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SMOOTH HYPERBOLICITY CONES ARE SPECTRAHEDRAL

SHADOWS

TIM NETZER AND RAMAN SANYAL

Abstract. Hyperbolicity cones are convex algebraic cones arising from hyperbolic poly-
nomials. A well-understood subclass of hyperbolicity cones is that of spectrahedral cones
and it is conjectured that every hyperbolicity cone is spectrahedral. In this paper we prove
a weaker version of this conjecture by showing that every smooth hyperbolicity cone is the
linear projection of a spectrahedral cone, that is, a spectrahedral shadow.

1. Introduction

A homogeneous polynomial h ∈ R[x] = R[x1, . . . , xn] is called hyperbolic in direction e ∈ R
n,

if h(e) 6= 0 and the univariate polynomials

ha,e(t) := h(a− te) ∈ R[t]

have only real roots, for all a ∈ R
n. So, geometrically, all the lines parallel to Re meet the

hypersurface associated to h in only real points. Hyperbolic polynomials were first considered
in the area of partial differential equations, e.g. in [5, 11]. Recently, there has been renewed
interest in hyperbolic polynomials in the areas of optimization [1, 6, 15], convex algebraic
geometry [2, 10, 17], and combinatorics [3, 4, 7]. The connection to convex geometry was
discovered by G̊arding who proved that the hyperbolicity cone

Λe(h) := {a ∈ R
n : ha,e(t) has only non-negative real roots}

is a closed convex cone. An alternative characterization of Λe(h) is the closure of the con-
nected component of {h 6= 0} containing e. G̊arding also showed that h is hyperbolic in all
directions e′ ∈ int Λe(h) and that the hyperbolicity cone is independent of these directions,
see also Renegar [15]. The importance of hyperbolic polynomials to convex optimization was
recognized by Güler [6] how showed that interior point methods used in convex programming
work for hyperbolicity cones by utilizing − log h(x) as a barrier function.

An important class of hyperbolic polynomials arises from definite determinantal represen-

tations. If M1,M2, . . . ,Mn are hermitian matrices with e1M1 + e2M2 + · · ·+ enMn strictly
definite, then

h = det (x1M1 + x2M2 + · · · + xnMn)
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is hyperbolic in direction e. In fact, without loss of generality we can assume that e1M1 +
· · · + enMn = I. It can be easily seen that ha,e(t) is then the characteristic polynomial of
the hermitian matrix M(a) = a1M1 + · · ·+ anMn and the hyperbolicity cone is

(1) Λe(h) = {a ∈ R
n : M(a) = a1M1 + a2M2 + · · · + anMn is positive semidefinite}.

A cone of this form is a linear section of the cone of (hermitian) positive semidefinite matrices
and is called a spectrahedral cone. Spectrahedral cones or, more precisely, spectrahedra are
exactly the sets of feasible solutions to semidefinite programs. It is conjectured that the
classes of spectrahedral and hyperbolicity cones coincide.

Generalized Lax Conjecture. Every hyperbolicity cone is spectrahedral, i.e., a linear

section of the cone of positive semidefinite matrices.

In its original form, the Lax conjecture was stated for n = 3, and proved by Helton &
Vinnikov [10] in an even stronger form; see also [12]. For n ≥ 4, the conjecture is still wide
open; see [17] for an up-to-date overview.

Unlike polyhedra, the class of spectrahedra is not closed under projection. The image of a
spectrahedron under a linear projection is called a spectrahedral shadow or sdp-representable
set. Spectrahedral shadows lack many of the desirable properties of spectrahedra. However,
from a practical viewpoint, spectrahedral shadows are very valuable as optimization over a
spectrahedral shadow can be done with semidefinite programming. In this paper we prove
a weaker version of the Generalized Lax Conjecture.

Theorem 1.1. Let h ∈ R[x] be hyperbolic with respect to e. If each non-zero point in the

boundary of Λe(h) is a smooth point of h, then Λe(h) is a spectrahedral shadow.

We actually prove a stronger result for a larger class of hyperbolic polynomials, but we defer
the more technical assumptions (cf. Theorem 3.1). Let us emphasize that the assumption on
h is very mild as it comprises all strictly hyperbolic polynomials (ha,e(t) has only simple roots)
which form a dense open subset among all hyperbolic polynomials (in fixed dimension). This
result of Nuij [14] is explained in more detail at the end of the paper. At this point we note
that our results imply that any hyperbolicity cone can be easily approximated arbitrarily
close by spectrahedral shadows.

For the proof, it will be sufficient to consider pointed hyperbolicity cones and we pass to
a dehomogenization S of Λe(h) which is a compact, convex, and basic semi-algebraic set
described by (inhomogeneous) real-zero polynomials. We show that the describing polyno-
mials are strictly quasi-concave in a neighborhood of every smooth point in the boundary
of S, which enables us to use results and ideas of Helton & Nie [8, 9] to show that S is a
spectrahedral shadow. These tools break down in the presence of more severe singularities
(e.g. self-intersections) in the boundary of Λe(h), but we conjecture that all hyperbolicity
cones are spectrahedral shadows.

Acknowledgements. We would like to thank Daniel Plaumann for many inspiring discus-
sions on the topic.
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2. Real-zero polynomials and quasi-concavity

A (possibly inhomogeneous) polynomial p ∈ R[x] is called real-zero with respect to e ∈ R
n,

if p(e) 6= 0 and the univariate polynomials pa,e(t) := p(e + ta) ∈ R[t] have only real roots,
for all a ∈ R

n. So the defining property of real-zero polynomials is similar to that of
hyperbolic polynomials, the main difference being that now every line through e has to meet
the hypersurface of p in only real points. The precise relation to hyperbolic polynomials is as
follows: If p is a real-zero polynomial with respect to e of degree d, then the homogenization
h(x0, x) := xd

0
p( x

x0

) is hyperbolic wrt to (1, e). Conversely, if h is hyperbolic with respect to
e ∈ R

n, then the restriction of h to any hyperplane H containing e is a real-zero polynomial
with respect to e ∈ H .

For a real-zero polynomial p, the set

Se(p) = {a : pa−e,e(t) has no root in [0, 1)}

is called the rigidly convex set of p and e. It is the closure of the connected component of
{p 6= 0} containing e and coincides with H ∩ Λe(h). It follows that Se(p) is a closed convex
set and p is real-zero with respect to every point in the interior of Se(p).

If there are hermitian matrices M0,M1, . . . ,Mn such that

p = det (M0 + x1M1 + · · · + xnMn)

andM0+e1M1+· · ·+enMn is positive definite, then p is said to have a definite determinantal

representation and the rigidly convex region

Se(p) = {a ∈ R
n : M0 + a1M1 + · · · + anMn positive semidefinite}

is called a spectrahedron. Again, linear projections of spectrahedra are called spectrahedral

shadows.

Let us recall the notion of multiplicity of a point a with respect to a polynomial h. We can
write h(x+ a) as a sum of homogeneous terms

h(x+ a) = h0(x) + h1(x) + · · · + hd(x)

where hi(x) is homogeneous of degree i, and the multiplicity or order of vanishing of h at a is
the smallest m for which hm(x) 6= 0. Thus, a point a lies on the hypersurface associated to h

if and only if the multiplicity is positive. A point a is a smooth point of h if the multiplicity
is 1. Equivalently, let v ∈ R

n be a generic direction and consider the univariate polynomial

ha,v(t) = h(a− tv) = h0(−v) + h1(−v)t + · · · + hd(−v)td.

Then the multiplicity of a equals the multiplicity of ha,v(t) at t = 0. Here, the genericity
assumption means that hi(v) 6= 0 whenever hi 6= 0. Clearly, the order of vanishing of ha,v(t)
at t = 0 can only be larger for non-generic v. The next lemma asserts that for a hyperbolic
polynomial, every direction in the interior of the hyperbolicity cone is sufficiently generic.
For points a ∈ Λe(h), this was shown by Renegar [15, Prop. 22].

Lemma 2.1. Let h ∈ R[x] be a hyperbolic polynomial with respect to e. For a ∈ R
n, the

multiplicity of a with respect to h equals the order of vanishing of ha,f (t) at t = 0, independent
of the choice of f ∈ int Λe(h).
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Proof. Let a ∈ R
n, v ∈ int Λe(h) generic, and f ∈ int Λe(h) arbitrary. Consider the hyper-

bolic polynomial

g(r, s, t) = h(ra − sv − tf).

The multiplicity of a with respect to h is thus the order of vanishing of g(1, s, 0) at s = 0,
and the claim is that this is the same as the order of vanishing of g(1, 0, t) at t = 0. By the
Helton-Vinnikov Theorem [10], we have

g(r, s, t) = det(rA − sV − tF )

where V and F are positive definite matrices. Hence, they have a Cholesky factorization
V = V̄ V̄ t and F = F̄ F̄ t and the order of vanishing is the dimension of the kernel of V̄ −1AV̄ −t

and F̄−1AF̄−t, respectively. �

Remark 2.2. (i) Note that a similar result for real-zero polynomials is immediately deduced:
The usual multiplicity of a with respect to p coincides with the order of vanishing of pa−f,f (t)
at t = 1, for any f in the interior of Se(p).

(ii) Note that in view of Lemma 2.1, the assumption from Theorem 1.1 just means that for
0 6= a ∈ ∂Λe(h), the polynomial ha,e(t) has a simple zero at t = 0.

For a twice differentiable function g : Rn → R let us denote by ∇g(a) the gradient of g at
a and by H(g; a) the Hessian matrix. The function g is called strictly quasi-concave at a
point a ∈ R

n if the quadratic form v 7→ vtH(g; a)v is negative definite on the orthogonal
complement of ∇g(a). In formulas, this is for every v ∈ R

n \ {0} we require

vt∇g(a) = 0 ⇒ vtH(g; a)v < 0.

The notion of strict quasi-concavity was introduced by Helton and Nie [9], to give a condition
when a basic semialgebraic set is a spectrahedral shadow:

Theorem 2.3 (Helton & Nie [9, Thm. 2]). Let g1, g2, . . . , gm ∈ R[x] and assume

S = {a ∈ R
n : g1(a) ≥ 0, g2(a) ≥ 0, . . . , gm(a) ≥ 0}

is compact and convex with nonempty interior. If each gi is strictly quasi-concave at each

point of S, then S is a spectrahedral shadow.

For polynomial functions g, strict quasi-concavity can be described as follows. For a ∈ R
n

write g(x+ a) in homogeneous terms as

g(x+ a) = g0(x) + g1(x) + g2(x) + · · · + gk(x).

Then g is strictly quasi-concave at a if for every v ∈ R
n \ {0} with g1(v) = 0, we have

g2(v) < 0. The following Lemma is key for showing that smooth hyperbolicity cones are
spectrahedral shadows. Part (ii) is already proven by elementary means in [15, Prop. 9],
we give a short alternative proof which is not elementary however. For (i) we provide an
elementary proof. Recall that a convex set S is called pointed, if S does not contain a line.

Lemma 2.4. Let p ∈ R[x] be real-zero with respect to e.

(i) If Se(p) is pointed, then p is strictly quasi-concave at each interior point a ∈ Se(p).
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(ii) If a ∈ ∂Se(p) is a smooth point of p, and p does not vanish on a full line through a,

then p is strictly quasi-concave at a.

Proof. For (i) let us assume without loss of generality, that p(a) = 1. Then

q(t) := p(a+ tv) = 1 + p1(v)t + p2(v)t
2 + · · · + pk(v)t

k =

k
∏

i=1

(1 + λit)

has only real non-zero roots. Note that k ≥ 1 follows from the assumption that Se(p) does
not contain a line. In particular, p1(v) = λ1 + λ2 + · · ·+ λk and

p2(v) =
∑

i<j

λiλj = p1(v)
2 −

∑

i

λ2

i .

Hence p2(v) < 0 whenever p1(v) = 0 and v 6= 0.

(ii) Assume e = 0 and write

q(s, t) = p(sa+ tv) = det(I + sA + tV )

with A and V being symmetric matrices of size d = deg(q), using the Helton-Vinnikov theo-
rem [10]. From the fact that a ∈ ∂Se(p) is a smooth point of p we deduce that I+A is positive
semidefinite of rank d−1.Without loss of generality we may assume I + A = diag(1, . . . , 1, 0)
and have p(a+ tv) = det(I + A+ tV ). Let us write V = (ℓij)i,j. The Leibnitz formula now
yields

p1(v) = ℓdd and p2(v) =

d−1
∑

i=1

ℓiiℓdd − ℓ2id.

So p1(v) = 0 and p2(v) ≥ 0 implies ℓid = 0 for all i. But then p(a + tv) ≡ 0 and p vanishes
on a line through a. �

The following two examples show that the assumptions in Lemma 2.4 are indeed necessary.

Example 2.5. For the first part, consider the polynomial

p(x, y, z) = det

(

z x

x 1

)

= z − x2 ∈ R[x, y, z]

which is real-zero with respect to e = (0, 0, 1). Its rigidly convex set is known as the Taco.
The strict quasi-concavity is not fulfilled at e.

For the second part, consider the Cayley cubic

p(x, y, z) = det





1 x y

x 1 z

y z 1



 = 1 + 2xyz − x2 − y2 − z2 ∈ R[x, y, z]

which is an irreducible polynomial real-zero with respect to e = (0, 0, 0). The corresponding
rigidly convex set is known as the Samosa. The boundary of the Samosa contains exactly
4 singular points (of multiplicity 2) and

(

4

2

)

= 6 line segments connecting pairs of singular
points; see [16] for an explanation of these numbers. In particular, every point in the interior
of a line segment is smooth and p is not strictly quasi-concave at these points.
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3. The Main Result

The first version of our main result is stated for real-zero polynomials.

Theorem 3.1. Let p ∈ R[x] be real-zero with respect to e, and assume Se(p) is compact.

Further assume that for each a ∈ ∂Se(p) and each irreducible factor pi of p with pi(a) = 0,
a is a smooth point of pi and pi does not vanish on a whole line through a. Then Se(p) is a

spectrahedral shadow.

Remark 3.2. Note that the conditions in Theorem 3.1 are fulfilled if each point a ∈ ∂Se(p) is
a smooth point of p. Then only one irreducible factor of p can vanish on points of ∂Se(p), and
compactness together with smoothness implies that this factor will not vanish on a whole
line through any boundary point.

Proof of Theorem 3.1. Let p = p1 · · · pm be the decomposition of p into irreducible factors.
Each pi is real-zero with respect to e, and

Se(p) = Se(p1) ∩ Se(p2) ∩ · · · ∩ Se(pm).

Fix some point a ∈ ∂Se(p) and let Ia = {i : pi(a) = 0}. Since a is a smooth point for every
pi for i ∈ Ia, locally at a the set Se(p) is defined by the conditions pi ≥ 0 for i ∈ Ia. That is,
for ε > 0 samll enough

Nε(a) := Bε(a) ∩ Se(p) = {b ∈ R
n : ‖b− a‖2 ≤ ε2, pi(b) ≥ 0 for i ∈ Ia}.

We have Nε(a) ⊆ Se(pi) for all i ∈ Ia and, for ε > 0 small, every point in Nε(a)∩∂Se(pi) is a
smooth point of pi for i ∈ Ia. Moreover, for ε > 0 sufficiently small, Nε(a) misses all points
of ∂Se(pi) through which pi vanishes along a line. This also implies that Se(pi) is pointed
and we can apply Lemma 2.4 to infer that pi is strictly quasi-concave at every point of Nε(a).
The function ε2 − ‖b − a‖2 is clearly strictly quasi-concave on Nε(a) and, by Theorem 2.3,
Nε(a) is a spectrahedral shadow.

The sets Nε(a) cover the boundary of Se(p) and, by compactness, there is a finite subcover
of ∂Se(p) by spectrahedral shadows. Using Theorem 2.2 in [8], taking the convex hull of the
finite cover shows that Se(p) is a spectrahedral shadow. �

The lineality space lin(S) of a convex set S ⊂ R
n is the largest linear subspace L such

that a + L ⊆ S for some (equivalently all) a ∈ S. Assuming that 0 ∈ S, it is well-known
(cf. [18, Thm. 2.5.8]) that

(2) S = (S ∩ L⊥) + L ⊆ L⊥ + L = R
n

and since spectrahedral shadows are closed under taking Minkowski sums, it is sufficient to
prove our claims for pointed convex sets.

We can now easily translate the last result to hyperbolic polynomials, and thus prove Theo-
rem 1.1. We only stated the smooth version as described in Remark 3.2, and leave the more
general version as in Theorem 3.1 to the reader.

Proof of Theorem 1.1. As just explained, we can assume that Λe(h) is pointed. Then there
is a hyperplane H such that S = Λe(h)∩H is compact and Λe(h) = cone(S). Since H meets
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the interior of Λe(h), we can assume that e ∈ H and thus S is a compact rigidly convex set
defined by a real-zero polynomial meeting the requirements of Theorem 3.1. Finally, taking
the conical hull retains the property of being a spectrahedral shadow; see for example,
Proposition 2.1 in [13]. �

As mentioned in the introduction, any hyperbolic polynomial can be approximated arbitrar-
ily close by a strict one, see Nuij [14]. For this let ∂eh be the directional derivative of h with
respect to e. By Rolle’s Theorem, this is again a hyperbolic polynomial. For any linear form
ℓ with ℓ(e) 6= 0 and ε > 0 sufficiently small

h̃(x) := h(x) + εℓ(x)∂eh(x)

is again hyperbolic, and the root multiplicity at each a with h(a) = 0 and ℓ(a) 6= 0 is
reduced by one. In particular, if ℓ does not vanish on Λe(h), this reduces the multiplicity
on the boundary of the hyperbolicity cone. Iterating this process gives rise to a hyperbolic
polynomial that meets our smoothness assumption, and that is arbitrarily close to h. In
view of Theorem 1.1, each hyperbolicity cone can be approximated arbitrarily close by a
spectrahedral shadow. We currently do not know if our arguments can be extended to all
hyperbolicity cones and we close with the following conjecture.

Projected Lax Conjecture. Every hyperbolicity cone is a spectrahedral shadow.

References
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