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Abstract

Motivated by some applications in signal processing and machine learning, we consider two
convex optimization problems where, given a cone K, a norm ‖·‖ and a smooth convex function
f , we want either 1) to minimize the norm over the intersection of the cone and a level set of f ,
or 2) to minimize over the cone the sum of f and a multiple of the norm. We focus on the case
where (a) the dimension of the problem is too large to allow for interior point algorithms, (b)
‖ · ‖ is “too complicated” to allow for computationally cheap Bregman projections required in
the first-order proximal gradient algorithms. On the other hand, we assume that it is relatively
easy to minimize linear forms over the intersection of K and the unit ‖ · ‖-ball. Motivating
examples are given by the nuclear norm with K being the entire space of matrices, or the
positive semidefinite cone in the space of symmetric matrices, and the Total Variation norm on
the space of 2D images. We discuss versions of the Conditional Gradient algorithm capable to
handle our problems of interest, provide the related theoretical efficiency estimates and outline
some applications.

1 Introduction

We consider two norm-regularized convex optimization problems as follows:

[norm minimization] min
x∈K
‖x‖, subject to f(x) ≤ δ, (1)

[penalized minimization] min
x∈K

f(x) + κ‖x‖ (2)

where f is a convex function with Lipschitz continuous gradient, K is a closed convex cone in a
Euclidean space E, ‖ · ‖ is some norm, δ and κ are positive parameters. Problems such as such as
(1) and (2) are of definite interest for signal processing and machine learning. In these applications,
f(x) quantifies the discrepancy between the observed noisy output of some parametric model and
the output of the model with candidate vector x of parameters. Most notably, f is the quadratic
penalty: f(x) = 1

2‖Ax−y‖
2
2, where Ax is the “true” output of the linear regression model x 7→ Ax,

and y = Ax∗ + ξ, where x∗ is the vector of true parameters, ξ is the observation error, and δ is
an a priori upper bound on 1

2‖ξ‖
2
2. The cone K sums up a priori information on the parameter

vectors (e.g., K = E – no a priori information at all, or E = Rp, K = Rp
+, or E = Sp, the space of
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symmetric p× p matrices, and K = Sp+, the cone of positive semidefinite matrices, as is the case of
covariance matrices recovery). Finally, ‖ · ‖ is a regularizing norm “promoting” a desired property
of the recovery, e.g., the sparsity-promoting norm `1 on E = Rn, or the low rank promoting nuclear
norm on E = Rp×q, or the Total Variation (TV) norm, as in image reconstruction.

In the large-scale case, first-order algorithms of proximal-gradient type are popular to tackle such
problems, see [30] for a recent overview. Among them, the celebrated Nesterov optimal gradient
methods for smooth and composite minimization [22, 23, 24], and their stochastic approximation
counterparts [18], are now state-of-the-art in compressive sensing and machine learning. These
algorithms enjoy the best known so far theoretical estimates (and in some cases, these estimates
are the best possible for the first-order algorithms). For instance, Nesterov’s algorithm for penalized
minimization [23, 24] solves (2) to accuracy ε in O(D0

√
L/ε) iterations, where L is the properly

defined Lipschitz constant of the gradient of f , and D0 is the initial distance to the optimal set,
measured in the norm ‖ ·‖. However, applicability and efficiency of proximal-gradient algorithms in
the large-scale case require from the problem to possess “favorable geometry” (for details, see [24,
Section A.6]). To be more specific, consider proximal-gradient algorithm for convex minimization
problems of the form

min
x
{f(x) : ‖x‖ ≤ 1, x ∈ K} . (3)

The comments to follow, with slight modifications, are applicable to problems such as (1) and (2)
as well. In this case, a proximal-gradient algorithm operates with a “distance generating function”
(d.g.f.) defined on the domain of the problem and 1-strongly convex w.r.t. the norm ‖ · ‖. Each
step of the algorithm requires minimizing the sum of the d.g.f. and a linear form. The efficiency
estimate of the algorithm depends on the variation of the d.g.f. on the domain and on regularity
of f w.r.t. ‖ · ‖ 1. As a result, in order for a proximal-gradient algorithm to be practical in the
large scale case, two “favorable geometry” conditions should be met: (a) the outlined sub-problems
should be easy to solve, and (b) the variation of the d.g.f. on the domain of the problem should
grow slowly (if at all) with problem’s dimension. Both these conditions indeed are met in many
applications; see, e.g., [2, 17] for examples. This explains the recent popularity of this family of
algorithms.

However, sometimes conditions (a) and/or (b) are violated, and application of proximal algo-
rithms becomes questionable. For example, for the case of K = E, (b) is violated for the usual
‖ · ‖∞-norm on Rp or, more generally, for ‖ · ‖2,1 norm on the space of p× q matrices given by

‖x‖2,1 = max
1≤j≤p

‖Rowj(x)‖2,

where RowT
j (x) denotes the j-th row of x. Here the variation of (any) d.g.f. on problem’s domain

is at least p. As a result, in the case in question the theoretical iteration complexity of a proximal
algorithm grows rapidly with the dimension p. Furthermore, for some high-dimensional problems
which do satisfy (b), solving the sub-problem can be computationally challenging. Examples of
such problems include nuclear-norm-based matrix completion, Total Variation-based image recon-
struction, and multi-task learning with a large number of tasks and features. This corresponds to
‖ · ‖ in (1) or (2) being the nuclear norm [10] or the TV-norm.

1i.e., the Lipschitz constant of f w.r.t. ‖ · ‖ in the nonsmooth case, or the Lipschitz constant of the gradient
mapping x 7→ f ′(x) w.r.t. the norm ‖ · ‖ on the argument and the conjugate of this norm on the image spaces in the
smooth case.
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These limitations recently motivated alternative approaches, which do not rely upon favorable
geometry of the problem domain and/or do not require to solve hard sub-problems at each iteration,
and triggered a renewed interest in the Conditional Gradient (CndG) algorithm. This algorithm,
also known as the Frank-Wolfe algorithm, which is historically the first method for smooth con-
strained convex optimization, originates from [8], and was extensively studied in the 70-s (see,
e.g., [5, 7, 25] and references therein). CndG algorithms work by minimizing a linear form on the
problem domain at each iteration; this auxiliary problem clearly is easier, and in many cases –
significantly easier than the auxiliary problem arising in proximal-gradient algorithms. Conditional
gradient algorithms for collaborative filtering were studied recently [15, 14], some variants and
extensions were studied in [6, 29, 10]. Those works consider constrained formulations of machine
learning or signal processing problems, i.e., minimizing the discrepancy f(x) under a constraint
on the norm of the solution, as in (3). On the other hand, CndG algorithms for other learning
formulations, such as norm minimization (1) or penalized minimization (2) remain open issues.
An exception is the work of [6, 10], where a Conditional Gradient algorithm for penalized mini-
mization was studied, although the efficiency estimates obtained in that paper were suboptimal. In
this paper, we present CndG-type algorithms aimed at solving norm minimization and penalized
norm minimization problems and provide theoretical efficiency guarantees for these algorithms.

The main body of the paper is organized as follows. In Section 2, we present detailed setting of
problems (1), (2) along with basic assumptions on the “computational environment” required by
the CndG-based algorithms we are developing. These algorithms and their efficiency bounds are
presented in Sections 3 (problem (1)) and 5 (problem (2). In Section 6 we outline some applications,
and in Section 7 present preliminary numerical results. All proofs are relegated to the appendix.

2 Problem statement

Throughout the paper, we shall assume that K ⊂ E is a closed convex cone in Euclidean space E;
we loose nothing by assuming that K linearly spans E. We assume, further, that ‖ · ‖ is a norm on
E, and f : K → R is a convex function with Lipschitz continuous gradient, so that

‖f ′(x)− f ′(y)‖∗ ≤ Lf‖x− y‖ ∀x, y ∈ K,

where ‖ · ‖∗ denotes the norm dual to ‖ · ‖, whence

∀x, y ∈ K : f(y) ≤ f(x) + 〈f ′(x), y − x〉+
Lf
2
‖y − x‖2. (4)

We consider two kinds of problems, detailed below.

Norm-minimization. Such problems correspond to

ρ∗ = min
x
{‖x‖ : x ∈ K, f(x) ≤ 0} . (5)

To tackle (5), we consider the following parametric family of problems

Opt(ρ) = min{f(x) : ‖x‖ ≤ ρ, x ∈ K} . (6)

Note that whenever (5) is feasible, which we assume from now on, we have

ρ∗ = min{ρ ≥ 0 : Opt(ρ) ≤ 0}, (7)
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and both problems (5), (7) can be solved.
Given a tolerance ε > 0, we want to find an ε-solution to the problem, that is, a pair ρε, xε ∈ K

such that
ρε ≤ ρ∗ and xε ∈ Xρε such that f(xε) ≤ ε, (8)

where Xρ := {x ∈ E : x ∈ K, ‖x‖ ≤ ρ}. Getting back to the problem of interest (5), xε is then
“super-optimal” and ε-feasible:

‖xε‖ ≤ ρε ≤ ρ∗, f(xε) ≤ ε.

Penalized norm minimization. These problems write as

Opt = min
x
{f(x) + κ‖x‖ : x ∈ K} . (9)

A equivalent formulation is

Opt = min
x,r
{F ([x; r]) = κr + f(x) : x ∈ K, ‖x‖ ≤ r} . (10)

We shall refer to (10) as the problem of composite optimization (CO). Given a tolerance ε > 0, our
goal is to find an ε-solution to (10), defined as a feasible solution (xε, rε) to the problem satisfying
F ([xε; rε])−Opt ≤ ε. Note that in this case xε is an ε-solution, in the similar sense, to (9).

Special case. In many applications where Problem (5) arise, (9) the function f enjoys a special
structure:

f(x) = φ(Ax− b),

where x 7→ Ax − b is an affine mapping from E to Rm, and φ(·) : Rm → R is a convex function
with Lipschitz continuous gradient; we shall refer to this situation as to special case. In such case,
the quantity Lf can be bounded as follows. Let π(·) be some norm on Rm, π∗(·) be the conjugate
norm, and ‖A‖‖·‖,π be the norm of the linear mapping x 7→ Ax induced by the norms ‖ · ‖, π(·) on
the argument and the image spaces:

‖A‖‖·‖,π(·) = max
x∈E
{π(Ax) : ‖x‖ ≤ 1}.

Let also Lπ(·)[φ] be the Lipschitz constant of the gradient of φ induced by the norm π(·), so that

π∗(φ
′(y)− φ′(y′)) ≤ Lπ(·)[φ]π(y − y′) ∀y, y′ ∈ F.

Then, one can take as Lf the quantity

Lf = Lπ(·)[φ]‖A‖2‖·‖,π(·). (11)

Example 1: quadratic fit. In many applications, we are interested in ‖ · ‖2-discrepancy between
Ax and b; the related choice of φ(·) is φ(y) = 1

2y
T y. Specifying π(·) as ‖ · ‖2, we get L‖·‖2 [φ] = 1.

Example 2: smoothed `∞ fit. When interested in ‖ · ‖∞ discrepancy between Ax and b, we can
use as φ the function φ(y) = 1

2‖y‖
2
β, where β ∈ [2,∞). Taking π(·) as ‖ · ‖∞, we get

L‖·‖∞ [φ] ≤ (β − 1)m2/β.
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Note that
1

2
‖y‖2∞ ≤ φ(y) ≤ m2/β

2
‖y‖2∞,

so that for β = O(1) ln(m) andm large enough (specifically, such that β ≥ 2), φ(y) is within absolute
constant factor of 1

2‖y‖
2
∞. The latter situation can be interpreted as φ behaving as 1

2‖ · ‖
2
∞). At

the same time, with β = O(1) ln(m), L‖·‖∞ [φ] ≤ O(1) ln(m) grows with m logarithmically.
Another widely used choice of φ(·) for this type of discrepancy is “logistic” function

φ(y) =
1

β
ln

(
m∑
i=1

[
eβyi + e−βyi

])
.

For π(·) = ‖ · ‖∞ we easily compute L‖·‖∞ [φ] ≤ β and ‖y‖∞ ≤ φ(y) ≤ ‖y‖∞ + ln(2n)/β.
Note that in some applications we are interested in “one-sided” discrepancies quantifying the

magnitude of the vector [Ax − b]+ = [max[0, (Ax − b)1]; ...; max[0, (Ax − b)m]] rather than the
the magnitude of the vector Ax − b itself. Here, instead of using φ(y) = 1

2‖y‖2β in the context of
examples 1 and 2, one can use the functions φ+(y) = φ([y]+). In this case the bounds on Lπ(·)[φ+]
are exactly the same as the above bounds on Lπ(·)[φ]. The obvious substitute for the two-sided

logistic function is its “one-sided version:” φ+(y) = 1
β ln

(∑m
i=1

[
eβyi + 1

])
which obeys the same

bound for Lπ(·)[φ+] as its two-sided analogue.

First-order and Linear Optimization oracles. We assume that f is represented by a first-
order oracle – a routine which, given on input a point x ∈ K, returns the value f(x) and the gradient
f ′(x) of f at x. As about K and ‖ · ‖, we assume that they are given by a Linear Optimization
(LO) oracle which, given on input a linear form 〈η, ·〉 on E, returns a minimizer x[η] of this linear
form on the set {x ∈ K : ‖x‖ ≤ 1}. We assume w.l.o.g. that for every η, x[η] is either zero, or
is a vector of the ‖ · ‖-norm equal to 1. To ensure this property, it suffices to compute 〈η, x[η]〉
for x[η] given by the oracle; if this inner product is 0, we can reset x[η] = 0, otherwise ‖x[η]‖ is
automatically equal to 1.

Note that an LO oracle for K and ‖ · ‖ allows to find a minimizer of a linear form of z = [x; r] ∈
E+ := E ×R on a set of the form K+[ρ] = {[x; r] ∈ E+ : x ∈ K, ‖x‖ ≤ r ≤ ρ} due to the following
observation:

Lemma 1. Let ρ ≥ 0 and η+ = [η;σ] ∈ E+. Consider the linear form `(z) = 〈η+, z〉 of z = [x; r] ∈
E+, and let

z+ =

{
ρ[x[η]; 1] , 〈η+, [x[η]; 1]〉 ≤ 0,
0 , otherwise

.

Then z+ is a minimizer of `(z) over z ∈ K+[ρ], When σ = 0, one has z+ = ρ[x[η]; 1].

Indeed, let z∗ = [x∗; r∗] be a minimizer of `(·) over K+[ρ]. Since ‖x∗‖ ≤ r∗ due to [x∗; r∗] ∈
K+[ρ], we have z∗ := r∗[x[η]; 1] ∈ K+[ρ] due to ‖x[η]‖ ≤ 1, and `∗(z∗) ≤ `(z∗) due to the definition
of x[η]. We conclude that any minimizer of `(·) over the segment {s[x[η]; 1] : 0 ≤ s ≤ ρ} is also a
minimizer of `(·) over K+[ρ]. It remains to note that the vector indicated in Lemma clearly is a
minimizer of `(·) on the above segment. �
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3 Conditional Gradient algorithm

In this section, we present an overview of the properties of the standard Conditional Gradient
algorithm, and highlight some memory-based extensions. These properties are not new. However,
since they are key for the design of our proposed algorithms in the next sections, we present them
for further reference.

3.1 Conditional gradient algorithm

Let E be a Euclidean space and X be a closed and bounded convex set in E which linearly spans
E. Assume that X is given by a LO oracle – a routine which, given on input η ∈ E, returns an
optimal solution xX [η] to the optimization problem

min
x∈X
〈η, x〉

(cf. Section 2). Let f be a convex differentiable function on X with Lipschitz continuous gradient
f ′(x), so that

∀x, y ∈ X : f(y) ≤ f(x) + 〈f ′(x), y − x〉+ 1
2L‖y − x‖

2
X , (12)

where ‖ · ‖X is the norm on E with the unit ball X −X. We intend to solve the problem

f∗ = min
x∈X

f(x). (13)

A generic CndG algorithm is a recurrence which builds iterates xt ∈ X, t = 1, 2, ..., in such a way
that

f(xt+1) ≤ f(x̃t+1), (14)

where
x̃t+1 = xt + γt[x

+
t − xt], where x+

t = xX [f ′(xt)] and γt = 2
t+1 . (15)

Basic implementations of a generic CndG algorithm are given by

(a) xt+1 = xt + γt[x
+
t − xt], γt = 2

t+1 ,

(b) xt+1 ∈ Argmin x∈Dt f(x), Dt = [xt, x
+
t ];

(16)

in the sequel, we refer to them as CndGa and CndGb, respectively. As a byproduct of running
generic CndG, after t steps we have at our disposal the quantities

f∗,k = min
x∈X

[
f(xk) + 〈f ′(xk), x− xk〉

]
= f(xk)− 〈f ′(xk), xk − xX [f ′(xk)]〉, 1 ≤ k ≤ t, (17)

which, by convexity of f , are lower bounds on f∗. Consequently, at the end of step t we have at
our disposal a lower bound

f t∗ := max
1≤k≤t

f∗,k ≤ f∗, t = 1, 2, ... (18)

on f∗.
Finally, we define the approximate solution x̄t found in course of t = 1, 2, ... steps as the best –

with the smallest value of f – of the points x1, ..., xt. Note that x̄t ∈ X.
The following statement summarizes the well known properties of CndG (to make the presen-

tation self-contained, we provide in Appendix the proof).
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Theorem 1. For a generic CndG algorithm, in particular, for both CndGa, CndGb, we have

f(x̄t)− f∗ ≤ f(xt)− f∗ ≤
2L

t+ 1
, t ≥ 2; (19)

and

f(x̄t)− f t∗ ≤
4.5L

t− 2
, t ≥ 5. (20)

Some remarks regarding the conditional algorithm are in order.
Certifying quality of approximate solutions. An attractive property of CndG is the

presence of online lower bound f t∗ on f∗ which certifies the theoretical rate of convergence of the
algorithm, see (20). This accuracy certificate, first established in [14], also provides a valuable
stopping criterion when running the algorithm in practice.

CndG algorithm with memory. When computing the next search point xt+1 the simplest
CndG algorithm CndGa only uses the latest answer x+

t = xX [f ′(xt)] of the LO oracle. Meanwhile,
algorithm CndGb can be modified to make use of information supplied by previous oracle calls;
we refer to this modification as CndG with memory (CndGM).2. Assume that we have already
carried out t − 1 steps of the algorithm and have at our disposal current iterate xt ∈ X (with x1

selected as an arbitrary point of X) along with previous iterates xτ , τ < t and the vectors f ′(xτ ),
x+
τ = xX [f ′(xτ )]. At the step, we compute f ′(xt) and x+

t = xX [f ′(xt)]. Thus, at this point in
time we have at our disposal 2t points xτ , x

+
τ , 1 ≤ τ ≤ t, which belong to X. Let Xt be subset

of these points, with the only restriction that the points xt, x
+
t are selected, and let us define the

next iterate xt+1 as
xt+1 ∈ Argmin

x∈Conv(Xt)

f(x), (21)

that is,

xt+1 =
∑
x∈Xt

λtxx, λ
t ∈ Argmin

λt={λx}x∈Xt

{
f
(∑

x∈Xt
λxx

)
: λ ≥ 0,

∑
x∈Xt

λx = 1

}
. (22)

Clearly, it is again a generic CndG algorithm, so that conclusions in Theorem 1 are fully applicable
to CndGM. Note that CndGb per se is nothing but CndGM with Xt = {xt, x+

t } and M = 2 for all
t.
CndGM: implementation issues. Assume that the cardinalities of the sets Xt in CndGM are
bounded by some M ≥ 2. In this case, implementation of the method requires solving at every
step an auxiliary problem (22) of minimizing over the standard simplex of dimension ≤ M − 1 a
smooth convex function given by a first-order oracle induced by the first-oracle for f . When M
is a once for ever fixed small integer, the arithmetic cost of solving this problem within machine
accuracy by, say, the Ellipsoid algorithm is dominated by the arithmetic cost of just O(1) calls to
the first-order oracle for f . Thus, CndGM with small M can be considered as implementable3.

2Note that in the context of “classical” Frank-Wolfe algorithm – minimization of a smooth function over a poly-
hedral set – such modification is referred to as Restricted Simplicial Decomposition [13, 12, 32]

3Assuming possibility to solve (22) exactly, while being idealization, is basically as “tolerable” as the stan-
dard in continuous optimization assumption that one can use exact real arithmetic or compute exactly eigenval-
ues/eigenvectors of symmetric matrices. The outlined “real life” considerations can be replaced with rigorous error
analysis which shows that in order to maintain the efficiency estimates from Theorem 1, it suffices to solve t-th
auxiliary problem within properly selected positive inaccuracy, and this can be achieved in O(ln(t)) computations of
f and f ′.
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Note that in the special case (Section 2), where f(x) = φ(Ax − b), assuming φ(·) and φ′(·)
easy to compute, as is the case in most of the applications, the first-order oracle for the auxiliary
problems arising in CndGM becomes cheap (cf. [34]). Indeed, in this case (22) reads

min
λt

{
gt(λ

t) := φ
(∑

x∈Xt
λtxAx− b

)
:
λt = {λtx}x∈Xt ≥ 0,∑

x∈Xtλ
t
x = 1

}
.

It follows that all we need to get a computationally cheap access to the first-order information on
gt(λ

t) for all values of λt is to have at our disposal the matrix-vector products Ax, x ∈ Xt. With our
construction of Xt, the only two “new” elements in Xt (those which were not available at preceding
iterations) are xt and x+

t , so that the only two new matrix-vector products we need to compute
at iteration t are Axt (which usually is a byproduct of computing f ′(xt)) and Ax+

t . Thus, we can
say that the “computational overhead,” as compared to computing f ′(xt) and x+

t = xX [f ′(xt)],
needed to get easy access to the first-order information on gt(·) reduces to computing the single
matrix-vector product Ax+

t .

4 Conditional gradient algorithm for parametric optimization

In this section, we describe a multi-stage algorithm to solve the parametric optimization problem
(6), (7), using the conditional algorithm to solve inner sub-problems. (6), (7). The idea, originating
from [19] (see also [22, 16, 24]), is to use a Newton-type method for approximating from below the
positive root ρ∗ of Opt(ρ), with (inexact) first-order information on Opt(·) yielded by approximate
solving the optimization problems defining Opt(·); the difference with the outlined references is
that now we solve these problems with the CndG algorithm.

Our algorithm works stagewise. At the beginning of stage s = 1, 2, ..., we have at hand a lower
bound ρs on ρ∗, with ρ1 defined as follows:

We compute f(0), f ′(0) and x[f ′(0)]. If f(0) ≤ ε or x[f ′(0)] = 0, we are done — the pair
(ρ = 0, x = 0) is an ε-solution to (7) in the first case, and is an optimal solution to the
problem in the second case (since in the latter case 0 is a minimizer of f on K, and (7)
is feasible). Assume from now on that the above options do not take place (“nontrivial
case”), and let

d = −〈f ′(0), x[f ′(0)]〉.

Due to the origin of x[·], d is positive, and f(x) ≥ f(0) + 〈f ′(0), x〉 ≥ f(0) − d‖x‖ for

all x ∈ K, which implies that ρ∗ ≥ ρ1 := f(0)
d > 0.

At stage s we apply a generic CndG algorithm (e.g., CndGa,CndGb, or CndGM; in the sequel,
we refer to the algorithm we use as to CndG) to the auxiliary problem

Opt(ρs) = min
x
{f(x) : x ∈ K[ρs]}, K[ρ] = {x ∈ K : ‖x‖ ≤ ρ}, (23)

Note that the LO oracle for K, ‖ · ‖ induces an LO oracle for K[ρ]; specifically, for every η ∈ E,
the point xρ[η] := ρx[η] is a minimizer of the linear form 〈η, x〉 over x ∈ K[ρ], see Lemma 1. xρ[·]
is exactly the LO oracle utilized by CndG as applied to (23).

8



As explained above, after t steps of CndG as applied to (23), the iterates being xτ ∈ K[ρs],
1 ≤ τ ≤ t 4, we have at our disposal current approximate solution x̄t ∈ {x1, ..., xt} such that
f(x̄t) = min1≤τ≤t f(xτ ) along with a lower bound f t∗ on Opt(ρs). Our policy is as follows.

1. When f(x̄t) ≤ ε, we terminate the solution process and output ρ̄ = ρs and x̄ = x̄t;

2. When the above option is not met and f t∗ <
3
4f(x̄t), we specify xt+1 according to the descrip-

tion of CndG and pass to step t+ 1 of stage s;

3. Finally, when neither one of the above options takes place, we terminate stage s and pass to
stage s+ 1, specifying ρs+1 as follows:
We are in the situation f(x̄t) > ε and f t∗ ≥ 3

4f(x̄t). Now, for k ≤ t the quantities f(xk),
f ′(xk) and x[f ′(xk)] define affine function of ρ ≥ 0

`k(ρ) = f(xk) + 〈f ′(xk), x− ρx[f ′(xk)]〉.

By Lemma 1 we have for every ρ ≥ 0

`k(ρ) = min
x∈K[ρ]

[
f(xk) + 〈f ′(xk), x− xk〉

]
≤ min

x∈K[ρ]
f(x) = Opt(ρ),

where the inequality is due to the convexity of f . Thus, `k(ρ) is an affine in ρ ≥ 0 lower
bound on Opt(ρ), and we lose nothing by assuming that all these univariate affine functions
are memorized when running CndG on (23). Note that by construction of the lower bound
f t∗ (see (17), (18) and take into account that we are in the case of X = K[ρs], xX [η] = ρsx[η])
we have

f t∗ = `t(ρs), `
t(ρ) = max

1≤k≤t
`k(ρ).

Note that `t(ρ) is a lower bound on Opt(ρ), so that `t(ρ) ≤ 0 for ρ ≥ ρ∗, while `t(ρs) = f t∗ is
positive. It follows that

rt := min
{
ρ : `t(ρ) ≤ 0

}
is well defined and satisfies ρs < rt ≤ ρ∗. We compute rt (which is easy) and pass to stage
s + 1, setting ρs+1 = rt and selecting, as the first iterate of the new stage, any point known
to belong to K[ρ] (e.g., the origin, or x̄t). The first iterate of the first stage is 0.

The description of the algorithm is complete.
The complexity properties of the algorithm are given by the following proposition.

Theorem 2. When solving a PO problem (6), (7) by the outlined algorithm,
(i) the algorithm terminates with an ε-solution, as defined in Section 2 (cf. (8));
(ii) The number Ns of steps at every stage s of the method admits the bound

Ns ≤ max

[
6,

72ρ2
∗Lf
ε

+ 3

]
.

(iii) The number of stages before termination does not exceed the quantity

max

[
1.2 ln

(
f(0) + 1

2Lfρ
2
∗

ε2

)
+ 2.4, 3

]
.

4The iterates xt, same as other indexed by t quantities participating in the description of the algorithm, in fact
depend on both t and the stage number s. To avoid cumbersome notation when speaking about a particular stage,
we suppress s in the notation.
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5 Conditional Gradient algorithm for Composite Optimization

In this section, we present a modification of the CndG algorithm capable to solve composite mini-
mization problem (10). We assume in the sequel that ‖ · ‖,K are represented by an LO oracle for
the set {x ∈ K : ‖x‖ ≤ 1}, and f is given by a first order oracle. In order to apply CndG to the
composite optimization problem (10), we make the assumption as follows:

Assumption A: There exists D <∞ such that κr+f(x) ≤ f(0) together with ‖x‖ ≤ r,
x ∈ K, imply that r ≤ D.

We define D∗ as the minimal value of D satisfying Assumption A, and assume that we have at our
disposal a finite upper bound D+ on D∗. An important property of the algorithm we are about to
develop is that its efficiency estimate depends on the induced by problem’s data quantity D∗, and
is independent of our a priori upper bound D+ on this quantity, see Theorem 3 below.

The algorithm. We are about to present an algorithm for solving (10). Let E+ = E ×R, and
K+ = {[x; r] : x ∈ K, ‖x‖ ≤ r}. From now on, for a point z = [x; r] ∈ E+ we set x(z) = x and
r(z) = r. Given z = [x; r] ∈ K+, let us consider the segment

∆(z) = {ρ[x[f ′(x)]; 1] : 0 ≤ ρ ≤ D+}.

and the linear form
ζ = [ξ; τ ]→ 〈f ′(x), ξ〉+ κτ = 〈F ′(z), ζ〉

Observe that by Lemma 1, for every 0 ≤ ρ ≤ D+, the minimum of this form on K+[ρ] = {[x; r] ∈
E+, x ∈ K, ‖x‖ ≤ r ≤ ρ} is attained at a point of ∆(z) (either at [ρx[f ′(x)]; ρ] or at the origin).
A generic Conditional Gradient algorithm for composite optimization (COCndG) is a recurrence
which builds the points zt = [xt; rt] ∈ K+, t = 1, 2, ..., in such a way that

z1 = 0; F (zt+1) ≤ min
z
{F (z) : z ∈ Conv (∆(zt) ∪ {zt})}, t = 1, 2, ... (24)

Let z∗ = [x∗; r∗] be an optimal solution to (10) (which under Assumption A clearly exists), and
let F∗ = F (z∗) (i.e., F∗ is nothing but Opt, see (9)).

Theorem 3. A generic COCndG algorithm (24) maintains the inclusions zt ∈ K+ and is a
descent algorithm: F (zt+1) ≤ F (zt) for all t. Besides this, we have

F (zt)− F∗ ≤
8LfD

2
∗

t+ 14
, t = 2, 3, ... (25)

COCndG with memory. The simplest implementation of a generic COCndG algorithm is given
by the recurrence

z1 = 0; zt+1 ≡ [xt+1; rt+1] ∈ Argmin
z
{F (z) : z ∈ Conv (∆(zt) ∪ {zt})}, t = 1, 2, ... . (26)

Denoting ẑτ := D+[x[f ′(xτ )]; 1], the recurrence can be written

zt+1 = λtẑt + µtzt, where

(λt, µt) ∈ Argmin
λ,µ

{
F (λẑt + µzt) : λ+ µ ≤ 1, λ ≥ 0, µ ≥ 0

}
.

(27)

10



As for the CndG algorithm in section 3, the recurrence (26) admits a version with memory
COCndGM still obeying (24) and thus sartisfying the conclusion of Theorem 3. Specifically, assume
that we already have built t iterates zτ = [xτ ; rτ ] ∈ K+, 1 ≤ τ ≤ t, with z1 = 0, along with the
gradients f ′(xτ ) and the points x[f ′(xτ )]. Then we have at our disposal a number of points from
K+, namely, the iterates zτ , τ ≤ t, and the points ẑτ = D+[x[f ′(xτ )]; 1]. Let us select a subset Zt
of the set {zτ , ẑτ , 1 ≤ τ ≤ t}, with the only restriction that Zt contains the points zt, ẑt, and set

zt+1 ∈ Argmin
z∈Ct

F (z), Ct = Conv{{0} ∪ Zt}}. (28)

Since zt, ẑt ∈ Zt, we have Conv (∆(zt) ∪ {zt})} ⊂ Ct, whence the procedure we have outlined is
an implementation of generic COCndG algorithm. Note that the basic COCndG algorithm is the
particular case of the COCndGM corresponding to the case where Zt = {zt, ẑt} for all t. The
discussion of implementability of CndGM in section 3 fully applies to COCndGM.

Let us outline several options which can be implemented in COCndGM; while preserving the
theoretical efficiency estimates stated in Theorem 3 they can improve the practical performance of
the algorithm. For the sake of definiteness, let us focus on the case of quadratic f : f(x) = ‖Ax−b‖22,
with KerA = {0}; extensions to a more general case are straightforward.

A. We lose nothing (and potentially gain) when extending Ct in (28) to the conic hull

C+
t = {w =

∑
ζ∈Zt

λζζ : λζ ≥ 0, ζ ∈ Zt}

of Zt. When K = E, we can go further and replace (28) with

zt+1 ∈ Argmin
z=[x;r],λ

f(x) + κr : x =
∑

ζ=[η;ρ]∈Zt

λζη, r ≥
∑

ζ=[η;ρ]∈Zt

|λζ |ρ

 . (29)

Note that the preceding “conic case” is obtained from (29) by adding to the constraints of
the right hand side problem the inequalities λζ ≥ 0, ζ ∈ Zt. Finally, when ‖ · ‖ is easy to
compute, we can improve (29) to

zt+1 =
[∑

ζ=[η;ρ]∈Zt λ
∗
ζη;
∥∥∥∑ζ=[η;ρ]∈Zt λ

∗
ζη
∥∥∥] ,

λ∗ ∈ Argmin {λζ ,ζ∈Zt}

{
f
(∑

ζ=[η;ρ]∈Zt λζη
)

+ κ
∑

ζ=[η;ρ]∈Zt |λζ |ρ
} (30)

(the definition of λ∗ assumes that K = E, otherwise the constraints of the problem specifying
λ∗ should be augmented by the inequalities λζ ≥ 0, ζ ∈ Zt).

B. In the case of quadratic f and moderate cardinality of Zt, optimization problems arising in
(29) (with or without added constraints λζ ≥ 0) are explicitly given low-dimensional “nearly
quadratic” convex problems which can be solved to high accuracy “in no time” by interior
point solvers. With this in mind, we could solve these problems for the given value of the
penalty parameter κ and also for several other values of the parameter. Thus, at every it-
eration we get feasible approximate solution to several instances of (9) for different values
of the penalty parameter. Assume that we keep in memory, for every value of the penalty
parameter in question, the best, in terms of the respective objective, of the related approxi-
mate solutions found so far. Then upon termination we will have at our disposal, along with
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the feasible approximate solution associated with the given value of the penalty parameter,
provably obeying the efficiency estimates of Theorem 3, a set of feasible approximate solutions
to the instances of (9) corresponding to other values of the penalty.

C. In the above description, Zt was assumed to be a subset of the set Zt = {zτ = [xτ ; rτ ], ẑτ , 1 ≤
τ ≤ t} containing zt and ẑt. Under the latter restriction, we lose nothing when allowing for Zt
to contain points from K+\Zt as well. For instance, when K = E and ‖·‖ is easy to compute,
we can add to Zt the point z′t = [f ′(xt); ‖f ′(xt)‖]. Assume, e.g., that we fix in advance the
cardinality M ≥ 3 of Zt and define Zt as follows: to get Zt from Zt−1, we eliminate from the
latter set several (the less, the better) points to get a set of cardinality ≤M−3, and then add
to the resulting set the points zt, ẑt and z′t. Eliminating the points according to the rule “first
in – first out,” the projection of the feasible set of the optimization problem in (30) onto the
space of x-variables will be a linear subspace of E containing, starting with step t = M , at
least bM/3c (here bac stands for the largest integer not larger than a) of gradients of f taken
at the latest iterates, so that the method, modulo the influence of the penalty term, becomes
a “truncated” version of the Conjugate Gradient algorithm for quadratic minimization. Due
to nice convergence properties of Conjugate Gradient in the quadratic case, one can hope that
a modification of this type will improve significantly the practical performance of COCndGM.

6 Application examples

In this section, we detail how the proposed conditional gradient algorithms apply to several exam-
ples. In particular, we detail the corresponding LO oracles, and how one could implement these
oracles efficiently.

6.1 Regularization by nuclear/trace norm

The first example where the proposed algorithms seem to be more attractive than the proximal
methods are large-scale problems (5), (9) on the space of p × q matrices E = Rp×q associated
with the nuclear norm ‖σ(x)‖1 of a matrix x, where σ(x) = [σ1(x); ...;σmin[p,q](x)] is the vector of
singular values of a p× q matrix x. Problems of this type with K = E arise in various versions of
matrix completion, where the goal is to recover a matrix x from its noisy linear image y = Ax+ ξ,
so that f = φ(Ax − y), with some smooth and convex discrepancy measure φ(·), most notably,
φ(z) = 1

2‖z‖
2
2. In this case, ‖·‖ minimization/penalization is aimed at getting a recovery of low rank

([31, 3, 4, 9, 15, 26, 27, 33, 20, 29] and references therein). Another series of applications relates to
the case when E = Sp is the space of symmetric p× p matrices, and K = Sp+ is the cone of positive
semidefinite matrices, with f and φ as above; this setup corresponds to the situation when one
wants to recover a covariance (and thus positive semidefinite symmetric) matrix from experimental
data. Restricted from Rp×p onto Sp, the nuclear norm becomes the trace norm ‖λ(x)‖1, where
λ(x) ∈ Rp is the vector of eigenvalues of a symmetric p × p matrix x, and regularization by this
norm is, as above, aimed at building a low rank recovery.

With the nuclear (or trace) norm in the role of ‖ · ‖, all known proximal algorithms require, at
least in theory, computing at every iteration the complete singular value decomposition of p × q
matrix x (resp., complete eigenvalue decomposition of a symmetric p×p matrix x), which for large
p, q may become prohibitively time consuming. In contrast to this, with K = E and ‖ · ‖ = ‖σ(·)‖1,
LO oracle for (K, ‖·‖ = ‖σ(·)‖1) only requires computing the leading right singular vector e of a p×q
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matrix η (i.e., the leading eigenvector of ηT η): x[η] = −f̄ ēT , where ē = e/‖e‖2 and f̄ = ηe/‖ηe‖2 for
nonzero η and f̄ = 0, ē = 0 when η = 0. Computing the leading singular vector of a large matrix is,
in most cases, much cheaper than computing the complete eigenvalue decomposition of the matrix.
Similarly, in the case of E = Sp, K = Sp+ and the trace norm in the role of ‖ · ‖, LO oracle
requires computing the leading eigenvector e of a matrix η ∈ Sp: x[−η] = ēēT , where ē = 0 when
eT ηe ≥ 0, and ē = e/‖e‖2 otherwise. Here again, for a large symmetric p× p matrix, the required
computation usually is much easier than computing the complete eigenvalue decomposition of such
a matrix. As a result, in the situations under consideration, algorithms based on the LO oracle
remain “practically implementable” in an essentially larger range of problem sizes than proximal
methods.

An additional attractive property of the CndG algorithms we have described stems from the fact
that since in the situations in question the matrices x[η] are of rank 1, t-th approximate solution
xt yielded by the CndG algorithms for composite minimization from Section 5 is of rank at most t.
Similar statement holds true for t-th approximate solution xt built at a stage of a CndG algorithm
for parametric optimization from Section 3, provided that the first iterate at every stage is the zero
matrix.5.

6.2 Regularization by Total Variation

Given integer n ≥ 2, consider the linear space Mn := Rn×n. We interpret elements x of Mn as
images – real-valued functions x(i, j) on the n × n grid Γn,n = {[i; j]) ∈ Z2 : 0 ≤ i, j < n}. The
(anisotropic) Total Variation (TV) of an image x is the `1-norm of its (discrete) gradient field
(∇ix(·),∇jx(·)):

TV(x) = ‖∇ix‖1 + ‖∇jx‖1,
∇ix(i, j) = x(i+ 1, j)− x(i, j) : Γn−1,n := {[i; j] ∈ Z2 : 0 ≤ i < n− 1, 0 ≤ j < n},
∇jx(i, j) = x(i, j + 1)− x(i, j) : Γn,n−1 := {[i; j] ∈ Z2 : 0 ≤ i < n, 0 ≤ j < n− 1}

Note that TV(·) is a norm on the subspace Mn
0 of Mn comprised of zero mean images x (those

with
∑

i,j x(i, j) = 0) and vanishes on the orthogonal complement to Mn
0 , comprised of constant

images.
Originating from the celebrated paper [28] and extremely popular Total Variation-based image

reconstruction in its basic version recovers an image x from its noisy observation b = Ax + ξ by
solving problems (5) or (9) with K = E = Mn, f(x) = φ(Ax−b) and the seminorm TV(·) in the role
of ‖·‖. In the sequel, we focus on the versions of these problems where K = E = Mn is replaced with
K = E = Mn

0 , thus bringing the TV -regularized problems into our framework. This restriction is
basically harmless; for example, in the most popular case of f(x) = 1

2‖Ax−b‖
2
2 reduction to the case

of x ∈Mn
0 is immediate – it suffices to replace (A, b) with (PA, P b), where P is the orthoprojector

onto the orthogonal complement to the one-dimensional subspace spanned by Ae, where e is the all-
ones image6. Now, large scale problems (5), (9) with K = E = Mn

0 and TV(·) in the role of ‖ ·‖ are
difficult to solve by proximal algorithms. Indeed, in the situation in question a proximal algorithm
would require at every iteration either minimizing function of the form TV(x) + 〈e, x〉+ ω(x) over

5this property is an immediate corollary of the fact that in the situation in question, by description of the algorithms
xt is a convex combination of t points of the form x[·].

6When f is more complicated, optimal adjustment of the mean t of the image reduces by bisection in t to solving
small series of problems of the same structure as (5), (9) where the mean of the image x is fixed and, consequently,
the problems reduce to those with x ∈Mn

0 by shifting b.
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the entire E, or minimizing function of the form 〈e, x〉+ ω(x) on a TV-ball7, where ω(x) is albeit
simple, but nonlinear convex function (e.g., ‖x‖22, or ‖∇ix‖22 + ‖∇jx‖22). Auxiliary problems of this
type seem to be difficult in the large scale case, especially taking into account that when running
a proximal algorithm we need to solve at least tens, and more realistically – hundreds of them8.
In contrast to this, a LO oracle for the unit ball T V = {x ∈ Mn

0 : TV(x) ≤ 1} of the TV norm is
relatively cheap computationally – it reduces to solving a specific maximum flow problem. It should
be mentioned here that the relation between flow problems and TV-based denoising (problem (9)
with A = I) is well known and is utilized in many algorithms, see [9] and references therein. While
we have no doubt that the simple fact stated Lemma 2 below is well-known, for reader convenience
we present here in detail the reduction mechanism.

Consider the network (the oriented graph) G with n2 nodes [i; j] ∈ Γn,n and 2n(n− 1) arcs as
follows: the first n(n− 1) arcs are of the form ([i+ 1; j], [i; j]), 0 ≤ i < n− 1, 0 ≤ j < n, the next
n(n−1) arcs are ([i; j+ 1], [i; j]), 0 ≤ i < n, 0 ≤ j < n−1, and the remaining 2n(n−1) arcs (let us
call them backward arcs) are the inverses of the just defined 2n(n− 1) forward arcs. Let E be the
set of arcs of our network, and let us equip all the arcs with unit capacities. Let us treat vectors
from E = Mn

0 as vectors of external supplies for our network; note that the entries of these vectors
sum to zero, as required from external supply. Now, given a nonzero vector η ∈Mn

0 , let us consider
the network flow problem where we seek for the largest multiple sη of η which, considered as the
vector of external supplies in our network, results in a feasible capacitated network flow problem.
The problem in question reads

s∗ = max
s,r
{s : Pr = sη, 0 ≤ r ≤ e} , (31)

where P is the incidence matrix of our network9 and e is the all-ones vector. Now, problem (31)
clearly is feasible, and its feasible set is bounded due to η 6= 0, so that the problem is solvable.
Due to its network structure, this LP program can be solved reasonably fast even in the large scale
case (say, when n = 512 or n = 1024, which already is of interest for actual imaging). Further, an
intelligent network flow solver as applied to (31) will return not only the optimal s = s∗ and the
corresponding flow, but also the dual information, in particular, the optimal vector z of Lagrange
multipliers for the linear equality constraints Pr−sη = 0. Let z̄ be obtained by subtracting from the
entries of z their mean; since the entries of z are indexed by the nodes, z̄ can be naturally interpreted
as a zero mean image. It turns out that this image is nonzero, and the vector x[η] = −z̄/TV(z̄) is
nothing than a desired minimizer of 〈η, ·〉 on T V:

Lemma 2. Let η be a nonzero image with zero mean. Then (31) is solvable with positive optimal
value, and the image x[η], as defined above, is well defined and is a maximizer of 〈η, ·〉 on T V.

7which one of these two options takes place depends on the type of the algorithm.
8On a closest inspection, “complex geometry” of the TV-norm stems from the fact that after parameterizing a zero

mean image by its discrete gradient field and treating this field (g = ∇ix, h = ∇jx) as our new design variable, the unit
ball of the TV-norm becomes the intersection of a simple set in the space of pairs (g, h) ∈ F = R(n−1)×n×Rn×(n−1)

(the `1 ball ∆ given by ‖g‖1 + ‖h‖1 ≤ 1) with a linear subspace P of F comprised of potential vector fields (f, g) –
those which indeed are discrete gradient fields of images. Both dimension and codimension of P are of order of n2,
which makes it difficult to minimize over ∆ ∩ P nonlinear, even simple, convex functions, which is exactly what is
needed in proximal methods.

9that is, the rows of P are indexed by the nodes, the columns are indexed by the arcs, and in the column indexed
by an arc γ there are exactly two nonzero entries: entry 1 in the row indexed by the starting node of γ, and entry
−1 in the row indexed by the terminal node of γ.
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Bounding Lf . When applying CndG algorithms to the TV-based problems (5), (9) with E = Mn
0

and f(x) = φ(Ax−b), the efficiency estimates depend linearly on the associated quantity Lf , which,
in turn, is readily given by the norm ‖A‖TV(·),π(·) of the mapping x 7→ Ax, see the end of Section
2. Observe that in typical applications A is a simple operator (e.g., the discrete convolution), so
that when restricting ourselves to the case when π(·) is ‖ · ‖2 (quadratic fit), it is easy to find a
tight upper bound on ‖A‖‖·‖2,‖·‖2 . To convert this bound into an upper bound on ‖A‖TV(·),‖·‖2 , we
need to estimate the quantity

Qn = max
x
{‖x‖2 : x ∈Mn

0 ,TV(x) ≤ 1}.

Bounding Qn is not a completely trivial question, and the answer is as follows:

Proposition 1. Qn is nearly constant, specifically, Qn ≤ O(1)
√

ln(n) with a properly selected
absolute constant O(1).

Note that the result of Proposition 1 is in sharp contrast with one-dimensional case, where the
natural analogy of Qn grows with n as

√
n. We do not know whether it is possible to replace

in Proposition 1 O(1)
√

ln(n) with O(1), as suggested by Sobolev’s inequalities10. Note that on
inspection of the proof, Proposition extends to the case of d-dimensional, d > 2, images with zero
mean, in which case Qn ≤ C(d) with appropriately chosen C(d).

7 Numerical examples

We present here some very preliminary simulation results.

7.1 CndG for parametric optimization: sparse matrix completion problem

The goal of the first series of our experiments is to illustrate how the performance and requirements
of CndG algorithm for parametric optimization, when applied to the matrix completion problem
[4], scale with problem size. Specifically, we apply the algorithm of Section 4 to the problem of
nuclear norm minimization

min ‖σ(x)‖1, subject to
∑

(i,j)∈Ω

(yij − xij)2 ≤ δ, (32)

where σ(x) is the singular spectrum of a p× q matrix x. In our experiments, the set Ω of observed
entries (i, j) ∈ {1, ..., p} × {1, ..., q} of cardinality m� pq was selected at random.

Note that the the implementation of the CndGM is especially simple for the problem (32) –
at each method’s iteration it requires solving a simple quadratic problem with dimension of the
decision variable which does not exceed the iteration count. This allows to implement efficiently
the “full memory” version of CndGM (CndG algorithms with memory) (21), (22), in which the
set Xt contains xt and all the points x+

τ for 1 ≤ τ ≤ t.
We compare the performance of CndGM algorithms and of a “memoryless” version of the CndG.

To this end we have conducted the following experiment:

10From the Sobolev embedding theorem it follows that for a smooth function f(x, y) on the unit square one has
‖f‖L2 ≤ O(1)‖∇f‖1, ‖∇f‖1 := ‖f ′x‖1 + ‖f ′y‖1, provided that f has zero mean. Denoting by fn the restriction of
the function onto a n × n regular grid in the square, we conclude that ‖fn‖2/TV(fn) → ‖f‖L2/‖∇f‖1 ≤ O(1) as
n→∞. Note that the convergence in question takes place only in the 2-dimensional case.
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1. For matrix sizes p, q ∈ [1, 2, 4, 8, 16, 32]× 103 we generate n = 10 sparse p× q matrices y with
density d = 0.1 of non-vanishing entries as follows: we generate p × r matrix U and q × r
matrix V with independent Gaussian entries uij ∼ N (0,m−1), vij ∼ N (0, n−1), and a r × r
diagonal matrix D = diag[d1, ..., dr] with di drawn independently from a uniform distribution
on [0, 1]. The non-vanishing entries of the sparse observation matrix y are obtained by sam-
pling at random with probability d the entries of x∗ = UDV T , so that for every i, j, yij is,
independently over i, j, set to x∗ij with probability d and to 0 with probability 1 − d. Thus,
the number of non-vanishing entries of y is approximately m = dpq. This procedure results
in m ∼ 105 for the smallest matrices y (1000× 1000), and in m ∼ 108 for the largest matrices
(32000× 32000).

2. We apply to parametric optimization problem (32) MATLAB implementations of the CndGM
with memory parameter M = 1 (“memoryless” CndG), CndGM with M = 5 and full memory

CndGM. The parameter δ of (32) is chosen to be δ = 0.001‖y‖2f (here ‖y‖f =
(∑

i,j y
2
ij

)1/2

stands for the Frobenius norm of y). The optimization algorithm is tuned to the relative
accuracy ε = 1/4, what means that it outputs an ε-solution x̂ to (32), in the sense of (8),
with absolute accuracy ε = δε.

For each algorithm (memoryless CndG, CndGM with memory M = 5 and full memory CndGM)
we present in table 1 the average, over algorithm’s runs on the (common for all algorithms) sample
of n = 10 matrices y we have generated, 1) total number of iterations Nit necessary to produce an
ε-solution (it upper-bounds the rank of the resulting ε-solutuion), 2) CPU time in seconds Tcpu and
3) MATLAB memory usage in megabytes Smem. This experiment was conducted on a Dell Latitude
6430 laptop equipped with Intel Core i7-3720QM CPU@2.60GHz and 16GB of RAM. Because of
high memory requirements in our implementation of the full memory CndGM, this method was
unable to complete the computation for the two largest matrix sizes.

We can make the following observation regarding the results summarized in table 1: CndG
algorithm with memory consistently outperforms the standard – memoryless – version of CndG.
The full memory CndGM requires the smallest number of iteration to produce an ε-solution, which
is of the smallest rank, as a result. On the other hand, the memory requirements of the full
memory CndGM become prohibitive (at least, for the computer we used for this experiment and
MATLAB implementation of the memory heap) for large matrices. On the other hand, a CndGM
with memory M = 5 appears to be a reasonable compromise in terms of numerical efficiency and
memory demand.

7.2 CndG for composite optimization: multi-class classification with nuclear-
norm regularization

We present here an empirical study of the CndG algorithm for composite optimization as applied
to the machine learning problem of multi-class classification with nuclear-norm penalty. A brief
description of the multi-class classification problem is as follows: we observe N “feature vectors”
ξi ∈ Rq, each belonging to exactly one of p classes C1, ..., Cp. Each ξi is augmented by its label
yi ∈ {1, ..., p} indicating to which class ξi belongs. Our goal is to build a classifier capable to
predict the class to which a new feature vector ξ belongs. This classifier is given by a p× q matrix
x according to the following rule: given ξ, we compute the p-dimensional vector xξ and take, as
the guessed class of ξ, the index of the largest entry in this vector.

In some cases (see [6, 10]), when, for instance, one is dealing with a large number of classes,
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Matrix size Memory-less CndG CndGM with memory M = 5 Full memory CndG
p× q Nit Tcpu Smem Nit Tcpu Smem Nit Tcpu Smem

1000× 1000 271.6 9.35 17.11 149.7 5.01 17.63 78.4 4.71 78.98

1000× 2000 292.1 12.14 31.67 162.8 7.76 32.57 93.5 10.89 156.22

2000× 2000 246.8 17.01 54.45 139.1 11.19 61.57 71.9 13.31 248.13

2000× 4000 259.3 33.94 105.09 152.3 24.50 120.22 57.7 25.54 410.02

4000× 4000 321.8 79.20 207.26 162.9 50.59 235.59 74.6 93.22 1014.7

4000× 8000 360.1 169.8 399.16 147.3 88.81 464.68 63.3 135.6 1766.4

8000× 8000 323.4 302.8 754.46 111.8 134.1 905.98 53.6 191.3 3061.5

8000× 16000 324.1 614.3 1485.6 118.2 286.5 1800.7 50.5 329.4 5826.7

16000× 16000 258.7 995.4 2898.5 99.7 495.5 3577.8 50.8 595.2 11696

16000× 32000 276.7 2572 5721.7 70.3 859.2 7109.0 NA NA NA

32000× 32000 305.4 5028 11352 57.6 2541 14186 NA NA NA

Table 1: memoryless CndG vs. CndGM with memory M = 5 vs. full memory CndGM. Nit: total
number of method iterations; Tcpu: CPU usage (sec), and Smem: memory usage (MB) reported by
MATLAB.

there are good reasons “to train the classifier” — to specify x given the training sample (ξi, yi),
1 ≤ i ≤ N — as the optimal solution to the nuclear norm penalized minimization problem

Opt(κ) = min
x∈Rp×q

Fκ(x) :=

f(x)︷ ︸︸ ︷
1

N

N∑
i=1

log

{
q∑
`=1

exp
(
(xT` − xTyi)ξi

)}
+κ‖σ(x)‖1, (33)

where xT` is the `-th row in x.
Below, we report on some experiments with this problem. Our goal was to compare two versions

of CndG for composite minimization: the memoryless version defined in (24) and the version with
memory defined in (28). To solve the corresponding sub-problems, we used the Center of Gravity
method in the case of (24) and the Ellipsoid method in the case of (28) [22, 21]. In the version
with memory we set M = 5, as it appeared to be the best option from empirical evidence. We have
considered the following datasets:

1. Simulated data: for matrix of sizes p, q ∈ 103 × {2s}4s=1, we generate random matrices
x? = USV , with p × p factor U , q × q factor V , and diagonal p × q factor S with random
entries sampled, independently of each other, from N (0, p−1) (for U), N (0, q−1) (for V ),
and the uniform distribution on [0, 1] (for diagonal entries in S). We use N = 20q, with
the feature vectors ξ1, ..., ξN sampled, independently of each other, from the distribution
N (0, Iq), and their labels yi being the indexes of the largest entries in the vectors x?ξi + εi,
where εi ∈ Rp were sampled, independently of each other and of ξ1, ..., ξN , from N (0, 1

2Ip).
The regularization parameter κ is set to 10−3Tr(x?x

T
? ).

2. Real-world data: we follow a setting similar to [10]. We consider the Pascal ILSVRC2010
ImageNet dataset and focus on the “Vertebrate-craniate” subset, yielding 1043 classes, with
20 examples per class. The goal here is to train a multi-class classifier in order to be able
to predict the class of each image (example) of the dataset. Each example is converted to
a 65536-dimensional feature vector of unit `1-norm using state-of-the-art visual descriptors
known as Fisher vector representation [10]. To summarize, we have p = 1043, q = 65536,
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Matrix size Memory-less CndG CndGM with memory M = 5
p× q Nit Tcpu Smem Nit Tcpu Smem

2000× 2000 172.9 349.7 134.4 99.70 125.1 174.1
4000× 4000 153.4 1035 541.8 88.2 575.2 704.1
8000× 8000 195.3 2755 2169 120.4 1284 2819

16000× 16000 230.2 6585 8901 134.3 3413 11550
32000× 32000 271.4 26370 30300 140.4 17340 30500

1043× 65536 183 2101 2087 111 925.34 2709

Table 2: memoryless CndG vs. CndGM with memory M = 5. Nit: total number of method
iterations; Tcpu: CPU usage (sec) reported by MATLAB.

N = 20860. We set the regularization parameter to κ = 10−4, which was found to result in
the best predictive performance as estimated by cross-validation, a standard procedure to set
the hyper parameters in machine learning [11].

In both sets of experiments, the computations are terminated when the “ε-optimality condi-
tions”

‖σ(f ′(xt))‖∞ ≤ κ+ ε
〈f ′(xt), xt〉+ κ‖σ(xt)‖1 ≤ ε‖σ(xt)‖1

(34)

were met, where ‖σ(·)‖∞ denotes the usual operator norm (the largest singular value). These
conditions admit transparent interpretation as follows. For every x̄, the function

φκ(x) = f(x̄) + 〈f ′(x̄), x− x̄〉+ κ‖σ(x)‖1

underestimates Fκ(x), see (33), whence Opt(κ′) ≥ f(x̄) − 〈f ′(x̄), x̄〉 whenever κ′ ≥ ‖σ(f ′(x̄))‖∞.
Thus, whenever x̄ = xt satisfies the first relation in (34), we have Opt(κ+ ε) ≥ f(xt)− 〈f ′(xt), xt〉,
whence

Fκ(xt)−Opt(κ+ ε) ≤ 〈f ′(xt), xt〉+ κ‖σ(xt)‖1.

We see that (34) ensures that Fκ(xt) − Opt(κ + ε) ≤ ε ‖σ(xt)‖1, which, for small ε, is a reason-
able substitute for the actually desired termination when Fκ(xt) − Opt(κ) becomes small. In our
experiments, we use ε = 0.001.

In table 2 for each algorithm (memoryless CndG, CndGM with memory M = 5) we present
the average, over 20 collections of simulated data coming from 20 realizations of x?, of: 1) total
number of iterations Nit necessary to produce an ε-solution, 2) CPU time in seconds Tcpu. The last
row of the table corresponds to the real-world data. Experiments were conducted on a Dell R905
server equipped with four six-core AMD Opteron 2.80GHz CPUs and 64GB of RAM. A maximum
of 32GB of RAM was used for the computations.

We draw the following conclusions from table 1: CndG algorithm with memory routinely out-
performs the standard – memoryless – version of CndG. However, there is a trade-off between the
algorithm progress at each iteration and the computational load of each iteration. Note that, for
large M , solving the sub-problem (28) can be challenging.
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7.3 CndG for composite optimization: TV-regularized image reconstruction

Here we report on experiments with COCndGM as applied to TV-regularized image reconstruction.
Our problem of interest is of the form (9) with quadratic f , namely, the problem

min
x∈Mn

0

φκ(x) :=
1

2
‖PAx− Pb‖22︸ ︷︷ ︸

f(x)

+κTV(x); (35)

for notation, see section 6.2.

Test problems. In our experiments, the mapping x 7→ Ax is defined as follows: we zero-pad x
to extend it from Γn,n to get a finitely supported function on Z2, then convolve this function with
a finitely supported kernel α(·), and restrict the result onto Γn,n. The observations b ∈ Mn were
generated at random according to

bij = (Ax)ij + σ‖x‖∞ξij , ξij ∼ N (0, 1), 1 ≤ i, j ≤ n, (36)

with mutually independent ξij . The relative noise intensity σ > 0, same as the convolution kernel
α(·), are parameters of the setup of an experiment.

The algorithm. We used the COCndG with memory, described in section 5; we implemented
the options listed in A – C at the end of the section. Specifically,

1. We use the updating rule (30) with Zt evolving in time exactly as explained in item C:
the set Zt is obtained from Zt−1 by adding the points zt = [xt; TV(xt)], ẑt = [x[∇f(xt)]; 1]
and z′t = [∇f(xt); TV(∇f(xt))], and deleting from the resulting set, if necessary, some “old”
points, selected according to the rule “first in – first out,” to keep the cardinality of Zt not to
exceed a given M ≥ 3 (in our experiments we use M = 48). This scheme is initialized with
Z0 = ∅, z1 = [0; 0].

2. We use every run of the algorithm to obtain a set of approximate solutions to (35) associated
with various values of the penalty parameter κ, as explained in B at the end of section 5.
Precisely, when solving (35) for a given value of κ (in the sequel, we refer to it as to the
working value, denoted κw), we also compute approximate solutions xκ(κ′) to the problems
with the values κ′ of the penalty, for κ′ = κγ, with γ running through a given finite subset
G 3 1 of the positive ray. In our experiments, we used the 25-point grid G = {γ = 2`/4}12

`=−12.

The LO oracle for the TV norm on Mn
0 utilized in COCndGM was the one described in Lemma

2; the associated flow problem (31) was solved by the commercial interior point LP solver mosekopt
version 6 [1]. Surprisingly, in our application this “general purpose” interior point LP solver was
by orders of magnitude faster than all dedicated network flow algorithms we have tried, including
simplex-type network versions of mosekopt and CPLEX. With our solver, it becomes possible to
replace in (31) every pair of opposite to each other arcs with a single arc, passing from the bounds
0 ≤ r ≤ e on the flows in the arcs to the bounds −e ≤ r ≤ e.

The termination criterion we use relies upon the fact that in COCndGM the (nonnegative)
objective decreases along the iterates: we terminate a run when the progress in terms of the
objective becomes small, namely, when the condition

φκ(xt−1)− φκ(xt) ≤ εmax[φκ(xt−1), δφκ(0)]

is satisfied. Here ε and δ are small tolerances (we used ε = 0.005 and δ = 0.01).
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Organization of the experiments. In each experiment we select a “true image” x∗ ∈ Mn, a
kernel α(·) and a (relative) noise intensity σ. Then we generate a related observation b, thus ending
up with a particular instance of (35). This instance is solved by the outlined algorithm for working
values κw of κ taken from the set G+ = {γ = 2`/4}∞`=−∞, with the initial working value, selected in
pilot runs, of the penalty underestimating the best – resulting in the best recovery – penalty.

As explained above, a run of COCndGM, the working value of the penalty being κw, yields 25
approximate solutions to (35) corresponding to κ along the grid κw · G. These sets are fragments
of the grid G+, with the ratio of the consecutive grid points 21/4 ≈ 1.19. For every approximate
solution x we compute its combined relative error defined as

ν(x) =

(
‖x̄− x∗‖1‖x̄− x∗‖2‖x̄− x∗‖∞

‖x∗‖1‖x∗‖2‖x∗‖∞

)1/3

;

here x̄ is the easily computable shift of x by a constant image satisfying ‖Ax̄−b‖2 = ‖PAx−Pb‖2.
From run to run, we increase the working value of the penalty by the factor 21/4, and terminate
the experiment when in four consecutive runs there was no progress in the combined relative error
of the best solution found so far. Our primary goals are (a) to quantify the performance of the
COCndGM algorithm, and (b) to understand by which margin, in terms of φκ(·), the “byproduct”
approximate solutions yielded by the algorithm (those which were obtained when solving (35) with
the working value of penalty different from κ) are worse than the “direct” approximate solution
obtained for the working value κ of the penalty.

Test instances and results. We present below the results of four experiments with two popular
images; these results are fully consistent with those of other experiments we have conducted so far.
The corresponding setups are presented in table 3. Table 4 summarizes the performance data. Our
comments are as follows.

• In accordance to the above observations, using “large” memory (with the cardinality of Zt
allowed to be as large as 48) and processing “large” number (25) of penalty values at every
step are basically costless: at an iteration, the single call to the LO oracle (which is a must
for CndG) takes as much as 85% of the iteration time.

• The COCndGM iteration count as presented in table 4 is surprisingly low for an algorithm
with sublinear O(1/t) convergence, and the running time of the algorithm appears quite
tolerable11

Seemingly, the instrumental factor here is that by reasons indicated in C, see the end of
section 5, we include into Zt not only zt = [xt; TV(xt)] and ẑt = [x[∇f(xt)]; 1], but also
z′t = [∇f(xt); TV(∇f(xt))]. To illustrate the difference, this is what happens in experiment
A with the lowest (0.125) working value of penalty. With the outlined implementation, the
run takes 12 iterations (111 sec), with the ratio φ1/8(xt)/φ1/8(x1) reduced from 1 (t = 1) to
0.036 (t = 12). When z′t is not included into Zt, the termination criterion is not met even
in 50 iterations (452 sec), the maximum iteration count we allow for a run, and in course of
these 50 iterations the above ratio was reduced from 1 to 0.17, see plot e) on figure 1.

11For comparison: solving on the same platform problem (35) corresponding to Experiment A (256 × 256 image)
by the state-of-the-art commercial interior point solver mosekopt 6.0 took as much as 3,727 sec, and this – for a
single value of the penalty (there is no clear way to get from a single run approximate solutions for a set of values of
the penalty in this case).
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# Image n α(·) Cond(A∗A) σ

A lenna† 256 fspecial(’gaussian’,7,1)§ (7×7) ≈ 2.5e7 0.05

B cameraman‡ 512 fspecial(’gaussian’,7,1) (7×7) ≈ 2.5e7 0.05

C lenna 256 fspecial(’unsharp’) (3×3) ≈ 40 0.15

D cameraman 512 fspecial(’unsharp’) (3×3) ≈ 40 0.40
†http://en.wikipedia.org/wiki/Lenna ‡http://en.wikipedia.org/wiki/Camera operator
§http://www.mathworks.com/help/images/ref/fspecial.html

Table 3: Setups of the experiments.

Iterations per
run

CPU per run,
sec

CPU per
iteration, sec

# Image size Runs min mean max mean max mean

A 256×256 6 4 9.00 12 83.4 148.7 8.3

B 512×512 9 4 7.89 11 212.9 318.2 25.9

C 256×256 6 17 17.17 18 189.7 214.7 10.3

D 512×512 6 16 16.00 16 615.9 768.3 36.0

Table 4: Performance of COCndGM; platform: T410 Lenovo laptop, Intel Core i7 M620
CPU@2.67GHz, 8GB RAM. Flow solver: interior point method mosekopt 6.0 [1]

• An attractive feature of the proposed approach is the possibility to extract from a single
run, the working value of the penalty being κw, suboptimal solutions xκw(κ) for a bunch of
instances of (9) differing from each other by the values of the penalty κ. The related question
is, of course, how good, in terms of the objective φκ(·), are the “byproduct” suboptimal
solutions xκw(κ) as compared to those obtained when κ is the working value of the penalty.
In our experiments, the “byproduct” solutions were pretty good, as can be seen from plots
(a) – (c) on figure 1, where we see the upper and the lower envelopes of the values of φκ at
the approximate solutions xκw(κ) obtained from different working values κw of the penalty.
In spite of the fact that in our experiments the ratios κ/κw could be as small as 1/8 and as
large as 8, we see that these envelopes are pretty close to each other, and, as an additional
bonus, are merely indistinguishable in a wide neighborhood of the best (resulting in the best
recovery) value of the penalty (on the plots, this value is marked by asterisk).

Finally, we remark that in experiments A, B, where the mapping A is heavily ill-conditioned (see
table 3), TV regularization yields moderate (just about 25%) improvement in the combined relative
recovery error as compared to the one of the trivial recovery (“observations as they are”), in spite of
the relatively low (σ = 0.05) observation noise. In contrast to this, in the experiments C, D, where
A is well-conditioned, TV regularization reduces the error by 80% in experiment C (σ = 0.15) and
by 72% in experiment D (σ = 0.4), see figure 2.
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Figure 1: (a) – (d): lower and upper envelopes of {φκ(xκw
(κ)) : κw ∈ G} vs. κ, experiments A – D.

Asterisks on the κ-axes: penalties resulting in the smallest combined relative recovery errors. (e): values of
φ1/8(xt) vs. iteration number t with z′t included (asterisks) and not included (circles) into Zt.
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8 Appendix

8.1 Proof of Theorem 1

Define
εt = f(xt)− f∗, ∆t = max

x∈X
〈f ′(xt), xt − x〉 = 〈f ′(xt), xt − x+

t 〉

where x+
t = xX [f ′(xt)]. Denoting by x∗ an optimal solution to (13) and invoking the definition of

x+
t and convexity of f , we have

〈f ′(xt), x+
t − xt〉 ≤ 〈f ′(xt), x∗ − xt〉 ≤ f∗ − f(xt). (37)

Observing that for a generic GC algorithm we have f(xt+1) ≤ f(xt + γt(x
+
t − xt)) and invoking

(12), we have

f(xt+1) ≤ f(xt) + γt〈f ′(xt), x+
t − xt〉+

L

2
γ2
t ‖x+

t − xt‖2X ≤ f(xt)− γt(f(xt)− f∗) + 1
2Lγ

2
t , (38)

where the concluding ≤ is due to (37). It follows that εt+1 ≤ (1− γt)εt + 1
2Lγ

2
t , whence

εt+1 ≤ ε1

t∏
i=1

(1− γi) + 1
2L

t∑
i=1

γ2
i

t∏
k=i+1

(1− γk)

= 2L

t∑
i=1

(i+ 1)−2
t∏

k=i+1

(1− 2

k + 1
),

where, by convention,
∏t
k=t+1 = 1. Noting that

∏t
k=i+1(1 − 2

k+1) =
∏t
k=i+1

k−1
k+1 = i(i+1)

t(t+1) , i =
1, ..., t, we get

εt+1 ≤ 2L

t∑
i=1

i(i+ 1)

(i+ 1)2t(t+ 1)
≤ 2Lt

(t+ 1)2
≤ 2L(t+ 2)−1, (39)

what is (19).
To prove (20), observe that setting ∆̄t = min1≤k≤t ∆k, and invoking (17), (18) we clearly have

f(x̄t)− f∗t = min1≤k≤t[f(x̄t)− f∗,k] = min1≤k≤t[f(x̄t)− f(xk) + ∆k]
≤ min1≤k≤t ∆k = ∆̄t

(we have used the fact that f(x̄t) ≤ f(xk), k ≤ t, by definition of x̄t). We see that in order to prove
(20), it suffices to prove that

∆̄t ≤
4.5L

t− 2
, t = 5, 6, ... (40)

To verify (40), note that by the first inequality in (38)

γk∆k ≡ γk〈f ′(xk), xk − x+
k 〉 ≤ εk − εk+1 + 1

2Lγ
2
k . (41)

Assuming t > 2 and summing up these inequalities over k varying from t0 =ct/2b to t (here cab
stands for the largest integer strictly smaller than a), we obtain

t∑
k=t0

γk∆k ≤ εt0 + 1
2L

t∑
k=t0

γ2
k ,
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and therefore

∆̄t

t∑
k=t0

γk ≤ εt0 + 1
2L

t∑
k=t0

γ2
k . (42)

Observe that
∑t

k=t0
γk = 2

∑t
k=t0

(k + 1)−1 ≥ 2[ln(t + 1) − ln(t0 + 1)] ≥ 2 ln(2) and
∑t

k=t0
γ2
k =

4
∑t

k=t0
(k + 1)−2 ≤ 4[t−1

0 − t−1] ≤ 4(t+2)
t(t−2) . Assuming t > 4 (so that t0 ≥ 2) and substituting into

(42) the bound (19) for εt0 we obtain

∆̄t ≤
2L

t
+

L(t+ 2)

t(t− 2) ln(2)
≤ 4.5L(t− 2)−1,

as required in (40). �

8.2 Proof of Theorem 2

The proof, up to minor modifications, goes back to [19], see also [22, 16]; we provide it here to make
the paper self-contained. W.l.o.g. we can assume that we are in the nontrivial case (see description
of the algorithm).

10. As it was explained when describing the method, whenever stage s takes place, we have
[0 <]ρ1 ≤ ρs ≤ ρ∗, and ρs−1 < ρs, provided s > 1. Therefore by the termination rule, the output
ρ̄, x̄ of the algorithm, if any, satisfies ρ̄ ≤ ρ∗, f(x̄) ≤ ε. Thus, (i) holds true, provided that the
algorithm does terminate. Thus, all we need is to verify (ii) and (iii).

20. Let us prove (ii). Let s ≥ 1 be such that stage s takes place. Setting X = K[ρs], observe
that X −X ⊂ {x ∈ E : ‖x‖ ≤ 2ρs}, whence ‖ · ‖ ≤ 2ρs‖ · ‖X , and therefore the relation (4) implies
the validity of (12) with L = 4ρ2

sLf . Now, if stage s does not terminate in course of some number
t steps, then, in the notation from the description of the algorithm, f(x̄t) > ε and f t∗ <

3
4f(x̄t),

whence f(x̄t) − f t∗ > ε/4. By Theorem 1.ii, the latter is possible only when 4.5L/(t − 2) > ε/4.

Thus, t ≤ max
[
5, 2 +

72ρ2sLf
ε

]
. Taking into account that ρs ≤ ρ∗, (ii) follows.

30. Let us prove (iii). This statement is trivially true when the number of stages is 1. Assuming
that it is not the case, let S ≥ 1 be such that the stage S+ 1 takes place. For every s = 1, ..., S, let
ts be the last step of stage s, and let us, `

s(·) be what in the notation from the description of stage
s was denoted f(x̄ts) and `ts(ρ). Thus, us > ε is an upper bound on Opt(ρs), `s := `s(ρs) is a lower
bound on Opt(ρs) satisfying `s ≥ 3us/4, and `s(·) is a piecewise linear convex in ρ lower bound on
Opt(ρ), ρ ≥ 0, and ρs+1 > ρs is the smallest positive root of `s(·). Let also −gs be a subgradient
of `s(·) at ρs. Note that gs > 0 due to ρs+1 > ρs combined with `s(ρs) > 0, `s(ρs+1) = 0, and by
the same reasons combined with convexity of `s(·) we have

ρs+1 − ρs ≥ `s/gs, (43)

and, as we have seen,

1 ≤ s ≤ S ⇒


(a) us > ε,
(b) us ≥ Opt(ρs) ≥ `s ≥ 3

4us,
(c) `s − gs(ρ− ρs) ≤ Opt(ρ), ρ ≥ 0.

. (44)
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Assuming 1 < s ≤ S and applying (43), we get ρs − ρs−1 ≥ 3
4us−1/gs−1, whence, invoking (44),

us−1 ≥ Opt(ρs−1) ≥ `s + gs[ρs−1 − ρs] ≥
3

4
us +

3

4
us−1

gs
gs−1

.

The resulting inequality implies that us
us−1

+ gs
gs−1

≤ 4
3 , whence usgs

us−1gs−1
≤ (1/4)(4/3)2 = 4/9. It

follows that √
usgs ≤ (2/3)s−1√u1g1, 1 ≤ s ≤ S. (45)

Now, since the first iterate of the first stage is 0, we have u1 ≤ f(0), while (44) applied with s = 1
implies that f(0) = Opt(0) ≥ `1 + ρ1g1 ≥ ρ1g1, whence u1g1 ≤ f(0)/ρ1 = d. Further, by (43)
gs ≥ `s/(ρs+1 − ρs) ≥ q`s/ρ∗ ≥ 3

4us/ρ∗, where the concluding inequality is given by (44). We see
that usgs ≥ 3

4u
2
s/ρ∗ ≥ 3

4ε
2/ρ∗. This lower bound on usgs combines with the bound u1g1 ≤ d and

with (45) to imply that
ε ≤

√
4/3(2/3)s−1

√
dρ∗, 1 ≤ s ≤ S.

Finally observe that by the definition of ρ∗ and due to the fact that ‖x[f ′(0)]‖ = 1 in the nontrivial
case, we have

0 ≤ f(ρ∗x[f ′(0)]) ≤ f(0) + ρ∗〈f ′(0), x[f ′(0)]〉+
1

2
Lfρ

2
∗ = f(0)− ρ∗d+ 1

2Lfρ
2
∗

(we have used (4) and the definition of d), whence ρ∗d ≤ f(0) + 1
2Lfρ

2
∗ and therefore

ε ≤
√

3/4(2/3)s−1
√
f(0) + 1

2Lfρ
2
∗, 1 ≤ s ≤ S.

Since this relation holds true for every S ≥ 1 such that the stage S+ 1 takes place, (iii) follows. �

8.3 Proof of Theorem 3

By definition of zt we have zt ∈ K+ for all t and F (0) = F (z1) ≥ F (z2) ≥ ..., whence rt ≤ D∗ for
all t by Assumption A. Besides this, r∗ ≤ D∗ as well. Let now εt = F (zt) − F∗, zt = [xt; rt], and
let z+

t = [x+
t , r

+
t ] be a minimizer, as given by Lemma 1, of the linear form 〈F ′(zt), z〉 of z ∈ E+

over the set K+[r∗] = {[x; r] : x ∈ K, ‖x‖ ≤ r ≤ r∗}. Recalling that F ′(zt) = [f ′(xt);κ] and that
rt ≤ D∗ ≤ D+, Lemma 1 implies that z+

t ∈ ∆(zt). By definition of z+
t and convexity of F we have

〈[f ′(xt);κ], zt − z+
t 〉 = 〈f ′(xt), xt − x+

t 〉+ κ(rt − r+
t )

≥ 〈f ′(xt), xt − x∗〉+ κ(rt − r∗)
= 〈F ′(zt), zt − z∗〉 ≥ F (zt)− F (z∗) = εt.

Invoking (12), it follows that for 0 ≤ s ≤ 1 one has

F (zt + s(z+
t − zt)) ≤ F (zi) + s〈[f ′(xt);κ], z+

t − zt〉+
Lfs

2

2
‖x(z+

t )− x(zt)‖2

≤ F (zt)− sεt + 1
2Lfs

2(rt +D∗)
2

using that ‖x(z+
t )‖ ≤ r+

t and ‖x(zt)‖ ≤ rt due to z+
t , zt ∈ K+, and that r+

t ≤ r∗ ≤ D∗. By (24) we
have

F (zt+1) ≤ min
0≤s≤1

F (zt + s(z+
t − zt)) ≤ F (zt) + min

0≤s≤1

{
−sεt + 1

2Lfs
2(rt +D∗)

2
}
,

28



and we arrive at the recurrence

εt+1 ≤ εt −

{
ε2t

2Lf (rt+D∗)2
, εt ≤ Lf (rt +D∗)

2

εt − 1
2Lf (rt +D∗)

2, εt > Lf (rt +D∗)
2
, t = 1, 2, ... (46)

When t = 1, this recurrence, in view of z1 = 0, implies that ε2 ≤ 1
2LfD

2
∗. Let us show by induction

in t ≥ 2 that

εt ≤ ε̄t :=
8LfD

2
∗

t+ 14
, t = 2, 3, ... (47)

thus completing the proof. We have already seen that (47) is valid for t = 2. Assuming that (47)
holds true for t = k ≥ 2, we have εk ≤ 1

2LfD
2
∗ and therefore εk+1 ≤ εk− 1

8LfD2
∗
ε2k by (46) combined

with 0 ≤ rk ≤ D∗. Now, the function s− 1
8LfD2

∗
s2 is nondecreasing on the segment 0 ≤ s ≤ 4LfD

2
∗

which contains ε̄k and εk ≤ ε̄k, whence

εk+1 ≤ εk −
1

8LfD2
∗
ε2k ≤ ε̄k −

1

8LfD2
∗
ε̄2k =

[
8LfD

2
∗

k + 14

]
− 1

8LfD2
∗

[
8LfD

2
∗

k + 14

]2

=
8LfD

2
∗(k + 13)

(k + 14)2
≤

8LfD
2
∗

(k + 1) + 14
,

so that (47) holds true for t = k + 1. �

8.4 Proofs for Section 6

Proof of Lemma 2. As we have already explained, (31) is solvable, so that z is well defined.
Denoting by (s∗, r∗) an optimal solution to (31) produced, along with z, by our solver, note that
the characteristic property of z is the relation

(s∗, r∗) ∈ Argmax
s,r

{s+ 〈z, Pr − sη〉 : 0 ≤ r ≤ e}.

Since the column sums in P are zeros and η is with zero sum of entries, the above characteristic
property of z is preserved when passing from z to z̄, so that we may assume from the very beginning
that z = z̄ is a zero mean image. Now, P = [Q,−Q], where Q is the incidence matrix of the network
obtained from G by eliminating backward arcs. Representing a flow r as [rf ; rb], where the blocks
are comprised, respectively, of flows in the forward and backward arcs, and passing from r to
ρ = rf − rb, our characteristic property of z clearly implies the relation

(s∗, ρ∗ := r∗f − r∗b ) ∈ Argmax
s,ρ

{s+ 〈z,Qρ− sη〉 : ‖ρ‖∞ ≤ 1}.

It follows that

(a) 〈z, η〉 = 1,
(b) ‖ρ∗‖∞ ≤ 1,

(c) (Q∗z)γ =


≤ 0, ρ∗γ = −1,

= 0, ρ∗γ ∈ (−1, 1),

≥ 0, ρ∗γ = 1,
for all forward arcs γ,

(d) Qρ∗ = s∗η.

(48)
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(48.d) and (48.a) imply that 〈Q∗z, ρ∗〉 = s∗, while (48.c) says that 〈Q∗z, ρ∗〉 = ‖Q∗z‖1, and s∗ =
‖Q∗z‖1. By (48.a) z 6= 0, and thus z is a nonzero image with zero mean; recalling what Q
is, the first n(n − 1) entries in Q∗z form ∇iz, and the last n(n − 1) entries form ∇jz, so that
‖Q∗z‖1 = TV(z). The gradient field of a nonzero image with zero mean cannot be identically
zero, whence TV(z) = ‖Q∗z‖1 = s∗ > 0. Thus x[η] = −z/TV(z) = −z/s∗ is well defined and
TV(x[η]) = 1, while by (48.a) we have 〈x[η], η〉 = −1/s∗. Finally, let x ∈ T V, implying that Q∗x
is the concatenation of ∇ix and ∇jx and thus ‖Q∗x‖1 = TV(x) ≤ 1. Invoking (48.b, d), we get
−1 ≤ 〈Q∗x, ρ∗〉 = 〈x,Qρ∗〉 = s∗〈x, η〉, whence 〈x, η〉 ≥ −1/s∗ = 〈x[η], η〉, meaning that x[η] ∈ T V
is a minimizer of 〈η, x〉 over x ∈ T V. �

Proof of Proposition 1. In the sequel, for a real-valued function x defined on a finite set (e.g.,
for an image), ‖x‖p stands for the Lp norm of the function corresponding to the counting measure
on the set (the mass of every point from the set is 1). Let us fix n and x ∈ Mn

0 with TV(x) ≤ 1;
we want to prove that

‖x‖2 ≤ C
√

ln(n) (49)

with appropriately selected absolute constant C.
10. Let ⊕ stand for addition, and 	 – for substraction of integers modulo n; p ⊕ q = (p +

q) modn ∈ {0, 1, ..., n−1} and similarly for p	q. Along with discrete partial derivatives ∇ix, ∇jx,

let us define their periodic versions ∇̂ix, ∇̂jx:

∇̂ix(i, j) = x(i⊕ 1, j)− x(i, j) : Γn,n → R, ∇̂jx(i, j) = x(i, j ⊕ 1)− x(i, j) : Γn,n → R,

same as periodic Laplacian ∆̂x:

∆̂x = x(i, j)− 1

4
[x(i	 1, j) + x(i⊕ 1, j) + x(i, j 	 1) + x(i, j ⊕ 1)] : Γn,n → R.

For every j, 0 ≤ j < n, we have
∑n−1

i=0 ∇̂ix(i, j) = 0 and ∇ix(i, j) = ∇̂ix(i, j) for 0 ≤ i < n − 1,

whence
∑n−1

i=0 |∇̂i(x)| ≤ 2
∑n−1

i=0 |∇ix(i, j)| for every j, and thus ‖∇̂ix‖1 ≤ 2‖∇ix‖1. Similarly,

‖∇̂jx‖1 ≤ 2‖∇jx‖1, and we conclude that

‖∇̂ix‖1 + ‖∇̂jx‖1 ≤ 2. (50)

20. Now observe that for 0 ≤ i, j < n we have

x(i, j) = x(i	 1, j) + ∇̂ix(i	 1, j)

x(i, j) = x(i⊕ 1, j)− ∇̂ix(i, j)

x(i, j) = x(i, j 	 1) + ∇̂jx(i, j 	 1)

x(i, j) = x(i, j ⊕ 1)− ∇̂jx(i, j)

whence

∆̂x(i, j) =
1

4

[
∇̂ix(i	 1, j)− ∇̂ix(i, j) + ∇̂jx(i, j 	 1)− ∇̂jx(i, j)

]
(51)

Now consider the following linear mapping from Mn ×Mn into Mn:

B[g, h](i, j) =
1

4
[g(i	 1, j)− g(i, j) + h(i, j 	 1)− h(i, j)] , [i; j] ∈ Γn,n. (52)
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From this definition and (51) it follows that

∆̂x = B[∇̂ix, ∇̂jx]. (53)

30. Observe that B[g, h] always is an image with zero mean. Further, passing from images
u ∈Mn to their 2D Discrete Fourier Transforms DFT[u]:

DFT[u](p, q) =
∑

0≤r,s<n
u(r, s) exp{−2πı(pr + qs)/n}, [p; q] ∈ Γn,n,

we immediately see that every image u with zero mean is the periodic Laplacian of another, uniquely,
defined, image X[u] with zero mean, with X[u] given by

DFT[X[u]](p, q) = Y [u](p, q) :=

{
0, p = q = 0
DFT[u](p,q)
D(p,q) , 0 6= [p; q] ∈ Γn,n

, [p; q] ∈ Γn,n,

D(p, q) = 1− 1
2 [cos(2πp/n) + cos(2πq/n)], [p; q] ∈ Γn,n.

(54)

In particular, invoking (53), we get

DFT[x] = Y [B[∇̂ix, ∇̂jx]].

By Parseval identity, ‖DFT[x]‖2 = n‖x‖2, whence

‖x‖2 = n−1‖Y [B[∇̂ix, ∇̂jx]]‖2.

Combining this observation with (50), we see that in order to prove (49), it suffices to check that

(!) Whenever g, h ∈Mn are such that

(g, h) ∈ G := {(g, h) ∈Mn ×Mn : ‖g‖1 + ‖h‖1 ≤ 2},

we have
‖Y [B[g, h]]‖2 ≤ nC

√
ln(n). (55)

40. A good news about (!) is that since Y [B[g, h]] is linear in (g, h), in order to justify (!), it
suffices to prove that (55) holds true for the extreme point of G, i.e., (a) for pairs where h ≡ 0 and
g is an image which is equal to 2 at some point of Γn,n and vanishes outside of this point, and (b)
for pairs where g ≡ 0 and h is an image which is equal to 2 at some point of Γn,n and vanishes
outside of this point. Task (b) clearly reduces to task (a) by swapping the coordinates i, j of points
from Γn,n, so that we may focus solely on task (a). Thus, assume that g is a cyclic shift of the
image 2δ:

g(i, j) ≡ 2δ(i	 r, j 	 s), δ(i, j) =

{
1, [i; j] = [0; 0]
0, [i; j] 6= [0; 0]

, [i; j] ∈ Γn,n.

From (52) it follows that then B[g, 0] is a cyclic shift of B[2δ, 0], whence |DFT[B[g, 0]](p, q)| =
|DFT[B[2δ, 0]](p, q)| for all [p; q] ∈ Γn,n, which, by (54), implies that |Y [B[g, 0]](p, q)| = |Y [B[2δ, 0]](p, q)|
for all [p; q] ∈ Γn,n. The bottom line is that all we need is to verify that (55) holds true for
g = 2δ, h = 0, or, which is the same, that with

y(p, q) =
(1− exp{2πıp/n})

2[1− 1
2 [cos(2πp/n) + cos(2πq/n)]]

(56)
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where the right hand side by definition is 0 at p = q = 0, it holds

Cn :=
n−1∑
p,q=0

|y(p, q)|2 ≤ n2C2 ln(n).

Now, (56) makes sense for all [p; q] ∈ Z2 (provided that we define the right hand side as zero at
all points of Z2 where the denominator in (56) vanishes, that is, at all point where p, q are integer
multiples of n) and defines y as a double-periodic, with periods n in p and in q, function of [p; q].
Therefore, setting m = Floor(n/2) ≥ 1 and W = {[p; q] ∈ Z2 : −m ≤ p, q < n−m}, we have

Cn =
∑

06=[p;q]∈W

|y(p, q)|2 =
∑

[p;q]∈W

|1− exp{2πıp/n}|2

4|1− 1
2 [cos(2πp/n) + cos(2πq/n)]|2

.

Setting ρ(p, q) =
√
p2 + q2, observe that when 0 6= [p; q] ∈ W , we have |1 − exp{2πıp/n}| ≤

C1n
−1ρ(p, q) and 2[1− 1

2 [cos(2πp/n)+cos(2πq/n)]] ≥ C2n
−2ρ2(p, q) with positive absolute constants

C1, C2, whence

Cn ≤ (C1/C2)2
∑

06=[p;q]∈W

n2ρ−2(p, q).

With appropriately selected absolute constant C3 we have∑
0 6=[p;q]∈W

ρ−2(p, q) ≤ C3

∫ n

1
r−2rdr = C3 ln(n).

Thus, Cn ≤ (C1/C2)2C3n
2 ln(n), meaning that (55), and thus (49), holds true with C =

√
C3C1/C2.

�
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