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Abstract

We consider the solution of strongly monotone variational inequalities of the form F (x∗)′(x−x∗) ≥ 0,
for all x ∈ X. We focus on special structures that lend themselves to sampling, such as when X is the
intersection of a large number of sets, and/or F is an expected value or is the sum of a large number
of component functions. We propose new methods that combine elements of incremental constraint
projection and stochastic gradient. We analyze the convergence and the rate of convergence of these
methods with various types of sampling schemes, and we establish a substantial rate of convergence
advantage for random sampling over cyclic sampling.
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1 Introduction

Variational inequalities (VI) is a general class of problems, which under appropriate assumptions, include
as special cases several fundamental problems in applied mathematics and operations research, such as
convex differentiable optimization, solution of systems of equations and their approximation by Galerkin
approximation or aggregation, saddle point problems, and equilibrium problems. They take the form

F (x∗)′(x− x∗) ≥ 0, ∀ x ∈ X, (1)

where F : <n 7→ <n is a mapping, and X is a closed and convex set in <n. For extensive background on
VI, we refer to the books by Kinderlehrer and Stampacchia [KiS80], by Patriksson [Pat99], and by Facchinei
and Pang [FaP03]. These books contain theoretical analysis as well as a wide range of algorithms and
applications.

We are interested in a VI of the form (1) in which the constraint set X is the intersection of many sets,
i.e.,

X = ∩i∈MXi,

with each Xi being a closed and convex subset of <n, and M being the set of constraint indexes. Moreover
we allow the function F to have the form of an expected value, or a sum of a large number of component
functions. We assume throughout that the mapping F is strongly monotone, so the VI has a unique solution
x∗ (see e.g., [FaP03]). We will later introduce additional assumptions, including the condition that F is
Lipschitz continuous.

The classical projection method for solution of a VI (and also for convex optimization when F is the
gradient of a convex function) has the form

xk+1 = Π
[
xk − αkF (xk)

]
, (2)
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where Π denotes the Euclidean orthogonal projection onto X, and {αk} is a sequence of constant or di-
minishing positive scalars. The projection exists and is unique since X is closed and convex. It is well
known that if F is strongly monotone, this method converges to the unique solution x∗ if all αk lie within a
sufficiently small interval (0, ᾱ) and

∑∞
k=0 αk =∞, as first shown by Sibony [Sib70].

A major difficulty when using this method in practice is the computation of the projection at each
iteration, which can be time-consuming. In the case where the constraint set X is the intersection of a large
number of simpler sets Xi, it is possible to exploit this structure and improve the method, by projecting
onto a single set Xi at each iteration, in the spirit of random and cyclic projection methods that are widely
used to solve the feasibility problem of finding some point in X. This suggests the following modification of
the algorithm (2):

xk+1 = Πwk

[
xk − αkF (xk)

]
, (3)

where we denote by Πwk
the Euclidean orthogonal projection onto Xwk

, and {wk} is a sequence of random
variables taking values in M . An interesting special case is when X is a polyhedral set, i.e., the intersection
of a finite number of halfspaces. Then the algorithm involves successive projections onto halfspaces, which
are easy to implement and computationally inexpensive.

A second important difficulty arises when F is either the sum of a large number of component functions,
or more generally can be expressed as the expected value

F (x) = E
[
f(x, v)

]
, (4)

where f is some function of x and a random variable v. Then the exact computation of F (xk) can be either
very time-consuming or impossible due to some noise. To address this additional difficulty, we may use in
place of F (xk) in Eq. (3) a stochastic sample f(xk, vk). This motivates the incremental constraint projection
algorithm

zk = xk − αkf(xk, vk), xk+1 = zk − βk (zk −Πwk
zk) , (5)

where {vk} and {wk} are sequences of random variables generated by some probabilistic process, and {αk}
and {βk} are sequences of positive scalar stepsizes. For convergence to x∗, we will assume that αk is
diminishing and βk is constant or slowly diminishing (precise conditions will be given later).

The purpose of this paper is to analyze the convergence and rate of convergence properties of the algorithm
(5). We focus primarily on the case where the number of constraint sets is finite, i.e, M = {1, . . . ,m}, where
m is a positive integer. However, a large portion of our analysis can be adapted to allow an infinite number
of constrain sets. To the best of our knowledge the algorithm and its analysis are new: there seems to be no
prior literature on projection methods for VI that involve feasibility updates using projection on component
supersets Xi of the constraint set X.

The convergence mechanism of our algorithm involves an intricate interplay between the progress of
the constraint projection steps and the function projection steps, and their associated stepsizes βk and αk.
An important new insight that emerges from our analysis is that the algorithm operates on two different
time scales: the convergence to the feasible set, which is controlled by βk, is faster than the convergence
to the optimal solution, which is controlled by αk. Thus, asymptotically, the method operates nearly as if
the projections are done on the entire set X. This two-time-scale mechanism is the key to the almost sure
convergence, as we will demonstrate with both analytical and experimental results.

Another important aspect of our analysis relates to the method of selection of the samples vk and wk.
We will consider the two cases where:

• The samples vk and wk are generated randomly, so that all the indexes are sampled sufficiently often.
We refer to this as the random projection algorithm.

• The samples vk and wk are generated “cyclically,” e.g., according to either a deterministic cyclic order
or a random permutation of the component indexes within a cycle (a precise definition will be given
later). We refer to this as the cyclic projection algorithm.
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For versions of the algorithm with non-diminishing stepsizes αk and βk, we show that {xk} converges to
within an appropriate neighborhood of x∗. In addition, we develop convergence rate estimates for the
number of iterations needed for the algorithm to converge to within a given error tolerance. Our comparison
of the rates of convergence of the random and the cyclic sampling cases indicates an advantage for random
sampling. This has also been confirmed by computational experimentation, and is consistent with earlier
results on incremental subgradient methods [NeB01], [BNO03], [Ber10].

Our proposed algorithm (5) is related to a number of known methods from convex optimization, feasibility,
VIs, and stochastic approximation. In particular, when βk = 1 and F (xk) = 0 for all k in iteration (3) we
obtain a successive projection algorithm for finding some x ∈ X = ∩i∈MXi, of the type proposed and
analyzed in many sources. In the case where F (xk) is the gradient at xk of a strongly convex function
f , possibly of the additive form f =

∑m
i=1 fi, we obtain special cases of recently proposed algorithms for

minimizing f over x ∈ X = ∩i∈MXi (see the following discussion). Finally, in the case where X = Xwk
for

all wk and F is given as an expected value [cf. Eq. (4)], our method becomes a stochastic approximation
method for VIs, which has been well known in the literature.

In view of the connections just noted, our analysis uses several ideas from the literature on projection,
feasibility, incremental/stochastic gradient, and stochastic approximation methods, which we will now sum-
marize. The projection method for numerical solution of strongly monotone VIs has been studied extensively
(see e.g., Bertsekas and Tsitsiklis [BeT89], and Facchinei and Pang [FaP03] for textbook accounts of its prop-
erties and convergence analysis). A survey on deterministic projection-type methods is given by Xiu and
Zhang [XiZ03]. Some recent developments have considered a stochastic framework and used a projection-type
stochastic approximation method (see for example Gürkan et al. [GOR99], and Jiang and Xu [JiX08]). The
recent works by Kannan and Shanbhag [KaS13] and by Kannan et al. [KNS12] have considered an iterative
regularization method and an iterative proximal point method for (stochastic) variational inequalities that
are not necessarily strongly monotone, where the former uses a diminishing regularization term and an exact
constraint projection step at each iteration, and the latter applies iterative projection steps towards the
proximal problem with changing centers. The papers by Fukushima [Fuk86] and more recently Censor and
Gibali [CeG08] have considered methods that utilize outer approximations of X by deterministic projection
onto a specially selected halfspace separating X and the iterate. These methods share the motivation of
constraint relaxation with the proposed algorithms of the current work. However, the assumptions, algorith-
mic details, applications and convergence mechanisms of the methods differ fundamentally from each other.
Other works in the area include finding common solutions to VIs (see for example Censor et al. [CGRS12a],
[CGRS12b]), and general VIs (see the survey by Noor [Noo04] and the citations there).

The feasibility problem of finding a point with certain properties within a set intersection ∩i∈MXi arises
in many contexts. For the case where M = {1, . . . ,m} with m being a large number and each of the sets
Xi is a closed convex set with a simple form, incremental methods that make successive projections on the
component sets Xi have a long history, starting with von Neumann [vNe50], and followed by many other
authors Halperin [Hal62], Gubin et al. [GPR67], Tseng [Tse90], Bauschke et al. [BBL97], Lewis and Malick
[LeM08], Leventhal and Lewis [LeL10], Cegielski and Suchocka [CeS08], Deutsch and Hundal [DeH06a],
[DeH06b], [DeH08], and Nedić [Ned10]. A survey of the work in this area up to 1996 is given by Bauschke
[Bau96]. In our analysis we will require that the collection {Xi} possesses a linear regularity property . This
notion has been originally introduced by Bauschke [Bau96] in a more general Hilbert space setting, and finds
extensive application in alternating (or cyclic) projection algorithms for solving feasibility problems (see for
example [DeH08]).

Two works on incremental and randomized methods for convex optimization, by Bertsekas [Ber11a] and
by Nedić [Ned11], are strongly related with ours, in somewhat different ways. The work of [Ned11] focuses
on gradient and subgradient projection methods with random feasibility steps for convex optimization. In
particular, it considers the minimization of a function f over a constraint of the form X = X0 ∩

{
∩i∈M Xi

}
,

where X0 and Xi are closed convex sets, M is a possibly infinite index set, and f is assumed convex over
X0. Among the methods proposed by [Ned11] the one most closely related to ours is the one for the case
X0 = <n, which is given by

zk = xk − αkgk, xk+1 = zk − β (zk −Πwk
zk) , (6)
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where gk can be any subgradient of f at xk, wk is a randomly selected index from M , β is a constant stepsize
with 0 < β < 2, and αk is a diminishing stepsize. The analysis focuses on convergence under conditions
that are related to the linear regularity assumption for the constraints, noted earlier, as well as on error
bounds for the case where the stepsize αk is instead taken to be constant. By comparing the method (6) of
[Ned11] with our method (5) applied to convex optimization problems, we see that the analysis of [Ned11]
is different from ours in that it allows f to be nondifferentiable and not necessarily strongly convex (so the
problem may have multiple optimal solutions), but it relies on the convex structure of the objective function.
On the other hand, the framework of [Ned11] is less general in that it solves a convex optimization problem
rather than a VI, it does not consider the case where the objective function is the sum of components or
is an expected value, and it does not consider the use of cyclic order projection. Consequently it does not
use stochastic samples of the gradients/subgradients, and does not provide a comparative analysis of the
random and cyclic orders of constraint-component selection approaches as we do.

The work of [Ber11a] (earlier discussed in the context of a survey of incremental optimization methods
in [Ber10]) proposed an algorithmic framework which alternates incrementally between subgradient and
proximal iterations for minimizing a cost function f =

∑m
i=1 fi, the sum of a large but finite number

of convex components fi, over a constraint set X. Random or cyclic selection of the components fi for
iteration is a major point of analysis of these methods, similar to earlier works on incremental subgradient
methods by Nedić and Bertsekas [NeB00], [NeB01], [BNO03]. However, X is not assumed to be of the form
∩i∈MXi as in the work of [Ned11] and in the current work. Instead a special case of incremental constraint
projections on sets Xi can be implemented via the proximal iterations. In particular, the case X = ∩mi=1Xi

is handled (requiring Lipchitz continuity of each fi, but not requiring the linear regularity assumption) by
eliminating each constraint x ∈ Xi, while adding to fi a penalty function of the form γ dist(x,Xi), where γ is
a sufficiently large penalty parameter. A proximal iteration applied to this penalty function is equivalent to
a projection iteration applied to the constraint set Xi. When proximal iterations are incrementally applied
to the penalty functions γ dist(x,Xi), and are combined with subgradient iterations for fi, the resulting
method takes the form

zk = xk − αkgik , xk+1 = zk − βk (zk −Πwk
zk) ,

where ik and wk are randomly selected indexes from {1, . . . ,m}, gik is any subgradient of fik at xk, αk is a
constant or a diminishing stepsize, and

βk = min

{
1,

αkγ

dist(zk;Xwk
)

}
.

Here the stepsize βk must be specified by using zk and Xwk
, and is coupled to αk. This algorithm allows

the components fi to be nondifferentiable, it introduces proximal iterations, and it does not require the
linear regularity assumption. It is less general in that, like the method of [Ned11], it applies to a convex
optimization problem rather than a VI, and it requires the objective function to be Lipchitz continuous.

The algorithmic treatment of the uncertainties when F is given as an expected value [cf. Eq. (4)], is
strongly related to stochastic approximation methods. In particular, we make the typical assumptions∑∞
k=0 αk = ∞ and

∑∞
k=0 α

2
k < ∞ on {αk} in order to establish convergence (see e.g., the textbooks by

Kushner and Yin [KuY03], and by Borkar [Bor08], and the aforementioned papers [GOR99] and [JiX08]).
Moreover, similar to many sources on convergence analysis of stochastic algorithms, we use a supermartingale
convergence theorem.

The remainder of the paper is organized as follows. Section 2 summarizes our assumptions, proof tech-
niques, and several preliminary results. Section 3 focuses on the algorithm with random projection, and
derives convergence results and a constant-stepsize error bound. It also discusses extensions of the con-
vergence analysis to various schemes of constraint superset selection that may involve adaptive sampling
and/or allow an infinite number of constraint sets. Section 4 obtains corresponding results for the algorithm
with cyclic or randomly permuted order projection, and compares its convergence rate with the one of the
random projection algorithm. Section 5 discusses applications of the proposed algorithms and presents some
computational experiments.
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Our notation in summary is as follows. For x ∈ <n, we denote by x′ its transpose, and by ‖x‖ its

Euclidean norm (i.e., ‖x‖ =
√
x′x). The abbreviation “

a.s.−→” means “converges almost surely to,” while the
abbreviation “i.i.d.” means “independent identically distributed.” For two sequences {yk} and {zk}, we write
yk = O(zk) if there exists a constant c > 0 such that ‖yk‖ ≤ c‖zk‖ for each k. In the case where {yk} and
{zk} are sequences of random variables, we write “yk = O(zk) w.p.1” if there exists a constant c > 0 such
that ‖yk‖ ≤ c‖zk‖ for each k with probability 1. We denote by Fk the collection

Fk = {v0, . . . , vk−1, w0, . . . , wk−1, z0, . . . , zk−1, x0, . . . , xk},

so {Fk} is an increasing sequence.

2 Assumptions and Preliminaries

To motivate our assumptions, we first briefly review the convergence mechanism of the classical projection
method

xk+1 = Π
[
xk − αkF (xk)

]
, (7)

where Π denotes projection on X [cf. Eq. (2)]. The solution x∗ of the VI (1) is the unique fixed point of the
preceding iteration for any αk > 0, i.e.,

x∗ = Π
[
x∗ − αkF (x∗)

]
.

We assume that F is strongly monotone with a constant σ > 0 such that(
F (x)− F (y)

)′
(x− y) ≥ σ‖x− y‖2, ∀ x, y ∈ <n,

and is Lipschitz continuous with a constant L > 0 such that∥∥F (x)− F (y)
∥∥ ≤ L‖x− y‖, ∀ x, y ∈ <n.

Then iteration (7) is strictly contractive for sufficiently small αk > 0. This can be shown as follows:

‖xk+1 − x∗‖2 =
∥∥Π
[
xk − αkF (xk)

]
−Π

[
x∗ − αkF (x∗)

]∥∥2
≤
∥∥[xk − αkF (xk)

]
−
[
x∗ − αkF (x∗)

]∥∥2
=
∥∥(xk − x∗)− αk(F (xk)− F (x∗))

∥∥2
= ‖xk − x∗‖2 − 2αk

(
F (xk)− F (x∗)

)′
(xk − x∗) + α2

k

∥∥F (xk)− F (x∗)
∥∥2

≤ (1− 2σαk + α2
kL

2)‖xk − x∗‖2,

where the first inequality uses the nonexpansiveness of the projection (i.e., that ‖Πx − Πy‖ ≤ ‖x − y‖ for
all x, y ∈ <n), and the second inequality uses the strong monotonicity and Lipschitz continuity of F . In the
case of a constant stepsize, assuming that αk = α ∈

(
0, 2σL2

)
for all k, the iteration is strictly contractive

and converges linearly to the unique fixed point x∗. In the case of diminishing stepsizes, assuming that∑∞
k=0 αk = ∞ and

∑∞
k=0 α

2
k < ∞, the iteration can be shown to converge to x∗ by using a stochastic

approximation argument (see the subsequent analysis).
Our proposed incremental constraint projection algorithm, restated for convenience here,

zk = xk − αkf(xk, vk), xk+1 = zk − βk (zk −Πwk
zk) , (8)

differs from the classical method (7) in two important respects. First, the iterates {xk} generated by the
algorithm (8) are not guaranteed to stay in X. Moreover, the projection Πwk

onto a random set Xwk

need not decrease the distance between xk and X at every iteration. Instead, the incremental projection
process guarantees that {xk} approaches X in a stochastic sense as k → ∞. Second, the stepsize αk must
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be diminishing rather than be a constant α. This is necessary because if αk were a constant, the solution
x∗ would not be a fixed point of algorithm (8), even if f(x, v) = F (x) for all x and v. Indeed, as we will
show later, the stepsize {αk} must be decreased to 0 at a rate faster than {βk} in order that the algorithm
converges. Additionally a diminishing stepsize αk is needed if samples f(x, v) of F (x) are used in place of
F (x), even if the projection is on X rather than Xwk

. This can be understood in light of the stochastic
approximation character of the algorithm in the case where X = <n.

Let us outline the convergence proof for the algorithm (8) with random projection. Similar to the classical
projection method (7), our line of analysis starts with a bound of the iteration error that has the form

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αkF (xk)′(xk − x∗) + e(xk, αk, βk, wk, vk), (9)

where e(xk, αk, βk, wk, vk) is a random variable. Under suitable assumptions, we will bound each term
on the right side of Eq. (9) by using properties of random projection and monotone mappings, and then
take conditional expectation on both sides. From this we obtain that the random projection algorithm is
“stochastically contractive” in the following sense

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ (1− 2σαk + δk)‖xk − x∗‖2 + εk, w.p.1,

where σ is the constant of strong monotonicity, and δk, εk are positive errors such that
∑∞
k=0 δk < ∞ and∑∞

k=0 εk <∞. Finally, we will use the following supermartingale convergence theorem result due to Robbins
and Siegmund [RoS71] to complete the proof.

Theorem 1 Let {yk}, {uk}, {ak} and {bk} be sequences of nonnegative random variables so that

E [yk+1 | Gk] ≤ (1 + ak)yk − uk + bk, for all k ≥ 0 w.p.1,

where Gk denotes the collection y0, . . . , yk, u0, . . . , uk, a0, . . . , ak, b0, . . . , bk. Also, let
∑∞
k=0 ak < ∞ and∑∞

k=0 bk <∞ with probability 1. Then yk converges almost surely to a nonnegative random variable, and∑∞
k=0 uk <∞ with probability 1.

This line of analysis is shared with incremental subgradient and proximal methods (see [NeB00], [NeB01]).
However, here the technical details are more intricate because there are two types of iterations, which involve
the two different stepsizes αk and βk. We will now introduce our assumptions and give a few preliminary
results that will be used in the subsequent analysis.

Assumption 1 The mapping F is strongly monotone with a constant σ > 0, i.e.,(
F (x)− F (y)

)′
(x− y) ≥ σ‖x− y‖2, ∀ x, y ∈ <n.

The mapping f(·, v) is “stochastically Lipschitz continuous” with a constant L > 0, i.e.,

E
[∥∥f(x, vk)− f(y, vk)

∥∥2 | Fk] ≤ L2‖x− y‖2, ∀ x, y ∈ <n, (10)

with probability 1. Moreover, there exists a constant B > 0 such that∥∥F (x∗)
∥∥ ≤ B, E

[∥∥f(x∗, vk)
∥∥2 | Fk] ≤ B2, for all k ≥ 0,

with probability 1.

The stochastic Lipschitz continuity condition (10) resembles ordinary Lipschitz continuity. If f(x, v) =
F (x) for all x and v, the scalar L is equal to the Lipschitz continuity constant of F . If v takes finitely many
values, Lipschitz continuity of each f(·, v) implies the stochastic Lipschitz continuity condition.
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In order for the distance between xk and X to decrease “on average,” we make several assumptions
regarding the constraint sets {Xi} and the incremental projection process {Πwk

}. The following assumption
is a form of regularity of the collection of constraint sets {Xi}.

Assumption 2 There exists a positive scalar η such that for any x ∈ <n

‖x−Πx‖2 ≤ ηmax
i∈M
‖x−ΠXix‖2,

where M is a finite set of indexes, M = {1, . . . ,m}.

This assumption is known as linear regularity , and was introduced and studied by Bauschke [Bau96]
(Definition 4.2.1, p. 53) in the more general setting of a Hilbert space; see also Bauschke and Borwein
[BaB96] (Definition 5.6, p. 40). Recently, it has been studied by Deutsch and Hundal [DeH08] for the
purpose of establishing linear convergence of a cyclic projection method for finding a common point of
finitely many convex sets. This linear regularity condition is automatically satisfied when X is a polyhedral
set. The discussion in the preceding references provides several other situations where the linear regularity
condition holds, and indicates that this condition is a mild restriction in practice.

Although the linear regularity assumption requires {Xi} to be a collection of finitely many sets, it can be
relaxed to accommodate an infinite number of constraints for random projection algorithms. Consequently,
a substantial part of our subsequent analysis can be adapted to the relaxation of Assumption 2; see the
discussion of Section 3.3. However, for cyclic projection algorithms, the number of constraints must be
finite.

Assumption 3 We have αk ∈ (0, 1), βk ∈ (0, 2) for all k, and

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞,

∞∑
k=0

α2
k

γk
<∞,

where γk = βk(2− βk).

Note that to satisfy the condition

∞∑
k=0

α2
k

γk
=

∞∑
k=0

α2
k

βk(2− βk)
<∞,

we may either let βk be equal to a constant in (0, 2) for all k, or let βk decrease to 0 or increase to 2 at a
certain rate. Given that

∑∞
k=0 αk =∞, the preceding condition implies that

αk
βk
→ 0 or

αk
2− βk

→ 0.

We will show that as a consequence of this, the convergence to the constraint set is faster than the convergence
to the optimal solution.

Let us now prove a few preliminary technical lemmas. The first gives several basic facts regarding
projection.
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Lemma 1 Let S be a closed convex subset of <n, and let ΠS denote orthogonal projection onto S.

(a) For all x ∈ <n, y ∈ S, and β > 0,∥∥x− β(x−ΠSx)− y
∥∥2 ≤ ‖x− y‖2 − β(2− β)‖x−ΠSx‖2. (11)

(b) For all x, y ∈ <n,
‖y −ΠSy‖2 ≤ 2‖x−ΠSx‖2 + 8‖x− y‖2.

Proof. (a) We have

‖x− β(x−ΠSx)− y‖2 = ‖x− y‖2 + β2‖x−ΠSx‖2 − 2β(x− y)′(x−ΠSx)

≤ ‖x− y‖2 + β2‖x−ΠSx‖2 − 2β(x−ΠSx)′(x−ΠSx)

= ‖x− y‖2 − β(2− β)‖x−ΠSx‖2,

where the inequality follows from (y −ΠSx)′(x−ΠSx) ≤ 0, the characteristic property of projection.

(b) We have
y −ΠSy = (x−ΠSx) + (y − x)− (ΠSy −ΠSx).

By using the triangle inequality and the nonexpansiveness of ΠS we obtain

‖y −ΠSy‖ ≤ ‖x−ΠSx‖+ ‖y − x‖+ ‖ΠSy −ΠSx‖ ≤ ‖x−ΠSx‖+ 2‖x− y‖.

Finally we complete the proof by using the inequality (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ <. �

From Lemma 1(a) and the relation xk+1 = zk − βk(zk −Πwk
zk) [cf. Eq. (8)], we obtain for any y ∈ X

‖xk+1 − y‖2 ≤ ‖zk − y‖2 − βk(2− βk)‖Πwk
zk − zk‖2 =

∥∥(zk − xk) + (xk − y)
∥∥2 − γk‖Πwk

zk − zk‖2,

and finally

‖xk+1 − y‖2 ≤ ‖xk − y‖2 + 2(zk − xk)′(xk − y) + ‖zk − xk‖2 − γk‖Πwk
zk − zk‖2, ∀ y ∈ X. (12)

This decomposition of the iteration error will serve as the starting point of our main proof of convergence.
The next lemma derives a lower bound for the term F (xk)′(xk − x∗) that arises from the decomposition

of the iteration error ‖xk+1−x∗‖2 [cf. Eq. (9)]. Estimating this term is complicated by the fact that xk need
not belong to X, so the lemma involves the Euclidean distance of x from X, denoted by

d(x) = ‖x−Πx‖.

Lemma 2 Under Assumption 1, we have

F (x)′(x− x∗) ≥ σ‖x− x∗‖2 −B d(x), ∀ x ∈ <n. (13)

Proof. We have

F (x)′(x− x∗) =
(
F (x)− F (x∗)

)′
(x− x∗) + F (x∗)′(Πx− x∗) + F (x∗)′(x−Πx). (14)

By using the strong monotonicity of F we obtain(
F (x)− F (x∗)

)′
(x− x∗) ≥ σ‖x− x∗‖2,
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while from the definition of x∗ as the solution of the VI (1),

F (x∗)′(Πx− x∗) ≥ 0.

Also, by using the inequality x′y ≥ −‖x‖‖y‖ and the relation ‖F (x∗)‖ ≤ B (cf. Assumption 1), we have

F (x∗)′(x−Πx) ≥ −
∥∥F (x∗)

∥∥‖x−Πx‖ ≥ −B d(x).

By using the preceding three relations in Eq. (14), the desired inequality follows. �

The next lemma derives some useful estimates based on the Lipschitz condition of Assumption 1.

Lemma 3 Under Assumption 1, for any x ∈ <n and k ≥ 0, we have

E
[
‖f(x, vk)‖ | Fk

]
≤ L‖x− x∗‖+B,

and
E
[
‖f(x, vk)‖2 | Fk

]
≤ 2L2‖x− x∗‖2 + 2B2,

with probability 1.

Proof. For any x ∈ <n and k ≥ 0, we use the triangle inequality to write∥∥f(x, vk)
∥∥ ≤ ∥∥f(x, vk)− f(x∗, vk)

∥∥+
∥∥f(x∗, vk)

∥∥.
By taking expectation in the above relation, and using the Cauchy-Schwarz inequality E

[
‖y‖
]
≤ E

[
‖y‖2

]1/2
,

and Assumption 1, we have

E
[
‖f(x, vk)‖ | Fk

]
≤ E

[
‖f(x, vk)− f(x∗, vk)‖2 | Fk

]1/2
+ E

[
‖f(x∗, vk)‖2 | Fk

]1/2 ≤ L‖x− x∗‖+B,

with probability 1. By using the inequality (a+ b)2 ≤ 2a2 + 2b2, for all a, b ∈ <, we also have

E
[
‖f(x, vk)‖2 | Fk

]
≤ 2E

[
‖f(x, vk)− f(x∗, vk)‖2 + ‖f(x∗, vk)‖2 | Fk

]
≤ 2L2‖x− x∗‖2 + 2B2,

with probability 1. �

3 Convergence of Random Projection Algorithms

In this section, we will analyze the algorithm

zk = xk − αkf(xk, vk), xk+1 = zk − βk (zk −Πwk
zk) , (15)

for the case where the projections Πwk
are randomly generated. We make the following assumption, which

requires that each Xi be sampled sufficiently often, and that the samples f(xk, vk) be conditionally unbiased.

Assumption 4 (a) The random variables wk, k = 0, 1, . . ., are such that

inf
k≥0

P(wk = Xi | Fk) ≥ ρ

m
, i = 1, . . . ,m,

with probability 1, where ρ ∈ (0, 1] is some scalar.

(b) The random variables vk, k = 0, 1, . . ., are such that

E
[
f(x, vk) | Fk

]
= F (x), ∀ x ∈ <n, k ≥ 0, (16)

with probability 1.
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Assumption 4 requires that the random samples of the constraint sets be “nearly independent,” in the
sense that each constraint is always sampled with sufficient probability, regardless of the sample history. In
the case where wk are independent identically distributed in {1, . . . ,m}, we have ρ = 1. Thus the constant
ρ can be viewed as a metric of the efficiency of the sampling process, and it does not scale with the number
of constraints m.

3.1 Almost Sure Convergence

Consider the nonnegative function of x

E
[
‖x−Πwk

x‖2 | Fk
]
,

which measures the “average progress” of random projection at the kth iteration. This function can be used
as a metric of distance between x and the entire constraint set X, as shown by the following lemma.

Lemma 4 Under Assumptions 2 and 4, we have

E
[
‖x−Πwk

x‖2 | Fk
]
≥ ρ

mη
d2(x), ∀ x ∈ <n, k ≥ 0, (17)

with probability 1, where ρ ∈ (0, 1] is the constant of Assumption 4(a).

Proof. By Assumption 2, the index set M is finite, M = {1, . . . ,m}. By Assumption 4, we have for any

j = 1, . . . ,m,

E
[
‖x−Πwk

x‖2 | Fk
]

=

m∑
i=1

P (wk = i | Fk) ‖x−Πix‖2 ≥
ρ

m
‖x−Πjx‖2.

By maximizing the right-hand side of this relation over j and by using Assumption 2, we obtain

E
[
‖x−Πwx‖2 | Fk

]
≥ ρ

m
max

1≤j≤m
‖x−Πjx‖2 ≥

ρ

mη
‖x−Πx‖2 =

ρ

mη
d2(x).

�

We are now ready to present the first of the main results of the paper.

Proposition 1 (Convergence of Random Projection Algorithm) Let Assumptions 1-4 hold.
Then the random projection algorithm (15) generates a sequence {xk} that converges almost surely to
the unique solution x∗ of the VI (1).

Proof. By applying Eq. (12) [which follows from Lemma 1(a)] with y = x∗, we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2(zk − xk)′(xk − x∗) + ‖zk − xk‖2 − γk‖Πwk
zk − zk‖2. (18)

By using Lemma 1(b), we further have

‖Πwk
xk − xk‖2 ≤ 2‖Πwk

zk − zk‖2 + 8‖zk − xk‖2,

which combined with Eq. (18) yields

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2(zk − xk)′(xk − x∗) + (1 + 4γk)‖zk − xk‖2 −
γk
2
‖Πwk

xk − xk‖2. (19)
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Defining gk = f(xk, vk)− F (xk), we have

(zk − xk)′(xk − x∗) = −αkf(xk, vk)′(xk − x∗)
= −αkF (xk)′(xk − x∗)− αkg′k(xk − x∗)
≤ −αkσ‖xk − x∗‖2 +Bαk d(xk)− αkg′k(xk − x∗),

where the inequality follows from Lemma 2. We apply the preceding inequality to Eq. (19) and obtain

‖xk+1 − x∗‖2 ≤ (1− 2αkσ)‖xk − x∗‖2 − 2αkg
′
k(xk − x∗) + (1 + 4γk)‖zk − xk‖2

+ 2Bαk d(xk)− γk
2
‖Πwk

xk − xk‖2.
(20)

According to Assumption 4, since xk ∈ Fk, we have

E
[
g′k(xk − x∗) | Fk

]
=
(
E
[
f(xk, vk) | Fk

]
− F (xk)

)′
(xk − x∗) = 0. (21)

From Lemma 3, we have

E
[
‖zk − xk‖2 | Fk

]
= α2

kE
[
‖f(xk, vk)‖2 | Fk

]
≤ α2

k(2L2‖xk − x∗‖2 + 2B2). (22)

From Lemma 4, we have

E
[
‖Πwk

xk − xk‖2 | Fk
]
≥ ρ

mη
d2(xk). (23)

Taking conditional expectation on both sides of Eq. (20) and applying Eqs. (21)-(23), we obtain

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ (1− 2αkσ)‖xk − x∗‖2 + 2α2

k(1 + 4γk)
(
L2‖xk − x∗‖2 +B2

)
+ 2Bαk d(xk)− ργk

2mη
d2(xk).

Finally, by writing the last two terms in the right-hand side as

2Bαk d(xk)− ργk
2mη

d2(xk) = − ργk
2mη

(
d(xk)− 2Bmηρ−1

αk
γk

)2

+ 2B2mηρ−1
α2
k

γk
,

and bounding them by 2B2mηρ−1
α2
k

γk
, we further obtain

E
[
‖xk+1 − x∗‖2 | Fk

]
≤
(
1− 2αkσ + 2L2(1 + 4γk)α2

k

)
‖xk − x∗‖2 + 2B2(1 + 4γk)α2

k + 2B2mηρ−1
α2
k

γk

≤
(
1− 2αkσ +O

(
α2
k

))
‖xk − x∗‖2 +O

(
α2
k +

α2
k

γk

)
.

(24)

From Assumption 3, we have
∑∞
k=0 α

2
k <∞ and

∑∞
k=0

(
α2
k +

α2
k

γk

)
<∞, so the Supermartingale Conver-

gence Theorem 1 applies to Eq. (24). It follows that ‖xk − x∗‖2 converges almost surely to a nonnegative
random variable, and that

∞∑
k=0

2αkσ‖xk − x∗‖2 <∞, w.p.1.

The preceding relation implies that ‖xk−x∗‖2
a.s.−→ 0 with probability 1 [if ‖xk−x∗‖2 converged to a nonzero

random variable, then
∑∞
k=0 2αkσ‖xk − x∗‖2 = ∞ with positive probability, thus yielding a contradiction].

To conclude, we have ‖xk − x∗‖2
a.s.−→ 0, or equivalently, xk

a.s.−→ x∗. �
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3.2 Convergence Rate and Constant Stepsize Error Bound

Let us now focus on the rate of convergence of the random projection algorithm (15). We will consider a
diminishing stepsize αk, and derive the convergence rates of the iteration error ‖xk − x∗‖ and the feasibility
error d(xk). In particular we will derive an estimate on the number of iterations needed to achieve a specified
error tolerance. We will also consider a constant stepsize αk, and show that in this case the algorithm
converges to within a certain error bound. This error bound will be compared later to the corresponding
error bound for the cyclic projection algorithm.

Proposition 2 (Random Projection Algorithm: Convergence Rate for Diminishing {αk})
Let Assumptions 1-4 hold, let αk ∈

(
0, σ

5L2

)
for all k, and let {xk} be generated by the random projection

algorithm (15). For any positive scalar ε, there exists a random variable N such that

min
0≤k≤N

{
‖xk − x∗‖2 − δk

}
≤ ε, (25)

with probability 1, where

δk =
αk
σ

(
L2ε+B2 +B2mηρ−1γ−1k

)
+O

(
α2
k + αkγk

)
≤ O

(
αk
γk

)
,

and

E

[
N−1∑
k=0

αk

]
≤ ‖x0 − x

∗‖2

2σε
. (26)

Proof. Given ε > 0, we let

δk =
αk

2σ − c1,kαk
(
c1,kε+ c2,k + c3,kγ

−1
k

)
,

where
c1,k = 2L2(1 + 4γk), c2,k = 2B2(1 + 4γk), c3,k = 2B2mηρ−1.

It can be seen that
δk ≤

αk
σ

(
L2ε+B2 +B2mηρ−1γ−1k

)
+O

(
α2
k + αkγk

)
,

where L, B are the constants in Assumption 1, and ρ is the constant in Lemma 4. Note that, since

αk ∈ (0, σ
2

5L2 ) and γk = βk(2− βk) ≤ 1, we can verify that 2σ− c1,kαk ≥ 2σ− 10L2αk > 0 and δk > 0 for all
k.

Define a new process {x̂k}, which is identical to {xk} except that once x̂k enters the level set

Lk =
{
x ∈ <n | ‖x− x∗‖2 ≤ δk + ε

}
the process stays at x̂k = x∗ for all future k. Following the analysis of Prop. 1 [cf. Eq. (24)], we have for all
k with probability 1 that

E
[
‖x̂k+1 − x∗‖2 | Fk

]
≤
(
1− 2αkσ + c1,kα

2
k

)
‖x̂k − x∗‖2 + c2,kα

2
k + c3,k

α2
k

γk
.

We write this relation as

E
[
‖x̂k+1 − x∗‖2 | Fk

]
≤ ‖x̂k − x∗‖2 − ξk, (27)

where we define

ξk =


(
2αkσ − c1,kα2

k

)
‖x̂k − x∗‖2 − c2,kα2

k − c3,k
α2
k

γk
if x̂k /∈ Lk,

0 otherwise.
(28)
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When x̂k /∈ Lk, we can verify by using the definition of δk that

ξk ≥
(
2αkσ − c1,kα2

k

)
(δk + ε)−

(
c2,kα

2
k + c3,k

α2
k

γk

)
= (2σε)αk. (29)

Note that ξk ≥ 0 for all k. By applying Theorem 1 to Eq. (27), we have

∞∑
k=0

ξk <∞, w.p.1.

If x̂k /∈ Lk for all k, by using Eq. (29) and Assumption 3 we would obtain

∞∑
k=0

ξk ≥ (2σε)

∞∑
k=0

αk =∞,

with positive probability, yielding a contradiction. Thus {x̂k} enters Lk eventually, with probability 1.
Let N be the smallest integer N such that x̂k ∈ Lk for all k ≥ N with probability 1, so that Eq. (25)

holds. By taking expectation on both sides of Eq. (27), we have

E
[
‖x̂k+1 − x∗‖2

]
≤ ‖x̂0 − x∗‖2 −E

[
k∑
t=0

ξt

]
. (30)

By letting k →∞ and using the monotone convergence theorem, we obtain

‖x0 − x∗‖2 ≥ E

[ ∞∑
k=0

ξk

]
= E

[
N−1∑
k=0

ξk

]
≥ (2σε)E

[
N−1∑
k=0

αk

]
.

This proves Eq. (26). �

Equation (26) quantifies the random number of iterations needed to achieve the solution accuracy specified
by Eq. (25). If we take αk and βk to be constant stepsizes, we obtain the following result with a nearly
identical proof to the one of the preceding proposition.

Proposition 3 (Random Projection Algorithm: Error Bound for Constant {αk} and {βk})
Let Assumptions 1, 2, and 4 hold, let the stepsizes be constant scalars satisfying

αk = α ∈
(

0,
σ

5L2

)
, βk = β ∈ (0, 2), γk = γ = β(2− β), ∀ k ≥ 0,

and let {xk} be generated by the random projection algorithm (15). Then

lim inf
k→∞

‖xk − x∗‖2 ≤ δ(α, γ)
def
=

α
(
1 + 4γ +mηρ−1γ−1

)
B2

σ − L2(1 + 4γ)α
≤ O

(
mα

σγ

)
,

with probability 1. For any positive scalar ε, there exists a random variable N such that

min
0≤k≤N

‖xk − x∗‖2 ≤ δ(α, γ) + ε,

with probability 1, and N satisfies

E[N ] ≤ ‖x0 − x∗‖2(
2σ − 2L2(1 + 4γ)α

)
εα
.
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Proof. We repeat the analysis of Prop. 2 with αk replaced with α, βk replaced with β, γk replaced with γ,

δk replaced with δ(α, γ), and ε replaced with (2σ−2L2(1+4γ)α)
2σ ε. Then Lk is replaced by

L(ε) =
{
x ∈ <n | ‖x− x∗‖2 ≤ δ(α, γ) + ε

}
, k = 0, 1, . . . .

Similar to Eq. (27), we have

E
[
‖x̂k+1 − x∗‖2 | Fk

]
≤ ‖x̂k − x∗‖2 − ξk, (31)

where we can verify that
ξk ≥

(
2σ − 2L2(1 + 4γ)α

)
εα, if x̂k /∈ L(ε),

ξk = 0, if x̂k ∈ L(ε).

Since α ∈
(
0, σ

5L2

)
and γ = β(2− β) < 1, we have ξk ≥ 0 for all k.

By applying Theorem 1 to Eq. (31) and using a similar analysis as in Prop. 2, we can show that ξk = 0
for all k sufficiently large with probability 1. This implies that {x̂k} and {xk} both enter L(ε) eventually,
and since ε > 0 is arbitrary, it further implies that

lim inf
k→∞

‖xk − x∗‖2 ≤ δ(α, γ), w.p.1.

Finally, by defining N similar to the proof of Prop. 2, we can prove the desired error bounds involving N . �

Let us also consider the convergence rate of the distance to the constraint set for our algorithm. By using
an analysis similar to that of Prop. 2, we obtain the following result.

Proposition 4 (Random Projection Algorithm: Convergence Rate of d(xk)) Let Assumptions
1-4 hold, let αk ∈

(
0, σ

5L2

)
for all k, and let {xk} be generated by the random projection algorithm (15).

For any positive scalar ε, there exists a random variable N such that

min
0≤k≤N

{
d2(xk)− δk

}
≤ ε, (32)

where

δk = 8B2mηρ−1
(
4 + γk

−1 + 2mηρ−1γ−2k
)
α2
k ≤ O

(
α2
k

γ2k

)
,

with probability 1, and

E

[
N−1∑
k=0

γk

]
≤
(
4mηρ−1

) ‖x0 − x∗‖2
ε

. (33)

Proof. Given ε > 0, we let

δk =
4mηρ−1

γk

(
c2,kα

2
k + 2c3,k

α2
k

γk

)
= 8B2mηρ−1

(
4 + γk

−1 + 2mηρ−1γ−2k
)
α2
k,

where c2,k = 2B2(1 + 4γk) and c3,k = 2B2mηρ−1.
Define a new process {x̂k} which is identical to {xk} except that once x̂k enters the level set

Lk =
{
x ∈ <n | ‖x− x∗‖2 ≤ δk + ε

}
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the process stays at x̂k = x∗ for all future k. Following the analysis of Prop. 1 [cf. Eq. (24)], we have

E[‖x̂k+1 − x∗‖2 | Fk] ≤
(
1− 2σαk + c1,kα

2
k

)
‖x̂k − x∗‖2 −

ργk
2mη

(
d(xk)− 2Bmηρ−1

αk
γk

)2

+ c2,kα
2
k + c3,k

α2
k

γk

≤ ‖x̂k − x∗‖2 −
ργk
2mη

(
d(xk)− 2Bmηρ−1

αk
γk

)2

+ c2,kα
2
k + c3,k

α2
k

γk

≤ ‖x̂k − x∗‖2 −
ργk
2mη

(
1

2
d2(xk)− 4B2m2η2ρ−2

α2
k

γ2k

)
+ c2,kα

2
k + c3,k

α2
k

γk

= ‖x̂k − x∗‖2 −
ργk
4mη

d2(xk) + c2,kα
2
k + 2c3,k

α2
k

γk
,

where the first inequality uses the fact αk ∈ (0, σ
5L2 ) ⊂ (0, σ

1+4γk
), and the second inequality uses the fact

−(a− b)2 ≤ −
(
1
2a

2 − b2
)

for any a, b ∈ <. Equivalently, this is the relation

E
[
‖x̂k+1 − x∗‖2 | Fk

]
≤ ‖x̂k − x∗‖2 − ξk, (34)

where we define

ξk =


γkρ

4mη
d2(xk)− c2,kα2

k − 2c3,k
α2
k

γk
if x̂k /∈ Lk,

0 otherwise.
(35)

When x̂k /∈ Lk, we can verify by using the definition of δk that

ξk ≥
γkρ

4mη
(δk + ε)−

(
c2,kα

2
k + 2c3,k

α2
k

γk

)
=
γkρε

4mη
. (36)

Note that ξk ≥ 0 for all k. By applying Theorem 1 to Eq. (34), we have
∑∞
k=0 ξk <∞ with probability 1. It

follows that {x̂k} enters Lk eventually, or equivalently, ξk = 0 for all k sufficiently large with probability 1.
Let N be the smallest integer N such that x̂k ∈ Lk for all k ≥ N with probability 1, so that Eq. (32)

holds. By taking total expectation of both sides of Eq. (34) and adding over indexes up to k, we have

E
[
‖x̂k+1 − x∗‖2

]
≤ ‖x̂0 − x∗‖2 −E

[
k∑
t=0

ξt

]
. (37)

By letting k →∞ and using the monotone convergence theorem, we obtain

‖x0 − x∗‖2 ≥ E

[ ∞∑
k=0

ξk

]
= E

[
N−1∑
k=0

ξk

]
≥ ρε

4mη
E

[
N−1∑
k=0

γk

]
,

where the last inequality follows from Eq. (36). This proves Eq. (33). �

A comparison between Prop. 2 and 4 suggests that the random projection algorithm converges to the
constraint set at a faster rate than to the optimal solution. In particular, from Prop. 4 it follows that d2(xk)

converges to a smaller error bound (on the order of
α2

k

γ2
k

) in fewer iterations, compared to the convergence of

‖xk − x∗‖2 into an error bound (on the order of αk

γk
) as given by Prop. 2, since γk is much larger than αk.

This two time scale phenomenon is consistent with the way we select the stepsizes.

3.3 Extensions

In the presentation of the current section, we have focused on the case where {Xi} is a finite collection of
sets, possessing the linear regularity property, and each Xi is sampled nearly independently, with the purpose
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of drawing a comparison between random and cyclic orders later in Section 4. However, our analysis can be
adapted to hold under a more general set of conditions.

A key step of the analysis of the current section is to obtain a lower bound of the progress towards
feasibility for the algorithm [cf. Eq. (17) of Lemma 4]. Intuitively, as long as every projection step makes
sufficient progress “on average,” the convergence of the algorithm follows. In particular, we can replace
Assumptions 2 and 4(a) with the following more general condition: there exists c > 0 such that for any k ≥ 0

E
[
‖xk −Πwk

xk‖2 | Fk
]
≥ cd2(xk), w.p.1. (38)

Under this condition, as well as Assumptions 1, 3, 4(b), the proof of Prop. 1 goes through. Therefore, under
these more general assumptions, the random projection algorithm (15) is still convergent to the unique
solution x∗ of the VI (1). Moreover, the rate of convergence results of Props. 2-4 can also be adapted

accordingly, by replacing the constant
ρ

mη
, which comes from Eq. (17), with the constant c from Eq. (38).

Condition (38) allows more flexibility in choosing the sample constraint sets {Xwk
}. In particular, we

may select the sample constraints adaptively based on the current iterates. For an example, consider the
case where the collection {Xi} is finite and possesses the linear regularity property (cf. Assumption 2), and
let wk be the index of the most distant constraint set to the current iterate, i.e.,

wk = argmaxi∈M‖xk −Πixk‖.

Then by using linear regularity, we obtain

‖xk −Πwk
xk‖ = max

i∈M
‖xk −Πixk‖ =

1
√
η

d(xk), w.p.1. (39)

It follows that condition (38) is satisfied with c = 1/η, and the associated random projection algorithm is
convergent. In fact, this algorithm has a better rate of convergence than the algorithm that uses nearly
independent samples of the constraints (cf. Assumption 4). More specifically, by using projection to the
most distant constraint set, we can remove the factor m in the error bounds of Props. 2-4. In particular,

in an analog of Prop. 3 the error constant δ(α, γ) is of the form O

(
α

σγ

)
instead of O

(
mα

σγ

)
, while in an

analog of Prop. 4, Eq. (33) takes the form

E

[
N−1∑
k=0

γk

]
≤ 4η‖x0 − x∗‖2

ε
,

indicating a much faster attainment of feasibility. However, this approach, although having a superior
convergence rate, is often impractical because finding the most distant constraint set index can be expensive.
Instead, an index of a “nearly” most distant constraint set may either be deterministically computed or
stochastically obtained by sampling (e.g., according to an importance sampling distribution related to the
iterates’ history). The structure and properties of such constraint selection rules are interesting subjects for
future research.

More generally, condition (38) extends to the case where {Xi}i∈M is a collection of infinitely (even
uncountably) many sets, which applies to a broader range of contexts. Since any closed convex set X is
the intersection of all the halfspaces containing it, the idea of random superset projection can be extended
to problems with arbitrary convex constraint. By appropriately selecting the halfspaces, we may obtain a
bound of the form (38) and establish the convergence of the associated algorithm. As an example, at each
iteration we may select a halfspace Xwk

that properly separates from X a neighborhood of the current iterate
xk. This type of analysis is related to the works by [Fuk86] and [CeG08], and is another interesting subject
for future research.
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4 Convergence of Cyclic Projection Algorithms

An alternative to random projection, in the case where M = {1, . . . ,m}, is to cyclically select the constraint
set Xwk

from the collection {Xi}mi=1 according to either a deterministic order or a randomly permuted order.
Each cycle consists of m iterations. To be more general, we allow the samples f(xk, vk) to be selected in a
cyclic manner as well. The algorithm takes the same form as Eq. (15), i.e.,

zk = xk − αkf(xk, vk), xk+1 = zk − βk (zk −Πwk
zk) . (40)

We make the following assumption regarding the sampling process, which parallels Assumption 4.

Assumption 5 (a) Each cycle t consists of m iterations, corresponding to indexes k = tm, tm +
1, . . . , (t+ 1)m− 1. Iterations within cycle t use constant stepsizes, denoted by

αt = αk, βt = βk, γt = γk = βk(2− βk), k = tm, tm+ 1, . . . , (t+ 1)m− 1.

However, the sequence {βk} satisfies lim sup
k→∞

βk < 2.

(b) Within each cycle t,

1

m

(t+1)m−1∑
k=tm

E [f(x, vk) | Ftm] = F (x), ∀ x ∈ <n, w.p.1.

(c) Within each cycle t, the sequence of constraint sets {Xwk
}, where k = tm, tm+ 1, . . . , (t+ 1)m− 1,

is a permutation of {X1, . . . , Xm}.

We refer to the algorithm under the preceding assumption as the cyclic projection algorithm. Note that
this assumption covers several interesting cases. For example, in the case where F (x) is evaluated without
sampling [f(x, v) ≡ F (x)], the algorithm differs from the classical projection method only in the way the
constraint projection is performed. For another example, we may let vk be generated as i.i.d. random
variables, so the algorithm chooses samples of F randomly and independently, but chooses samples of the
constraint sets cyclically. Also covered by Assumption 5 is the important case where the mapping F is
the sum of a large number of component functions. In a more general situation, F may have an arbitrary
(possibly infinite) number of component functions:

F (x) =
∑
i∈I

Fi(x),

where I is the set of indexes. In this case, we may let {I1, . . . , Im} be a partition of I and use the following
samples

f(xk, vk) =
m

pjk
Fjk(xk), where jk ∈ Iik .

Here vk = (ik, jk), where ik is selected from {1, . . . ,m} cyclically, and jk is then obtained by sampling from
Iik independently with probability pjk . Assumption 5 is satisfied in all the cases mentioned above.

We will show that under Assumption 5, as well as assumptions on strong monotonicity, Lipschitz conti-
nuity, stepsizes, and linear regularity of the constraints sets (namely Assumptions 1-3), the cyclic projection
algorithm (40) converges almost surely to the unique solution x∗ of the VI (1). The proof idea is to partition
the sequence of iterates {xk} into cycles

{xtm, . . . , x(t+1)m−1}, t = 1, 2, . . . ,
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and to consider the m iterations within the same cycle as a single step. To do this, we will argue that the
iterates {xk} “do not change much” within one cycle. In this way, the m iterations involving {Xwk

} and
{f(xk, vk)} resemble a single iteration involving X and F . This will show that the mapping xtm 7→ x(t+1)m

is asymptotically contractive in the sense that

E
[
‖x(t+1)m − x∗‖2 | Ftm

]
≤ (1− 2mσαt + δk) ‖xtm − x∗‖2 + εk,

where δk and εk are nonnegative random variables such that
∑∞
k=0(δk + εk) <∞. Then it will follow by the

supermartingale convergence argument that {xtm} converges to the solution x∗ as t→∞. Finally, since the
iterates within one cycle become increasingly close to each other, it will follow that {xk} converges to the
same limit.

4.1 Almost Sure Convergence

We will be using Assumptions 1-3 and 5, so Lemmas 1-3 still hold. According to the assumptions on the
stepsizes [Assumptions 3 and 5(a)], we can verify that

αk
βk
→ 0, βk ≤ O(1), γk ≤ O(1),

βk
γk
≤ O(1),

γk
βk
≤ O(1).

We will frequently use the O(·) notation to simplify the subsequent analysis. The following lemma gives a
uniform bound on ‖f(xk, vk)‖ for k = tm, . . . , (t + 1)m − 1, within a cycle. The bound is in terms of the
distance between the starting iterate xtm and x∗.

Lemma 5 Under Assumptions 1-3 and 5, for any t ≥ 0 and k = tm, . . . , (t+ 1)m− 1,

E
[
‖f(xk, vk)‖ | Ftm

]2 ≤ E
[
‖f(xk, vk)‖2 | Ftm

]
≤ O

(
‖xtm − x∗‖2 + 1

)
, w.p.1. (41)

Proof. By applying Lemma 1(a) to algorithm (40), we have

‖xk+1 − x∗‖2 ≤ ‖zk − x∗‖2 ≤
(
‖xk − x∗‖+ αk‖f(xk, vk)‖

)2
.

Taking conditional expectation on both sides yields

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ ‖xk − x∗‖2 + 2αkE

[
‖f(xk, vk)‖ | Fk

]
‖xk − x∗‖+ α2

kE
[
‖f(xk, vk)‖2 | Fk

]
≤ ‖xk − x∗‖2 + 2αk

(
L‖xk − x∗‖+B

)
‖xk − x∗‖+ α2

k

(
2L2‖xk − x∗‖2 + 2B2

)
=
(
1 + 2αkL+ 2α2

kL
2
)
‖xk − x∗‖2 + 2αkB‖xk − x∗‖+ 2α2

kB
2

≤
(
1 + αk(2L+ 1) + 2α2

kL
2
)
‖xk − x∗‖2 + αkB

2 + 2α2
kB

2,

where the first inequality uses the fact xk ∈ Fk, the second inequality uses Lemma 3, and the third inequality
uses the relation 2αkB‖xk − x∗‖ ≤ αk‖xk − x∗‖2 + αkB

2. Since αk → 0, it follows that

E
[
‖xk+1 − x∗‖2 | Fk

]
≤
(
1 +O(αk)

)
‖xk − x∗‖2 +O(αk).

Let t ≥ 0. By induction we have for all k = tm, . . . , (t+ 1)m− 1, that

E
[
‖xk+1 − x∗‖2 | Ftm

]
≤

(t+1)m−1∏
j=tm

(1 +O(αj))

 ‖xtm − x∗‖2 +

(t+1)m−1∑
j=tm

(t+1)m−1∏
i=j

(1 +O(αi))

O(αj)

≤ O
(
‖xtm − x∗‖2 + 1

)
.
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Then by using Lemma 3, we obtain

E
[
‖f(xk, vk)‖2 | Ftm

]
= E

[
E
[
‖f(xk, vk)‖2 | Fk

]
| Ftm

]
≤ 2L2 E

[
‖xk − x∗‖2 | Ftm

]
+ 2B2

≤ O
(
‖xtm − x∗‖2 + 1

)
,

for all k = tm, . . . , (t + 1)m − 1, with probability 1. Finally, we complete the proof by using the Cauchy-
Schwarz inequality. �

We will now argue that the iterates {xk} do not change “too much” within a cycle. Define the maximal
change of iterates within cycle t to be

∆t = max
tm≤k≤(t+1)m−1

{
‖xk − xtm‖

}
.

The next lemma states that this maximal change per cycle is bounded by a diminishing term, which is
determined by the stepsizes, the distances from the starting iterate to the optimal solution and to the
constraint set.

Lemma 6 Under Assumptions 1-3 and 5, for any t ≥ 0,

E[∆2
t | Ftm] ≤ O(mβt) d2(xtm) +O

(
m4α2

t

) (
‖xtm − x∗‖2 + 1

)
, w.p.1.

Proof. We will use the inequality ∆t ≤
∑(t+1)m−1
k=tm ‖xk−xk+1‖ to obtain the upper bound. From the relation

xk+1 = xk − αkf(xk, vk)− βk(zk −Πwk
zk)

[cf. Eq. (40)], we obtain

‖xk − xk+1‖2 ≤
(
αk‖f(xk, vk)‖+ βk‖zk −Πwk

zk‖
)2 ≤ 2α2

k‖f(xk, vk)‖2 + 2β2
k‖zk −Πwk

zk‖2.

By applying Eq. (12) with y = Πxtm we have

‖zk −Πwk
zk‖2 ≤

1

γk

(
‖xk −Πxtm‖2 − ‖xk+1 −Πxtm‖2 + α2

k‖f(xk, vk)‖2 + 2αk‖f(xk, vk)′(xk −Πxtm)‖
)
.

By combining the last two relations, we obtain

‖xk − xk+1‖2 ≤
2β2

k

γk

(
‖xk −Πxtm‖2 − ‖xk+1 −Πxtm‖2 + 2αk‖f(xk, vk)′(xk −Πxtm)‖

)
+

(
2 +

2β2
k

γk

)
α2
k‖f(xk, vk)‖2.

Adding the preceding relations over k = tm, . . . , t(m+ 1) − 1, and using the fact that the stepsizes within
one cycle are constant, we obtain

(t+1)m−1∑
k=tm

‖xk − xk+1‖2 ≤
2β

2

t

γt

‖xtm −Πxtm‖2 − ‖x(t+1)m −Πxtm‖2 + 2αt

(t+1)m−1∑
k=tm

‖f(xk, vk)′(xk −Πxtm)‖


+

(
2 +

2β
2

t

γt

)
α2
t

(t+1)m−1∑
k=tm

‖f(xk, vk)‖2.

(42)
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Let ε be an arbitrary positive scalar. For any k = tm, . . . , t(m+ 1)− 1, we have

2αk‖f(xk, vk)′(xk −Πxtm)‖ = 2αk‖f(xk, vk)′(xk − xtm) + f(xk, vk)′(xtm −Πxtm)‖
≤ 2αk‖f(xk, vk)′(xk − xtm)‖+ 2αk‖f(xk, vk)′(xtm −Πxtm)‖

≤
(
α2
k

εγk
‖f(xk, vk)‖2 + εγk‖xk − xtm‖2

)
+

(
α2
k

εγk
‖f(xk, vk)‖2 + εγk‖xtm −Πxtm‖2

)
≤ 2α2

k

εγk
‖f(xk, vk)‖2 + εγk∆2

t + εγk‖xtm −Πxtm‖2,

where the second inequality uses the fact 2ab ≤ a2 + b2 for any real numbers a, b, and the third inequality
uses ‖xk − xtm‖ ≤ ∆t. By applying the preceding relation to Eq. (42), we obtain

(t+1)m−1∑
j=tm

‖xk − xk+1‖2 ≤
2β

2

t

γt
(1 + εmγt) ‖xtm −Πxtm‖2 −

2β
2

t

γt
‖x(t+1)m −Πxtm‖2

+ 2β
2

tmε∆
2
t + α2

t

(
2 +

2β
2

t

γt
+

4β
2

t

εγ2t

)
(t+1)m−1∑
k=tm

‖f(xk, vk)‖2

≤ βtO (1 + ε) d2(xtm) +O(mε)∆2
t + α2

tO (1 + 1/ε)

(t+1)m−1∑
k=tm

‖f(xk, vk)‖2,

(43)

where the second inequality uses the facts d(xtm) = ‖xtm−Πxtm‖, βk/γk ≤ O(1), βk ≤ O(1) and γk ≤ O(1).
By taking ε to be sufficiently small so that O(mε) < 1

2m and O (1 + 1/ε) ≤ O(m2) , we obtain

(t+1)m−1∑
j=tm

‖xk − xk+1‖2 ≤ O(βt) d2(xtm) +
∆2
t

2m
+O

(
m2α2

t

) (t+1)m−1∑
k=tm

‖f(xk, vk)‖2.

Combining this relation with the inequality

∆2
t ≤

(t+1)m−1∑
k=tm

‖xk − xk+1‖

2

≤ m

(t+1)m−1∑
k=tm

‖xk − xk+1‖2
 ,

it follows that

∆2
t ≤ O(mβt) d2(xtm) +

1

2
∆2
t +O

(
m3α2

t

) (t+1)m−1∑
k=tm

‖f(xk, vk)‖2. (44)

Finally, by taking conditional expectation on both sides and applying Lemma 5, we obtain

E[∆2
t | Ftm] ≤ O(mβt) d2(xtm) +

1

2
E[∆2

t | Ftm] +m4α2
tO
(
‖xtm − x∗‖2 + 1

)
.

This implies the desired inequality. �

The next lemma derives a lower bound for the algorithm’s progress towards feasibility within one cycle,
and parallels Lemma 4 of the random projection case. Its analysis revolves around properties of cyclic
projections, and has a similar flavor as that of [DeH08] Theorem 3.15.

Lemma 7 Under Assumptions 1-3 and 5, for any t ≥ 0,

(t+1)m−1∑
k=tm

E[‖zk −Πwk
zk‖2 | Ftm] ≥ 1

8mη
d2(xtm)−mα2

t O
(
‖xtm − x∗‖2 + 1

)
, w.p.1. (45)
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Proof. Let j ∈ {tm, . . . , (t + 1)m − 1} be the index that attains the maximum in the linear regularity as-

sumption for xtm (cf. Assumption 2), so that

d2(xtm) ≤ η max
i=1,...,m

‖xtm −ΠXi
xtm‖2 = η‖xtm −Πwj

xtm‖2.

We have

1
√
η

d(xtm) ≤ ‖xtm −Πwj
xtm‖

≤ ‖xtm −Πwjzj‖ (by the definition of Πwjxtm and the fact Πwjzj ∈ Xwj )

=

∥∥∥∥xtm − 1

βt
xj+1 +

1− βt
βt

zj

∥∥∥∥ (by the relation xj+1 = zj − βt(zj −Πwj
zj), cf. algorithm (40))

=

∥∥∥∥∥βt − 1

βt

j−1∑
k=tm

(zk − xk+1) +
1

βt

j∑
k=tm

(zk − xk+1)−
j∑

k=tm

(zk − xk)

∥∥∥∥∥
≤
∣∣∣∣βt − 1

βt

∣∣∣∣ j−1∑
k=tm

‖zk − xk+1‖+
1

βt

j∑
k=tm

‖zk − xk+1‖+

j∑
k=tm

‖zk − xk‖

≤
∣∣∣∣βt − 1

βt

∣∣∣∣ (t+1)m−2∑
k=tm

‖zk − xk+1‖+
1

βt

(t+1)m−1∑
k=tm

‖zk − xk+1‖+

(t+1)m−1∑
k=tm

‖zk − xk‖

≤ 2

βt

(t+1)m−1∑
k=tm

‖zk − xk+1‖+

(t+1)m−1∑
k=tm

‖zk − xk‖ (since βt ∈ (0, 2))

= 2

(t+1)m−1∑
k=tm

‖zk −Πwk
zk‖+ αt

(t+1)m−1∑
k=tm

‖f(xk, vk)‖ (by the definition of algorithm (40))

≤
√

2m

4

(t+1)m−1∑
k=tm

‖zk −Πwk
zk‖2 + α2

t

(t+1)m−1∑
k=tm

‖f(xk, vk)‖2
1/2

,

where the last step follows from the generic inequality (
∑m
i=1 ai +

∑m
i=1 bi)

2 ≤ 2m
(∑m

i=1 a
2
i +

∑m
i=1 b

2
i

)
for

real numbers ai, bi. The preceding relation can be equivalently written as

1

2mη
d2(xtm) ≤ 4

(t+1)m−1∑
k=tm

‖zk −Πwk
zk‖2 + α2

t

(t+1)m−1∑
k=tm

‖f(xk, vk)‖2.

By taking expectation on both sides and applying Lemma 5, we obtain Eq. (45). �

We are ready to present the main result of this section.

Proposition 5 (Convergence of Cyclic Projection Algorithm) Let Assumptions 1-3 and 5 hold.
Then the cyclic projection algorithm (40) generates a sequence of iterates {xk} that converges almost
surely to the unique solution x∗ of the VI (1).

Proof. Let t ≥ 0. By using Lemma 1(a), we have for all k that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2(zk − xk)′(xk − x∗) + ‖zk − xk‖2 − γk‖Πwk
zk − zk‖2. (46)

In Eq.(46), the cross product term can be decomposed as

2(zk − xk)′(xk − x∗) = −2αkf(xk, vk)′(xk − x∗) = −2αkf(xtm, vk)′(xtm − x∗) + 2αkhk, (47)
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where we define
hk = −f(xk, vk)′(xk − x∗) + f(xtm, vk)′(xtm − x∗). (48)

By combining Eqs. (46) and (47), we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αkf(xtm, vk)′(xtm − x∗) + 2αkhk + ‖zk − xk‖2 − γk‖Πwk
zk − zk‖2. (49)

We apply Eq. (49) repeatedly for k = tm, . . . , (t+ 1)m− 1, and obtain

‖x(t+1)m − x∗‖2 ≤ ‖xtm − x∗‖2 − 2αt

(t+1)m−1∑
k=tm

f(xtm, vk)

′ (xtm − x∗)
− γt

(t+1)m−1∑
k=tm

‖Πwk
zk − zk‖2 +

(t+1)m−1∑
k=tm

(
2αkhk + ‖zk − xk‖2

)
.

(50)

We take conditional expectation on both sides of Eq. (50), and then apply Assumption 5(b) and Lemma 7.
This yields

E
[
‖x(t+1)m − x∗‖2 | Ftm

]
≤ ‖xtm − x∗‖2 − 2mαtF (xtm)′(xtm − x∗)−

γt
8mη

d2(xtm) + et, (51)

where we define

et = E

(t+1)m−1∑
k=tm

(
2αkhk + ‖zk − xk‖2

) ∣∣∣∣∣ Ftm
+mα2

tγtO
(
‖xtm − x∗‖2 + 1

)
.

By Lemma 2 we have
−F (xtm)′(xtm − x∗) ≤ −σ‖xtm − x∗‖2 +B d(xtm),

so Eq. (51) becomes

E
[
‖x(t+1)m − x∗‖2 | Ftm

]
≤ (1− 2σmαt)‖xtm − x∗‖2 + 2Bmαt d(xtm)− γt

8mη
d2(xtm) + et. (52)

We will now obtain a bound on the error et with the following lemma.

Lemma 8 Under Assumptions 1-3 and 5, for any ε > 0, t ≥ 0,

et ≤ O
(
εγt
m

)
d2(xtm) +O

(
m4α2

t

ε

)(
‖xtm − x∗‖2 + 1

)
, w.p.1.

Proof. We note that

hk = −f(xk, vk)′(xk−x∗)+f(xtm, vk)′(xtm−x∗) =
(
f(xtm, vk)−f(xk, vk)

)′
(xk−x∗)+f(xtm, vk)′(xtm−xk),

so that
‖hk‖ ≤

∥∥f(xtm, vk)− f(xk, vk)
∥∥‖xk − x∗‖+

∥∥f(xtm, vk)
∥∥‖xtm − xk‖.

By taking conditional expectation of both sides and using the stochastic Lipschitz continuity of f(·, v)
(cf. Assumption 1) repeatedly, we have with probability 1,

E
[
‖hk‖ | Fk

]
≤ E

[
‖f(xtm, vk)− f(xk, vk)‖ | Fk

]
‖xk − x∗‖+ E

[
‖f(xtm, vk)‖ | Fk

]
‖xtm − xk‖

≤ L‖xtm − xk‖‖xk − x∗‖+ (L‖xtm − x∗‖+B) ‖xtm − xk‖
≤ L‖xtm − xk‖ (‖xtm − x∗‖+ ‖xtm − xk‖) + (L‖xtm − x∗‖+B) ‖xtm − xk‖
= B‖xtm − xk‖+ 2L‖xk − xtm‖‖xtm − x∗‖+ L‖xtm − xk‖2

≤ B∆t + 2L∆t‖xtm − x∗‖+ L∆2
t .
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Let ε > 0. Then by using the basic inequality 2ab ≤ a2 + b2 repeatedly and the fact αk → 0 we obtain

E
[
αk‖hk‖ | Fk

]
≤ O

(
αk∆t + αk∆t‖xtm − x∗‖+ αk∆2

t

)
≤ O

(
(αk + ε/m3)∆2

t +
m3α2

k

ε

(
‖xtm − x∗‖2 + 1

))
≤ ε

m3
O
(
∆2
t

)
+
m3α2

k

ε
O
(
‖xtm − x∗‖2 + 1

)
.

By applying the preceding bound to the definition of et, and then using Lemmas 5 and 6, we obtain

et ≤
ε

m2
O
(
∆2
t

)
+
m4α2

t

ε
O
(
‖xtm − x∗‖2 + 1

)
+mα2

t (1 + γt)O
(
‖xtm − x∗‖2 + 1

)
≤ εβt

m
O
(

d2(xtm)
)

+

(
εm2α2

t +
m4α2

t

ε

)
O
(
‖xtm − x∗‖2 + 1

)
≤ O

(
εγt
m

)
d2(xtm) +O

(
m4α2

t

ε

)(
‖xtm − x∗‖2 + 1

)
.

�

Let us return to the main proof of Prop. 5, and apply Lemma 8 to Eq. (52). We have

E
[
‖x(t+1)m − x∗‖2 | Ftm

]
≤ (1− 2σmαt)‖xtm − x∗‖2 + 2Bmαt d(xtm)− γt

8mη
d2(xtm)

+O

(
εγt
m

)
d2(xtm) +O

(
m4α2

t

ε

)(
‖xtm − x∗‖2 + 1

)
.

(53)

For ε and αt sufficiently small, we have

2Bαtm d(xtm)− γt
8mη

d2(xtm) +O

(
εγt
m

)
d2(xtm) ≤ O

(
m3α2

t

γt

)
.

By summarizing and reordering the terms in Eq. (53), we obtain for some c1, c2 > 0 that

E
[
‖x(t+1)m − x∗‖2 | Ftm

]
≤
(

1− 2mσαt + c1
m4α2

t

γt

)
‖xtm − x∗‖2 + c2

m4α2
t

γt
. (54)

According to Assumption 3, we have
∑∞
t=0 αt =∞, and

∑∞
t=0

α2
t

γt
<∞. It follows from the Supermartingale

Convergence Theorem 1 that ‖xtm−x∗‖
a.s.−→ 0 and xtm

a.s.−→ x∗ as t→∞. This also implies that d(xtm)
a.s.−→

0.
There remains to show that xk

a.s.−→ x∗ as well. For any ε > 0, by using Lemma 5, we have

∞∑
k=0

P
(
αk‖f(xk, vk)‖ ≥ ε

)
≤
∞∑
k=0

α2
kE
[
‖f(xk, vk)‖2

]
ε2

≤
∞∑
k=0

α2
kO
(
E[‖xbk/mcm − x∗‖2] + 1

)
ε2

≤ O

( ∞∑
k=0

α2
k

)
<∞.

It follows by the Borel-Cantelli lemma that the event
{
αk‖f(xk, vk)‖ ≥ ε

}
cannot happen infinitely often, or

equivalently, αk‖f(xk, vk)‖ < ε for all k sufficiently large with probability 1. Since ε is arbitrary, this further

implies that αk‖f(xk, vk)‖ a.s.−→ 0. Finally, by using the analysis of Lemma 6 [cf. Eq. (44)], we have

∆2
t ≤ O(mβt) d2(xtm) +O

(
m3α2

t

) (t+1)m−1∑
k=tm

‖f(xk, vk)‖2 a.s.−→ 0.

Since xtm
a.s.−→ x∗, we also have

‖xk − x∗‖ ≤ ‖xk − xbk/mcm‖+ ‖xbk/mcm − x∗‖ ≤ ∆bk/mc + ‖xbk/mcm − x∗‖
a.s.−→ 0.

Therefore xk
a.s.−→ x∗ as k →∞. �
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4.2 Convergence Rate and Constant Stepsize Error Bound

Now we consider the rate of convergence of the cyclic projection algorithm. We will derive convergence rate
results for both the case of diminishing stepsizes αk and the case of constant stepsizes α.

Proposition 6 (Cyclic Projection Algorithm: Convergence Rate for Diminishing {αk}) Let
Assumptions 1-3 and 5 hold, let {αk} be bounded by a sufficiently small positive scalar, and let {xk}
be generated by the cyclic projection algorithm (40). For any positive scalar ε, there exists a random
variable N such that

min
0≤k≤N

{
‖xk − x∗‖2 − δk

}
≤ ε, w.p.1,

where δk = O

(
m3αk
σγk

)
, and N satisfies

E

[
N∑
k=0

αk

]
≤ ‖x0 − x

∗‖2

2σε
.

Proof. The analysis is very similar to that of Prop. 2. Let δk be given by

δk =

(
c1m

4ε+ c2m
4
)
αk/γk

2mσ − c1m4αk/γk
,

where c1, c2 are the constants from Eq. (54). For αk sufficiently small, we have 2mσ − c1m4αk/γk > 0 so

that δk > 0. It can be seen that δk ≤ O
(
m3αk
σγk

)
.

Define a new process {x̂k} which is identical to {xk} except that once x̂k enters the level set

Lk =
{
x ∈ <n | ‖x− x∗‖2 ≤ δk + ε

}
,

the process stays at x̂k = x∗ for all future k. According to Eq. (54), we have

E[‖x̂(t+1)m − x∗‖2 | Ftm] ≤
(

1− 2mσαt + c1
m4α2

t

γt

)
‖x̂tm − x∗‖2 + c2

m4α2
t

γt
.

This is equivalent to

E
[
‖x̂(t+1)m − x∗‖2 | Ftm

]
≤ ‖x̂tm − x∗‖2 − ξt, (55)

where we define

ξt =

{ (
2mσαt − c1m

4α2
t

γt

)
‖x̂k − x∗‖2 − c2m

4α2
t

γt
if x̂tm /∈ Ltm,

0 otherwise.

When x̂tm /∈ Ltm, we can verify by using the definition of δt that

ξt ≥ (2σεm)αt.

Hence we have ξt ≥ 0 for all t. By applying Theorem 1 to Eq. (55), we have
∑∞
t=0 ξt <∞ with probability

1. Therefore ξt must terminate at 0 for t sufficiently large with probability 1.
Let N be the smallest integer such that x̂k ∈ Lk for all k ≥ N with probability 1, implying that

x̂mdN/me ∈ LmdN/me. We have for all t that

E
[
‖x̂tm − x∗‖2 | Fk

]
≤ ‖x̂0 − x∗‖2 −E

[
t∑

k=0

ξk

]
.
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By letting t→∞ and using the monotone convergence theorem, we obtain

‖x0 − x∗‖2 ≥ E

[ ∞∑
t=0

ξt

]
= E

dN/me∑
t=0

ξt

 ≥ (2mσε)E

dN/me∑
t=0

αt

 .
Finally, we have

E

[
N∑
k=0

αk

]
≤ E

dN/me∑
t=0

(mαt)

 ≤ ‖x0 − x∗‖2
2σε

.

�

The next proposition gives an error bound for cyclic projection algorithms with constant stepsizes. It is
an almost immediate corollary of Prop. 6.

Proposition 7 (Cyclic Projection Algorithm: Error Bound for Constant {αk} and {βk}) Let
Assumptions 1, 2, and 5 hold, let the stepsizes be constant scalars satisfying

αk = α > 0, βk = β ∈ (0, 2), γk = γ = β(2− β), ∀ k ≥ 0,

where α is a sufficiently small scalar, and let {xk} be generated by the cyclic projection algorithm (40).
Then

lim inf
k→∞

‖xk − x∗‖2 ≤ O
(
m3α

σγ

)
, w.p.1.

For any positive scalar ε, there exists a random variable N such that

min
1≤k≤N

‖xk − x∗‖2 ≤ ε+O

(
m3α

σγ

)
, w.p.1,

where N satisfies

E[N ] ≤ ‖x0 − x∗‖2(
2σ −O (m3α/γ)

)
εα
.

Proof. The proof is identical with that of Prop. 6. �

Let us compare Props. 3 and 7. In a comparable expected number of iterations, the cyclic algorithm
converges to within an error tolerance of the order of m3, while the random projection algorithm converges
to within an error bound that is of the order of m. This suggests an advantage of the random projection
algorithm. Intuitively, the analysis shows that the cyclic algorithm may incur an accumulating error within
one cycle, due to the correlation of the random process

{
(wk, vk)

}
within the cycle and across cycles. Of

course, the preceding comparison is based on upper bound estimates, and to some extent may be an artifact
of our method of analysis. However, the superiority of the random sampling approach over the deterministic
cyclic sampling approach is supported by the computational results of the next section, and is consistent
with related analyses for incremental subgradient and proximal methods (e.g., [NeB01], [Ber10]).

5 Applications and Computational Experiments

Our algorithm is particularly well-suited for VIs with many linear constraints. As an example consider a
linear complementarity problem with

F (x) = Ax− b, X = {x ∈ <n | Cx ≤ d} ,
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where A is an n× n positive definite matrix, b is a vector in <n, C is an m× n matrix, and d is a vector in
<m. The constraint set X is an intersection of halfspaces Xi given by

Xi = {x ∈ <n | c′ix ≤ di}, i = 1, . . . ,m,

where c′i is the ith row of C, and di is the ith entry of d. In this case, assuming that Axk − b is computed
exactly without sampling, our algorithm becomes

zk = xk − αk(Axk − b), xk+1 = zk − βk
max{c′ikzk − di, 0}

‖cik‖2
cik .

Thus the set projection portion of the algorithm is very simple.
Linear complementarity problems with a large number of constraints arise among others in important

approximate dynamic programming contexts (see e.g., the books [BeT96], [SuB98], and [Ber12]), which
motivated in part our work. In one such context, arising in approximate policy evaluation, we aim to
approximate the solution of a high-dimensional linear fixed point equation y = Ay + b, where A is an n× n
matrix and b ∈ <n, by approximation over a low-dimensional subspace S = {Φx | x ∈ <s}, where Φ is
an n × s matrix (with s � n) whose columns can be viewed as basis functions for S. In the Galerkin
approximation approach (see e.g., Krasnoselskii et al. [Kra72], Saad [Saa03]), the high-dimensional problem
y = Ay + b is replaced by the low-dimensional fixed point problem

Φx = ΠS(AΦx+ b).

Here ΠS denotes weighted Euclidean projection onto S, where the projection norm being ‖x‖ =
√
x′Ξx,

where Ξ is a positive definite symmetric matrix. Aside from classical applications in solving large-scale
problems arising from discretization of partial differential equations or from inverse problems, this approach
(in combination with randomization and simulation) is central in popular approximate dynamic programming
methods, known as projected equation or temporal difference methods, as well as in aggregation methods
(see [Ber12]).

In a constrained variant of the Galerkin approach one may improve the quality of approximation if the
solution of the original fixed point problem is known (or is required) to belong to some given closed convex
set C. Then it typically makes sense to impose the additional constraint Φx ∈ C, thereby giving rise to the
problem of finding x such that

Φx = ΠS∩C(AΦx+ b).

This constrained projected equation has been discussed in [Ber11b], and was shown to be equivalent to the
VI (

(I −A)Φx∗ + b
)′

ΞΦ(x− x∗) ≥ 0, ∀ x ∈ X def
= {x | Φx ∈ C}.

A serious difficulty for its solution by projection methods is that while the dimension of x may be small, the
constraint set X often consists of the intersection of a large number of constraints. This difficulty also arises in
approximate linear programming methods, another major approach for approximate dynamic programming
(see e.g, de Farias and Van Roy [FaV03], [FaV04], and Desai et al. [DFM12]). Our proposed method in this
paper addresses effectively this difficulty, by using incremental projections on simpler supersets of X.

We will now describe the results of computational experimentation with our method. The test problem
is an example based on the constrained Galerkin approximation approach just described.

Example 1: We want to compute a low-dimensional approximation to the invariant distribution ξ of an
ergodic 1000-state Markov chain with transition probability matrix P . The approximation has the form Φx,
where Φ is an 1000×20 matrix and x is a vector in <20. We approximate the equation ξ = P ′ξ characterizing
the invariant distribution by using its projected version

Φx = ΠP ′Φx,

where Π denotes the weighted orthogonal projection onto the set of distribution vectors

{Φx | x ∈ <20, Φx ≥ 0, e′Φx = 1}
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with weight vector ξ (other Euclidean projection norms could also be used), e is the vector in <n with all
components equal to 1 . As noted earlier, the projected equation is equivalent to the VI

(x− x∗)′Ax∗ ≥ 0, ∀ x ∈ <20 s.t. Φx ≥ 0, e′Φx = 1, (56)

where A takes the form
A = Φ′Ξ(I − P ′)Φ,

with Ξ being the diagonal matrix with the components of the vector ξ along the diagonal. Note here that
there are efficient methods for calculating the matrix A by simulation and low-dimensional calculation (see
e.g., [Ber11b]) - such methods could be used to calculate a close approximation to A prior to applying
our algorithm to VI (56). Throughout our experiments we assume that A is known. We have chosen the
columns of Φ to be sine functions of various frequencies together with the unit vector, and have chosen ξ to
be an arbitrary distribution vector (so ξ may not belong to the range of Φ). Figure 1 plots the approximate
distribution Φx∗, obtained as the optimal solution of VI (56), and compares it with the underlying true
distribution ξ.

To evaluate the proposed incremental projection algorithms, we have experimented with different choices
of the stepsizes αk and βk, as illustrated in Fig. 2. In this experiment, we have used f(xk, vk) = F (xk) = Axk,
and have also used uniformly distributed independent samples of the constraint set indexes. The left side
of Fig. 2 plots ‖xk − x∗‖ and d(xk) in the cases where βk = 1 and βk = 1/ log k, with αk = k−0.55 in
both cases. The comparison between the two cases indicates an advantage for using a constant β over a
diminishing βk. The right side of Fig. 2 plots the trajectories of iteration errors and feasibility errors in the
case where αk = k−1 and in the case where αk = k−0.55, with βk = 1 in both cases. Again, the iteration
with the larger stepsizes, i.e. αk = k−0.55, converges faster than the iteration with the smaller stepsizes.

The next experiment is to compare the constraint sampling schemes. More specifically, we have tested
the independent uniform sampling scheme against the deterministic cyclic sampling scheme, while using
f(xk, vk) = F (xk) = Axk, αk = k−0.55, and βk = 1 throughout. As illustrated in Fig. 3, the algorithm
that uses random/independent samples converges much faster than the algorithm using deterministic cyclic
samples. We have repeated this experiment with other choices of stepsizes, and have observed similar
phenomena. These observations are consistent with our analysis in Sections 3 and 4, and support our
argument that random sampling is preferable over deterministic cyclic sampling. We have also experimented
with the alternative of randomly shuffling the constraint indexes at the beginning of each cycle. This type
of constraint sampling is more similar to independent random sampling, and gave comparable results in
our experiments (not reported here). This is consistent with earlier observations and analysis by Recht and
Re [ReR12], which suggest that the performance of cyclic sampling in incremental subgradient methods is
enhanced if the components of the cost function are randomly reshuffled at the beginning of each cycle.

Finally, we have experimented with all possible combinations of random independent sampling and deter-
ministic cyclic sampling, for both the component functions and the constraint sets. The results are plotted in
Fig. 4. The “batch” case, using f(xk, vk) = F (xk) = Axk and independent uniform samples of the constraint
sets, has the fastest rate of convergence. However, for large scale incremental problems, the computation
of F (xk) requires a time complexity on the order of the number of component functions, which makes each
iteration of the algorithm very expensive. On the other hand, when F is linear, one may replace the matrix
A and the vector b defining F with a simulation-based approximation, in which case the time complexity
is reduced. As noted earlier in connection with Galerkin approximation, methods of this type are popular
in simulation-based approximate dynamic programming (see [Ber12] for textbook treatment), and lead to
more efficient computation than stochastic approximation methods. Methods of this type have also been
considered in simulation-based nonlinear optimization, where they are known as sample average approxi-
mation methods (see Shapiro, Dentcheva, and Ruszczynski [SDR09] for a recent textbook treatment, and
Nemirovski et al. [NJLS09]).

In the remaining four cases of Fig. 4, we consider A as an average of a large number of matrices

A =
1

n2

n∑
i=1

n∑
j=1

Aij , where Aij = n2ξiφi(φi − pjiφj)′,
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where ξi denotes the ith entry of ξ, pij denotes the (i, j)th entry of P , and φ′i denotes the ith row of Φ. We
will use Avk , where vk are sample index pairs (i, j), as samples of A. The last four cases in Fig. 4 use one
sample component function f(xk, vk) = Avkxk per iteration. Among these cases, it can be seen that random
sampling generally performs better than cyclic sampling. This is particularly so for constraint sampling,
since according to Fig. 4, the two cases using random/independent samples of constraints have much better
convergence properties than the other two cases using cyclic samples of constraints.

6 Concluding Remarks

In this paper we have proposed new algorithms for strongly monotone variational inequalities with structure
that lends itself to constraint and function sampling. We analyzed the convergence properties of various
types of sampling, and we established a substantial rate of convergence advantage for random sampling over
cyclic sampling. Our cyclic sampling rule for constraints requires that each constraint is sampled exactly
once in a cycle, and allows a lot of freedom on how the constraint indexes are ordered within each cycle;
our convergence rate result applies to the worst case. It is therefore possible that a cyclic rule with separate
randomization within each cycle yields a performance close to the one of the independent uniform sampling
method, and superior to a deterministic cyclic rule; this was observed in the experiments described Section 5.
We also note that constraint sampling rules that sample constraints adaptively based on their “importance”
and the progress of the algorithm may yield even better performance, and that this is an interesting subject
for investigation.

A potential direction of further research is to relax the strong monotonicity assumption on F , either by
assuming a special structure or by modification of our algorithms. For example, if F is the gradient of a convex
function, the projection method as well as the related methods of Bertsekas [Ber11a] and Nedić [Ned11] do
not require strong convexity of the cost function (or equivalently, strong monotonicity of the gradient).
Another interesting case arises when X is polyhedral and F (x) = Φ′F̄ (Φx), where F̄ is strongly monotone
but Φ is singular (cf. classical applications in network traffic assignment problems). The convergence of
the projection method for this case was shown by Bertsekas and Gafni [BeG82]. Another possibility is to
consider the extragradient method of Korpelevich [Kor76] or the recent iterative Tikhonov regularization
method and the iterative proximal point method of Kannan et al. [KNS12], which are modifications of the
projection method to deal with VIs that are not necessarily strongly monotone.
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Figure 1: Estimated distribution Φx∗ compared against the true invariant distribution ξ (Example 1), with
Φx∗, ξ ∈ <1000.
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Figure 2: Comparison of different choices of stepsizes {αk} and {βk} (Example 1). The left figure plots
the trajectories of iteration errors and feasibility errors with βk = 1 and βk = 1/ log k ↓ 0, while fixing
αk = k−0.55. The right figure plots the trajectories of iteration errors and feasibility errors with αk = k−1

and αk = k−0.55, while fixing βk = 1. In both figures, we use f(xk, vk) = Axk and independent uniformly
distributed samples of the constraint sets.
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