that

‖H ◦ (ȳ3e
T )‖ ≤

∑
i∈Cq

ȳ3(i)2‖H(i, :)‖2

1/2

=
c(θrq + rs)

(1 + θeTD−1e)θrs
·

∑
i∈Cq

Dii[D
−1d]2i

1/2

≤ c(θrq + rs)

(1 + θeTD−1e)θrs
(Brq)

1/2 (86)

≤ B2
√
rq (87)

where B2 :=
√
B/θ, (87) follows from (81) and (86) holds with probability at least 1 −

(2/3)r̂ − rqvr̂p. Similarly,

‖H ◦ (ez̄T3 )‖ ≤ B2

√
rs (88)
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with probability at least 1− ((2/3)r̂ + rsv
r̂
p). Applying the union bound shows that

‖M̃3‖ ≤ ‖H ◦ (ȳ3e
T )‖+ ‖H ◦ (ez̄T3 )‖ ≤ B2(

√
rq +

√
rs) (89)

with probability at least 1− (rq + rs)v
r̂
p − 2(2/3)r̂ as required.

We complete the proof of Theorem 4.6 by showing that M2 = H ◦ (Q1beT + ebTQT
2 )

has norm at most a constant multiple of rs/
√
rq with high probability. The following lemma

provides an upper bound on ‖Q1b‖ and ‖Q2b‖.

Lemma 4.2 There exists B3, B4 and c̄i > 0, i = 1, 2, 3, depending only on p such that

‖Q1b‖ ≤ B3
r

1/2
s

r
1/2
q

(90)

‖Q2b‖ ≤ B4
r

1/2
s (rq + r

1/2
s )

r
3/2
q

(91)

with probability at least

1− c̄1 exp(−c̄2r̂
c̄3)− (rq + rs)

(
eδ

(1 + δ)(1+δ)

)pr̂
(92)

where δ = (1− p)/(2p).

Proof: We first derive a bound on each of ‖Q1‖, ‖Q2‖ and ‖b‖ and consequently a bound
on each of ‖Q1b‖ and ‖Q2b‖ by applying the inequalities

‖Q1b‖ ≤ ‖Q1‖‖b‖ and ‖Q2b‖ ≤ ‖Q2‖‖b‖.

Recall that

‖Q1‖ ≤ ‖(D + θeeT )−1‖
∞∑
`=1

‖P1P2‖` + ‖P1‖‖(F + θeeT )−1‖
∞∑
`=0

‖P1P2‖`

and

‖Q2‖ ≤ ‖(F + θeeT )−1‖
∞∑
`=1

‖P1P2‖` + ‖P2‖‖(D + θeeT )−1‖
∞∑
`=0

‖P1P2‖`

where

P1 = (D + θeeT )−1(H − θeeT ), P2 = (F + θeeT )−1(HT − θeeT ).

Applying the upper bounds on ‖(D + θeeT )−1‖, ‖(F + θeeT )−1‖, and ‖H − θeeT‖ given by
(70), (71), and (73) shows that

‖P1P2‖ ≤
‖H − θeeT‖2

(mini∈Cq Dii)(mini∈Cs Fii)
≤ γ2

1

(θ − δp)2rq
(93)
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with probability at least (92). Therefore, there exists γ2 > 0 depending only on p such that

‖Q1‖ ≤
1

(θ − δp)rs

∞∑
`=1

(
γ2

1

(θ − δp)2rq

)`
+

γ1

(1− δp)2rq
√
rs

∞∑
`=0

(
γ2

1

(θ − δp)2rq

)`
≤ γ2

rq
√
rs

(94)

with probability at least (92) since

∞∑
`=0

(
γ2

1

(θ − δp)2rq

)`
≤ O(1)

and
∞∑
`=1

(
γ2

1

(θ − δp)2rq

)`
≤ O(r−1

q ).

with probability at least (92) in the case that rq > (γ1/(θ − δp))2. Similarly, there exists
γ3 > 0 depending only on p such that

‖Q2‖ ≤
γ3

rq
(r−1
q + r−1/2

s ) =
γ3(rq + r

1/2
s )

r2
qr

1/2
s

(95)

with probability at least (92). Finally, recall that

[b]i = c ·
{
nsi , if i ∈ Cq
nqi , if i ∈ Cs.

Therefore, by (67) and (68)

‖b‖ = c

∑
i∈Cq

(nsi )
2 +

∑
i∈Cs

(nqi )
2

1/2

≤ (1 + δ)pc(rqrs)
1/2(rq + rs)

1/2

with probability at least 1 − (rq + rs)
(
eδ/(1 + δ)(1+δ)

)pr̂
. Thus, applying the union bound

shows that there exists B3, B4 depending only on p such that

‖Q1b‖ ≤
γ2(1 + δ)pc(rqrs)

1/2(rq + rs)
1/2

rqr
1/2
s

≤ B3
r

1/2
s

r
1/2
q

‖Q2b‖ ≤
γ3(1 + δ)pc(rqrs)

1/2(rq + rs)
1/2(rq + r

1/2
s )

r2
qr

1/2
s

≤ B4
r

1/2
s (rq + r

1/2
s )

r
3/2
q

with probability at least (92) since rq ≤ rs by Assumption (65).

Finally, to obtain an upper bound on ‖M2‖ we decompose M2 as

M2 = (H − θeeT ) ◦ (Q1beT ) + θQ1beT + (H − θeeT ) ◦ (e(Q2b)T ) + θe(Q2b)T .
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As an immediate corollary of Lemma 4.2 we have

‖(Q1b)eT‖ ≤ ‖Q1b‖‖e‖ =
√
rs‖Q1b‖ ≤ B3

rs

r
1/2
q

(96)

and

‖e(Q2b)T‖ ≤ ‖e‖‖Q2b‖ =
√
rq‖Q2b‖ ≤ B4

r
1/2
s (rq + r

1/2
s )

rq
(97)

with probability at least (92). Moreover, applying (38) with W = H − θeeT , u = Q1b, and
v = e we have

‖(H − θeeT ) ◦ (Q1beT )‖ ≤ ‖H − θeeT‖‖Q1b‖∞ ≤ ‖H − θeeT‖‖Q1b‖. (98)

Thus, combining (98), (73), and (90) we have

‖(H − θeeT ) ◦ (Q1beT )‖ ≤ B3γ1
rs

r
1/2
q

(99)

with probability at least (92). Similarly,

‖(H − θeeT ) ◦ (e(Q2b)T )‖ ≤ B4γ1
rs(rq + r

1/2
s )

r
3/2
q

(100)

with probability at least (92). Therefore, there exists ĉ depending only on p such that

‖M2‖ ≤ ĉ
rs

r
1/2
q

(101)

with probability at least (92) since rs ≤ r
3/2
q by (65), and, hence (rq + r

1/2
s )/rq ≤ O(1).

Combining (74), (84), (89), and (101), there exists some B̃1 depending only on p such
that

‖S̃Cq ,Cs‖ ≤ B̃1
rs
rq1/2

(102)

for all q, s ∈ {1, . . . , k}, q 6= s with probability tending exponentially to 1 as r̂ approaches
∞. The proof of Theorem 4.6 is now complete. Theorem 4.5 is an immediate consequence:
from (102) it follows that

k∑
q=1

k∑
s=1

‖S̃Cq ,Cs‖2 ≤ 2B̃2
1

k∑
q=1

k∑
s=1

r2
s

rq
= 2B̃2

1

(
k∑
s=1

r2
s

)(
k∑
q=1

1

rq

)

and, hence, there exists some β1 depending only on p such that

‖S̃1‖ ≤ β1

(
k∑
s=1

r2
s

)1/2( k∑
q=1

1

rq

)1/2

as required.
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Figure 1: Simulation results for N -node graph with k planted cliques of roughly identical
size. We plot the average number of recoveries of the planted cliques per set of 10 trials for
different minimum cluster sizes r̂ and different probabilities of adding noise edges. Brighter
colours indicate a higher rate of recovery.
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5 Experimental Results

In this section, we evaluate the performance of our relaxation of the k-disjoint-clique problem
for a variety of program inputs via simulation.

We consider N -node random graphs G constructed according to (Ω1) and (Ω2) containing
planted cliques C1, . . . , Ck as follows. For fixed minimum clique size r̂, we choose k = bN/r̂c
and choose the clique sizes such that ri ∈ [r̂, 2r̂]. Every node is assigned to exactly one of
the k planted cliques. We set each entry of the adjacency matrix AG in the diagonal blocks
indexed by C1, . . . , Ck equal to 1 and independently choose each remaining upper triangular
entry of AG to be equal to 1 with probability p. The lower triangular entries of AG are
chosen by symmetry. We solve the semidefinite program

max{tr (XeeT ) : X � 0, Xe ≤ e, tr (X) = k, Xij = 0 if [AG]ij = 0, i 6= j}

using SDPNAL [19] in Matlab. We declare the planted k-disjoint-clique subgraph to be recov-
ered if the optimal solution X∗ returned by SDPNAL satisfies ‖X∗ − X0‖F/‖X0‖F < 10−4,
where X0 is the predicted optimal solution given by (6). This experiment was repeated 10
times each for different values of p and r̂ for N = 200 and N = 500. We plot the empiri-
cal probability of recovery of the planted k-disjoint clique subgraph for each set of trials in
Figure 1.

The performance of our heuristic closely matches that predicted by Theorem 4.5, although
the constants in the bounds on the sizes of planted cliques may be conservative. For example,
the bounds ensuring recovery of X0 given by Theorem 4.5 cannot be satisfied if the minimum
clique size r̂ is less than 3(p/1 − p)

√
N , however perfect recovery occurs for smaller values

of r̂ in almost all trials.
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6 Conclusions

We have considered an NP-hard combinatorial version of the clustering problem called the
k-disjoint-clique problem in which input data is an undirected graph. We have shown that
a convex relaxation of the problem can exactly solve the problem for input instances con-
structed in a certain way. The construction of the instance is that k disjoint cliques are first
placed in the input graph, and then many ‘noise’ vertices and edges are placed that obscure
the k disjoint cliques. We have shown that the algorithm exactly recovers the clique for
noise edges placed by an adversary provided the conditions stated in Theorem 3.1 on the
number of noise edges are satisfied. In the case of random noise, many more noise edges and
nodes can be tolerated compared to the adversary case; in particular, if the quantity on the
right-hand side of Theorem 4.5 is at most r̂, then the algorithm recovers the planted cliques
with probability exponentially close to 1.

This work raises several open questions. First, as already noted in the text, our bounds
may not be the best possible. Particularly in the random case, there is nothing in the way
of matching lower bounds.

Another open question is whether the techniques developed herein can be applied to other
formulations of clustering. For example, if clustering is posed as an optimization problem
with a distance function, then can an approach like the one described here find the optimal
solution for input instances constructed in a certain way?
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