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Abstract The convex feasibility problem (CFP) is at the core of the modeling of many problems
in various areas of science. Subgradient projection methods are important tools for solving the
CFP because they enable the use of subgradient calculations instead of orthogonal projections onto
the individual sets of the problem. Working in a real Hilbert space, we show that the sequential
subgradient projection method is perturbation resilient. By this we mean that under appropriate
conditions the sequence generated by the method converges weakly, and sometimes also strongly, to a
point in the intersection of the given subsets of the feasibility problem, despite certain perturbations
which are allowed in each iterative step. Unlike previous works on solving the convex feasibility
problem, the involved functions, which induce the feasibility problem’s subsets, need not be convex.
Instead, we allow them to belong to a wider and richer class of functions satisfying a weaker
condition, that we call “zero-convexity”. This class, which is introduced and discussed here, holds
a promise to solve optimization problems in various areas, especially in non-smooth and non-
convex optimization. The relevance of this study to approximate minimization and to the recent
superiorization methodology for constrained optimization is explained.
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1 Introduction

1.1 Feasibility problems

In this paper we investigate, among other things, perturbation resilience of the sequential subgra-
dient projection (SSP) method for feasibility-seeking. Feasibility-seeking is concerned with solving
the convex feasibility problem (CFP), which is, to find a point in the intersection C = ∩jCj of a
family (usually finite) of closed convex subsets Cj ⊆ R

d of the Euclidean space or of a real Hilbert
space. The CFP formalism is at the core of the modeling of many problems in various areas of
mathematics and the physical sciences, among them image reconstruction, radiation therapy treat-
ment planning, data compression, and antenna design. See, e.g., [8,30,43] for references. One of the
reasons for this is the observation that the solution of a system of inequalities is nothing but a point
in the intersection of the level-sets of the corresponding functions which induce these inequalities.
In particular, when convex functions are considered, the context is that of the CFP. Feasible sets
represented by a system of inequalities appear frequently in optimization [17,19,52,65,99,103,113].

1.2 Perturbation resilience

Perturbation resilience asks how, and by how much, can the iterates of an algorithm be perturbed
at each iterative step without losing the overall convergence to a solution of the original problem.
Stability of algorithms is a well-known topic in numerical analysis of algorithms, see, e.g., [15,18,
70]. However, this is commonly studied in the context of supplying a guarantee that an algorithm
that has such stability is immune to changes that occur in its progress due to noise, errors, and other
disturbances that can cause the algorithm to deviate from its “pure” mathematical formulation.

Our motivation in studying perturbation resilience comes not only from this classical context,
but also from the recent line of research of a new concept called superiorization. The superiorization
principle aims not at finding a feasible point (the feasibility problem) and not at the quest for a
constrained minimum point. Instead, the declared aim is to seek a feasible point that is “better”,
i.e., superior, over other reachable feasible points, with respect to a given objective function. Su-
periorization algorithms rely on bounded perturbation resilience that gives the user the certificate
to perturb the iterations of an efficient feasibility-seeking method in a way that will steer the it-
erates toward a superior solution without losing the guarantee of convergence to a feasible point.
See [24,32,33,49,68,69,93] and [48] for more details and for experimental work demonstrating that
algorithms can efficiently and usefully perform superiorization.

An additional aspect of perturbation resilience is a greater flexibility that the users of a given
algorithm may have. Indeed, once it is proved that the algorithm is perturbation resilient, the
users have more freedom in generating the iterative sequence and, in particular, may obtain faster
convergence by selecting appropriately the perturbation terms.

1.3 Subgradient projection methods

The reason for investigating perturbation resilience of subgradient projection methods, such as
the cyclic subgradient projection (CSP) method of [35], is their advantage in feasibility-seeking.
Under the commonly used assumption that each of the sets Cj of the CFP can be written as the
zero-level-set of some convex function gj , j ∈ J , namely Cj = {x| gj(x) ≤ 0} (as happens in the
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case of convex inequalities), the advantage is that instead of orthogonal (least Euclidean distance)
projections onto the sets Cj , commonly employed by many other feasibility-seeking algorithms, the
subgradient projection methods use “subgradient projections” . When each set Cj is linear (i.e.,
hyperplanes or half-spaces) or otherwise “simple” to orthogonally project onto (like balls), then there
is no advantage in using subgradient projections. But in other cases the subgradient projections
are easier to compute than orthogonal projections since they do not call for the, computationally
demanding, inner-loop of least Euclidean distance minimization, but rather employ the “subgradient
projection” which is merely a step in the negative direction of a calculable subgradient of gj at the
current iteration; see, e.g., [22,34,37,74]. For a general review on projection algorithms for the CFP
see [8] and consult the recent work [29].

1.4 Current literature

Perturbation resilience of algorithms in optimization is discussed, under the title of stability, in
[18] but many algorithms still await investigation of this feature. The relevant discussions in [24,
26,27,44,45,75,79,86,90,97,98,110] are about feasibility-seeking projection methods or about the
incremental method that use orthogonal projections whose nonexpansivity (or related properties)
often plays an important role in the convergence proofs. Since subgradient operators are usually not
nonexpansive, proofs of convergence of the corresponding methods should use different properties.

Currently available theorems on perturbation resilience of iterative feasibility-seeking projection
methods are for methods that employ orthogonal (least Euclidean distance) projections onto convex
sets. To the best of our knowledge, with the exception of the work of De Pierro and Iusem [51]
and of Combettes [44], perturbation resilience of the subgradient projection method for solving the
feasibility problem has not been dealt with in the literature.

The perturbations considered in [51] are different from those that we consider. The setting is
a finite-dimensional space, convex functions, almost cyclic control, and a Slater-type condition is
imposed on the functions gj which induce the subsets Cj .

The work of Combettes describes a general framework for dealing with some optimization al-
gorithms involving a generalization of Fejér-monotonicity in their convergence analysis, in which
perturbations of the type we consider are allowed [44, Section 4]. However, neither our Theorem 1
follows from [44] nor do the results of [44] follow from ours (e.g., because, on the one hand Com-
bettes considers only convex functions, while we allow more general functions, but on the other
hand, he also considers operators beyond the subgradient operator for convex functions, such as
nonexpansive operators). Nonetheless, Theorem 1 below generalizes the related result [10, Corollary
6.10(i)] from the setting of convex functions without perturbations to zero-convex functions with
perturbations.

A common assumption in many works regarding the feasibility problem is the convexity of the
functions whose level-sets define the subsets Cj (thus the name CFP). When this assumption is
removed, the corresponding convergence results are quite weak (local convergence or convergence of
subsequences) see, e.g., [45]. The only strong (global, but without perturbations) convergence result
that we are aware of is [36] in which the convexity is replaced by the concept of quasiconvexity
(i.e., f(αx + (1 − α)y) ≤ max{f(x), f(y)} for all x, y and all α ∈ [0, 1]) along with a strong
continuity condition (Hölder or Lipschitz) of the involved functions; the setting there is a finite-
dimensional Euclidean space and the algorithm is a kind of a subgradient projection method (with
star-subdifferentials [94]).
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1.5 The class of zero-convex functions

A variant of our method, namely the cyclic subgradient projection (CSP) method (for functions de-
fined on the whole space), was previously discussed in [35], [38, Theorem 5.3.1] in a finite-dimensional
Euclidean space, for finitely many convex functions and without perturbations. See also [8] for a
Hilbert space treatment. In contrast, the nonconvex functions that we consider here are functions
which satisfy a generalized version of the subgradient inequality. We call these functions zero-convex.
An equivalent characterization of these functions (when they are lower semicontinuous) is that their
zero-level-sets are convex: see Proposition 1(c) below.

Since a well-known characterization of quasiconvex functions is the property that all their β-
level-sets {x | f(x) ≤ β}, β ∈ R, are convex [13, pp. 135–136], it follows, in particular, that
when they are lower semicontinuous, then they are zero-convex, and hence the class of zero-convex
functions is quite wide. Zero-convex functions may lack properties that convex functions have and
their standard subdifferential might be empty at many points. In return, their corresponding 0-
subdifferential is never empty.

The class of zero-convex functions holds a promise for studying optimization problems which
involve non-convex functions and to enrich the theory of generalized convexity [5,28,46,63]. The
subclass of nonconvex (multivariate) polynomials seems to be of special interest. An example are
polynomials which appear in the context of control theory [65]. As said there (page 72): “Polynomial
optimization problems arising from control problems are often highly non-convex, with several local
optima, and are difficult to solve...”. Additional related discussion can be found in [67, Problems 1
and 2], with 2-variable polynomials whose degree tends to infinity, and in [66,81]. A related example
is Example 4 below. Zero-convex functions can help to analyze systems of (multivariate polynomial)
equations, much like convex optimization helps doing so in other cases [39]. They can help in the
analysis of (quasiconvex) quadratic functions which appear in the context of economics [5, Chapter
6], [28, Chapter 6]. Our method (Algorithm 1 below) can be used for accelerating convergence in
the case of quasiconvex polynomials [71].

As said above, lower semicontionuous quasiconvex functions are zero-convex. Hence this subclass
of zero-convex functions is promising too, especially when taking into account that such functions
arise in optimization [46,63,82] or related areas such as economics and operations research [5,28],
location theory [62], control [6,7], and geometric problems [3,54,55]. In this context see Example
5 and Example 6 below where the involved (geometric) function is not necessarily quasiconvex.
See also Section 7 below. Functions which appear in global optimization [72,73,95] seem to be of
interest too since they are usually nonconvex, e.g., d.c. functions (namely functions which can be
represented as a difference of two convex functions).

1.6 The number of involved sets

In most works dealing with subgradient projection methods for solving the CFP, a common as-
sumption is that the feasible set C is obtained from the intersection of finitely many sets. However,
because infinitely many sets do appear in theory and practice, e.g., when dealing with infinite sys-
tems of linear equalities [59] or with infinitely many nonlinear (convex) constraints arising in certain
problems in economics and other areas (see [25, pp. xiii-xiv] and the references therein), it is natural
to consider also the CFP with infinitely many sets appearing in the formulation of the problem,
and this is done in the present paper. A few other works considering the CFP with infinitely many
sets exist, for instance, [10,12,44] and [23,25], but some do not consider the SSP.
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1.7 The contributions of the present paper

The contributions of the present paper are listed as follows: (1) Introducing and discussing in a
quite detailed way the class of zero-convex functions, a rich class of convex and nonconvex functions
which holds a promise to solve optimization problems in various areas, especially in non-smooth and
non-convex optimization; (2) Discussing the sequential subgradient projection method for solving
the feasibility problem, where the involved functions are zero-convex functions defined on a closed
and convex subset of a real Hilbert space; (3) Showing that certain perturbations are allowed
without losing the weak and global convergence of sequences, generated with such perturbations,
to a solution of the feasibility problem; (4) Sometimes the convergence is in norm; (5) The control
sequence, according to which the subsets are employed during the sequential iterative process, can
be more general than the cyclic or almost cyclic (quasi-periodic) controls; (6) Our results apply to
feasibility problems with finitely- or infinitely-many sets; (7) Our results can be applied to additional
optimization schemes (approximate minimization, superioization).

1.8 Paper layout

The paper is laid out as follows. In Section 2 the zero-convex functions and 0-subdifferentiabilty
are defined and a few examples are given. In Section 3 some of their properties are discussed. The
algorithm is formulated in Section 4. Additional conditions for its convergence are listed in Section
5 and its convergence is analyzed in Section 6. In Section 7 we present some computational results.
We end the paper in Section 8 with a discussion of a number of issues related to the main themes
of this paper, as well as several lines for further investigation.

2 Zero-convex functions: Definition and examples

In this section we introduce the class of functions that we deal with in this paper and illustrate it
with examples. These functions satisfy a generalized version of the subgradient inequality described
in Definition 1 below.

From now on, unless otherwise stated, H is a real Hilbert space with an inner product 〈·, ·〉 and
a norm ‖ · ‖, and Ω is a nonempty and convex subset of H (closed in many cases). The β-level set
of a function g : Ω → R is the set g≤β := {x ∈ Ω | g(x) ≤ β} and, in particular, the zero-level-set
is g≤0 = {x ∈ Ω | g(x) ≤ 0}. The distance (or the gap) between a point x ∈ H and a set A ⊆ H
is d(x,A) = inf{d(x, a) | a ∈ A}. The line segment connecting two points x1, x2 ∈ H is the set
[x1, x2] := {x1 + t(x2 − x1) | t ∈ [0, 1]}.

Definition 1 Let H be a real Hilbert space . Let Ω be a nonempty convex subset of H . A function
g : Ω → R is said to be zero-convex at the point y ∈ Ω if there exists a vector t ∈ H (called a
0-subgradient of g at y) satisfying

g(y) + 〈t, x− y〉 ≤ 0, ∀x ∈ g≤0. (2.1)

When the corresponding vector t is given, then g is said to be zero-convex at y with respect to

t. The set of all 0-subgradients of g at y is denoted by ∂0g(y) and called the 0-subdifferential of g
at y. A function g satisfying (2.1) for all y ∈ Ω will be called zero-convex on Ω or just zero-convex
(or 0-convex).
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f(x)=g(y) + <t,x-y> 

the g-nonpositive 

part of the graph 

of  f 

x

Fig. 1: The first geometric interpreta-
tion of zero-convexity: using the graph
(Remark 1).

yg 

the g-nonpositive 

part of the graph 

of  f  is below 0  

x

Fig. 2: The setting of Figure 1 after
the g-positive parts of f and g were re-
moved.

As the examples below show (see Section 7 for additional examples), zero-convex functions are
not necessarily convex. Also, by taking in (2.1) the vector t to be in the dual space, the definition
can be extended to any real normed space and even beyond (e.g., locally convex topological vector
spaces and even to linear spaces if t is merely a possibly discontinuous linear functional). However,
we confine ourselves to real Hilbert spaces.

Remark 1 Geometric interpretations: The zero-convexity of a function g can be illustrated
geometrically. Two such interpretations are given below.

First interpretation: using the graph: See Figures 1 and 2. In what follows, it is useful to adopt
the following terminology: the g-nonpositive part of the graph of a function f : Ω → R is
the set {(x, f(x)) | x ∈ g≤0}. Using this notion, one can see that the function g is zero-convex at y
with respect to t if the g-nonpositive part of the graph of the affine function f(x) = g(y)+ 〈t, x− y〉
is below 0. Therefore, in order to check whether g is zero-convex at y with respect to the vector
t, we draw the graphs of this f and of g, then we remove from the domains of definition of these
graphs all the points x for which g is positive, and then we check whether the remaining part of
the graph of f is below 0.

Second interpretation: using separating hyperplanes: This interpretation holds only when
y /∈ g≤0. We assume also that g≤0 6= ∅. See Figure 3. In this case (2.1) implies that if g is zero-convex
at y with a 0-subgradient t, then t 6= 0 (otherwise g(y) ≤ 0 because of (2.1), a contradiction) and
for each ω ∈ (0, 1] the hyperplane

M(t, ω) := {x ∈ H | 〈t, x− y〉 = −ωg(y)} (2.2)

strictly separates y from g≤0. On the other hand, as proved Proposition 1(c) below, if g≤0 is closed
and convex, then g is zero-convex at each point and any (closed) hyperplane separating y /∈ g≤0 from
g≤0 (including M(t, ω)) allows us to find a 0-subgradient t ∈ ∂0g(y) and to express it explicitly. In
fact, any multiplication of this t by a scalar greater than 1 remains a 0-subgradient as follows from
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g≤0 

y 
g=const > 0 

m1 
t1 

M1 

m2 

M2 

t2 

Fig. 3: The second geometric interpre-
tation of zero-convexity: using separat-
ing hyperplanes (Remark 1). The 0-
subgradients can be expressed explicitly
using (2.3).

Proposition 2(g) below. Thus, at least when g≤0 is nonempty, closed and convex, there is a certain
duality between the 0-subgradients of g at points y /∈ g≤0 and (closed) separating hyperplanes
between g≤0 and these points y. The freedom in the choice of the separating hyperplane yields a
freedom in the choice of t, and this freedom may help in practice.

Remark 2 To the best of our knowledge, our generalizations of the subgradient inequality and the
subdifferential in Definition 1 are new. Several other generalizations or variations of the standard
notion of subdifferential have been considered in the literature, e.g., the Clarke subdifferential
[41, pp. 25–27], [42], the Fréchet and Hadamard subdifferentials [105], the G-subdifferential [76],
the H-subdifferential [82], Mordukhovich’s Subdifferential [85,107], Plastria’s lower subdifferential
[96], the Quasi-subdifferential [61], the Q-subdifferential [83], the Φ-subdifferential [92], the star-
subdifferential [94], the ǫ-subdifferential [84], generalizations of the subgradient inequality such as
the notion of invexity [14,64] or other notions related to convexity such as approximate convexity
[47,87]. For a survey on some of these concepts see [20].

Remark 3 Computation of ∂0g is not always a simple task but we do have a theoretical method
which enables the computation of an element in ∂0g(y) for each y ∈ Ω whenever g≤0 is closed and
convex. The method is as follows. If y ∈ g≤0, then we simply take t = 0. If y /∈ g≤0, then we can
take

t =
g(y)

‖y −m‖2 (y −m), (2.3)

where M is any (closed) hyperplane which separates y from g≤0 and m ∈ M is the orthogonal
projection of y onto M . See Figure 3 above for an illustration and Proposition 1(c) below for a
proof.

The examples given in this section, together with the propositions and their proofs given in
Section 3 and the computations given in Section 7, illustrate further some of the techniques of
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computation. In this connection we note that if one knows how to compute G(y) := d(y, g≤0), then
this yields a convex function whose 0-level-set coincides with g≤0, and at least for the purpose of
the CFP, one may want to use G instead of g. However, as already said in Section 1, usually this
computation is not simple, and, in addition, it may result in either a complicated function G or
complicated (standard) subgradients. Nevertheless, if G can be computed, then one also has an
additional way to compute 0-subgradients of g (see Proposition 1(d)) and this freedom may help in
practice.

Example 1 Any convex function g : H → R having at least one point of continuity is zero-convex
at any y ∈ H . This is so because in this case [114, p. 76] it has a standard subgradient at y and the
standard subgradient inequality

g(y) + 〈t, x − y〉 ≤ g(x) (2.4)

implies that g(y)+ 〈t, x−y〉 ≤ 0 whenever x ∈ g≤0, that is, (2.1) holds with a standard subgradient
t ∈ ∂g(y). In particular g is zero-convex at any y ∈ H whenever H = R

n because by [114, p. 70]
the finite dimensionality of H implies that g is continuous everywhere.

In general, whenever g : Ω → R has a standard subgradient t at some y ∈ Ω, then t is a
0-subgradient of g no matter what subset is Ω. This is true even if g is not convex but (2.4) holds.
In this connection, Corollary 1 below implies that any lower semicontinuous quasiconvex function
is zero-convex.

Example 2 Any nonpositive function g is zero-convex at every y ∈ Ω with t = 0. However, this
class of functions is not interesting for our SSP algorithm (Section 4 below) since in this case any
initial point y will satisfy gj(y) ≤ 0 for all involved functions gj , hence the generated sequence
will be constant (equal to y itself) which obviously converges to a point in the intersection C =
∩j∈J{x ∈ Ω | gj(x) ≤ 0}. Additionally, any positive function is zero-convex since (2.1) is void. But
again, this is not interesting for our algorithm. However, a nonnegative function having a unique
root (like many energy functions) is interesting for our algorithm since it is zero-convex (because
its zero-level-set is obviously closed and convex: see Remark 1, second interpretation) and hence,
when we apply our algorithm to it, we can find its root, which is also its unique minimum.

Example 3 Let g : R → R be defined by

g(x) :=

{
sinx, for x ≤ π/2,
2sin x, for x > π/2,

(2.5)

and let y = π/2. Then g has a discontinuity at y. However, g is zero-convex at y with respect to
t = 4/π. Indeed, if g(x) ≤ 0, then x ≤ 0. Therefore (2.1) holds:

g(y) + 〈t, x− y〉 = 1 + 4x/π − 2 < x ≤ 0. (2.6)

Example 4 Let g : R2 → R be defined by

g(x1, x2) = x21 + x22 − x41x
4
2 + x61x

6
2/4− 0.3. (2.7)

Elementary calculations (checking the principal minors and using polar coordinates) show that g is
convex on the diskD1 = {(x1, x2) | x21+x22 < 0.72} and that g≤0 ⊆ D2 = {(x1, x2) | x21+x22 ≤ 0.62}.
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Fig. 4: An illustration of the polynomial
of Example 4.

Fig. 5: Another illustration of the poly-
nomial, now from the reverse perspec-
tive.

In addition, it is evident from Figures 4 and 5 that g is not quasiconvex. As for the computation of
the 0-subgradients of g, if y = (y1, y2) ∈ D1, then we can simply take standard subgradients, thus,

t = ∇g(y) = (2y1 − 4y31y
4
2 + 1.5y51y

6
2 , 2y2 − 4y32y

4
1 + 1.5y52y

6
1). (2.8)

For y /∈ D1, we use (2.3). The line M passing through the projection m = (0.6y)/‖y‖ of y on D2

and orthogonal to y −m separates y and g≤0. Thus from (2.3) we conclude that

t =
g(y)(y −m)

‖y −m‖2 =
g(y)

‖y‖(‖y‖ − 0.6)
(y1, y2) (2.9)

is in ∂0g(y). As said in Section 1, inequalities involving nonconvex polynomials (sometimes of high
degree) appear in optimization problems [65,66,67,71,81] and related fields such as economics and
operations research [5,28].

Example 5 Let H be a real Hilbert space and Ω be a nonempty closed and convex subset of H . Let
p ∈ Ω and A ⊆ H be given. Suppose that the distance d(p,A) between p and A is positive. Define
a function g : Ω → R by

g(x) := d(x, p)− d(x,A), ∀x ∈ Ω. (2.10)

This function (or, actually, the so obtained family of functions) is zero-convex. Indeed, as said in
Remark 1 (second interpretation), it suffices to show that g≤0 is closed and convex (it is nonempty
because p ∈ g≤0). Now, since g≤0 = {x ∈ H | d(x, p) ≤ d(x,A)}⋂Ω and because Ω is closed
and convex, it is sufficient to prove that the first set in the intersection is closed and convex. A
computation shows that

{x ∈ H | d(x, p) ≤ d(x,A)} =
⋂

a∈A

{x ∈ H | d(x, p) ≤ d(x, a)}. (2.11)

Since p 6= a for each a ∈ A, each of the members in the above intersection is nothing but the
closed half-space whose bounding hyperplane passes through (p + a)/2 and orthogonal to p − a.
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Thus {x ∈ H | d(x, p) ≤ d(x,A)} is the intersection of closed and convex sets, and hence closed and
convex.

The zero-level-set of this function g is the, so-called, Voronoi cell of p (restricted to Ω)

with respect to the set A, and hence g deserves the name “Voronoi function”. A particular and
frequently explored case is where the set A consists of finitely many distinct points p1, p2, . . . , pℓ.
These points, together with the given point p = p0, are called the sites, and the Voronoi cell
corresponding to the site pi is the set {x ∈ Ω | d(x, pi) ≤ d(x, pj), ∀j 6= i}. The collection
of these cells is the Voronoi diagram induced by the sites. Voronoi diagrams have numerous
applications in science and technology, see, e.g., [4,60,88]. As can be seen from these surveys,
Voronoi diagrams have applications also when the sites are assumed to have more general shapes
than points, such as lines segments, balls, and so on, and hence in this case the set Amay be infinite.
Traditionally, Voronoi diagrams have been investigated in finite-dimensional spaces (especially in
R

2 and R
3), but recently they have been investigated in infinite-dimensional spaces too [80,100,

101], and several real-world and theoretical applications were mentioned there.

Returning to g, it can be shown, using the triangle inequality, that |g(x)| ≤ supa∈A ‖p − a‖
for every x ∈ Ω (in fact, because {p} is a singleton, the right-hand side is equal to the Hausdorff
distance between {p} and A). Thus, when A is bounded, then g is bounded on Ω. However, if in
addition Ω = H , then this implies that g cannot be convex. Indeed, assume by way of negation
that g is convex. Then because it is proper (since it is finite) and lower semicontinuous (actually
continuous), it can be represented as the pointwise supremum of a nonempty family of continuous
affine functions [114, p. 91]. Since g is non-constant, at least one member h in this family of affine
functions must be non-constant. In other words, there exist 0 6= v ∈ H and α ∈ R such that
h := 〈v, ·〉 + α satisfies h(x) ≤ g(x) for all x ∈ Ω. But limt→∞ h(tv) = ∞. Thus g is not bounded,
a contradiction to what was established before.

As a matter of fact, frequently g is not even quasiconvex. Indeed, just consider the simple case
where Ω = H = R

2, p = (0, 0), A = {(0, 1)}. Then for x = (−1, 1), z = (1, 1), and y = (0, 1) we
have y ∈ [x, z] but g(x) = g(z) =

√
2−1 < 1 = g(y). The same argument holds whenever A contains

an isolated point and the dimension of the space is at least 2 and Ω = H . It can hold even if A
does not have any isolated point: just take p, x, y, z, Ω,H as above but either A = {0} × [0.5, 1] or
A = {0}× [0.5,∞). However, in some symmetric configurations g may be quasiconvex: for instance,
when A is a sphere, p is the center of the corresponding ball, and Ω = H .

Computation of the 0-subgradients of g is possible by the description mentioned in Remark 3
(especially equality (2.3)). If y ∈ g≤0, then obviously 0 ∈ ∂0g(y). Otherwise, the definitions of g and
g≤0 imply that there exists an a ∈ A such that ‖y − a‖ < ‖y − p‖. If we denote by M the bisector
between p and a, namely the set of all points in H having equal distance to p and to a, then M
is a hyperplane which is the boundary of the half-space {x ∈ H | d(x, p) ≤ d(x, a)}. The point y
is located strictly inside the other half-space {x ∈ H | d(x, a) ≤ d(x, p)}. Since g≤0 is contained in
{x ∈ H | d(x, p) ≤ d(x, a)} (as explained in (2.11) and above it) it follows that M is a hyperplane
separating y and g≤0. Let m be the orthogonal projection of y onto M . By (2.3) it follows that
t = g(y)(y −m)/‖y −m‖2 is in ∂0g(y).

It is possible to represent t in a more convenient way. Indeed, note that the hyperplane M
defined above can be represented explicitly as M = {x ∈ H | 〈x−u0, v〉 = 0} where u0 = 0.5(a+ p)
and v = (a−p)/‖a−p‖. Since m is the orthogonal projection of y ontoM we can write y = m+βv
where β is some real number. This and the Pythagoras theorem imply the identity ‖y − u0‖2 =
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β2 + ‖y − βv − u0‖2, from which it follows that β = 〈y − u0, v〉. From (2.3) we conclude that

t =
g(y)v

β
=

g(y)(a− p)

〈y − 0.5(a+ p), a− p〉 . (2.12)

This t depends on y but also on a. By an appropriate selection of a ∈ A we can ensure that ‖t‖ ≤ 4.
In fact, we can even ensure that ‖t‖ will be bounded above by a number arbitrarily close to 2 and
sometimes even by 2 (when d(y,A) is attained). Indeed, assume y /∈ g≤0. Let ǫ ∈ (0, 0.5g(y)) be
arbitrary. Let a ∈ A be chosen such that

d(y, a) < d(y,A) + ǫ. (2.13)

From the definition of g and the triangle inequality we see that any point x in the open ball of
radius 0.5g(y)− ǫ around y satisfies

d(x, a) ≤ d(x, y) + d(y, a) < 0.5g(y)− ǫ + d(y,A) + ǫ

≤ d(y, p)− g(y) + 0.5g(y) ≤ d(y, x) + d(x, p)− 0.5g(y) < d(x, p), (2.14)

and hence x belongs to the half-space to which y belongs. Recalling that |β| = ‖y −m‖ and that
m is in the other half-space, we have |β| ≥ 0.5g(y)− ǫ. This and (2.12) show that

‖t‖ ≤ g(y)

0.5g(y)− ǫ
. (2.15)

This proves the claim since ǫ can be arbitrary small and we can select the appropriate a ∈ A
as above so that (2.13) and hence (2.15) will be satisfied. In particular, by taking ǫ = 0.25g(y)
we obtain ‖t‖ ≤ 4. If in addition d(y,A) = d(y, a) for some a ∈ A, then by choosing this a and
mimicking the previous analysis with ǫ = 0 we see that ‖t‖ ≤ 2.

Example 6 The functions described below are variations of the Voronoi function defined in (2.10).
They deserve some attention since a particular case of them will be used in Section 7.

One variation is obtained by replacing p by a subset P and taking

g(x) := gP,A(x) = d(x, P ) − d(x,A). (2.16)

See [4,60,80,88,101] and the references therein for some applications of Voronoi cells defined in this
way. In general, the Voronoi cell g≤0 is closed (g is 2-Lipschitz) but not convex. However, in some
cases it is convex, e.g., when Ω = H = R

2, A = {(−1, 0), (0,−1), (1,−1), (0, 1), (1, 1), (2, 0)}, and
P = {(0, 0), (1, 0)}.

Another variation is to consider weighted distances, namely, we assign to each a ∈ A a real
number wa (a weight), and assign a weight wp to p. For every x ∈ Ω and a ∈ A let

dp(x) := ‖x− p‖ − wp,
da(x) := ‖x− a‖ − wa,
dA(x) := inf{da(x) | a ∈ A},

(2.17)

and define the additively weighted Voronoi function

g(x) := gw(x) := dp(x)− dA(x). (2.18)
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The 0-level-set g≤0 is the additively weighted Voronoi cell of the site p. It is closed since dA is upper
semicontinuous and hence g is lower semicontinuous. In molecular biology [58,77,106] the site p
represents the center of a spherical atom (or molecule) whose van der Waals radius is wp. Hence
dp(x) is the distance from x to the sphere for each x outside the corresponding ball. Similarly,
each a ∈ A represents the center of a spherical atom (or molecule) whose van der Waals radius is
wa. In crystallography and stochastic geometry the common name to additively weighted Voronoi
diagrams is Johnson-Mehl tessellation (or model). In this model p (and each a ∈ A) represent a
nucleation center from which a crystal starts to grow in a uniform way in all directions, but the
growing process starts at different times from each nucleation center. In this case wp is minus the
starting time of the growth from p and wa is minus the starting time of the growth from a. See,
e.g., [40,88] and the references therein. See also Section 7 below for a concrete computational result
in the molecular biology context.

Under certain assumptions on the parameters the function g defined in (2.18) is zero-convex.
For instance, assume that A = {a}, a ∈ H is given, and that

wp ≤ wa < ‖a− p‖+ wp. (2.19)

Let B be the ball of radius wa − wp around a (degenerates to a point when wa = wp). We claim
that under these assumptions

g≤0 = G≤0 (2.20)

where G(x) = d(x, p) − d(x,B) for all x ∈ Ω. Indeed, if x /∈ B, then we have the equality G(x) =
d(x, p) − (d(x, a) − (wa − wp)) = g(x). Hence the intersection of both sides of (2.20) with the
complement of B coincide. If x ∈ B, then G(x) = d(x, p) and hence x ∈ G≤0 would imply that
x = p, a contradiction to p /∈ B (by (2.19)). Therefore x /∈ G≤0. However, the assumption x ∈ B
implies d(x, a) ≤ wa − wp. Hence x cannot belong to g≤0 because this would imply that d(x, p) ≤
d(x, a)− (wa −wp) ≤ 0, and again x = p, a contradiction. We conclude that (2.20) holds. Since we
already know from Example 5 that G≤0 is convex, it follows that g≤0 is convex. Since g≤0 is closed,
Remark 1 (second interpretation) implies that g is zero-convex. Geometrically (at least when Ω is,
say, the whole space or it is a cube containing p and a in its interior), the boundary of g≤0 is the
intersection of Ω with the (possibly infinite dimensional) hyperboloid {x ∈ H | d(x, p) − d(x, a) =
wp − wa}. In addition, p ∈ g≤0. When wp = wa, the hyperboloid degenerates to a hyperplane.

We finish this example by noting that there are other weighted versions of Voronoi diagrams. One
of them is the multiplicative weighted distance in which dp(x) = d(x, p)/wp and da(x) = d(x, a)/wa

for some given positive weights wp and wa. This version is used in molecular biology, e.g., in [56],
where again wp and wa are the van der Waals radii of the involved atoms/molecules. See also [4,
88].

3 Zero-convex functions: Properties

In this section we present several properties of zero-convex functions and discuss theoretical ways
of constructing their 0-subgradients.

Proposition 1 Let H be a real Hilbert space and let Ω be a nonempty convex subset of H. Let
g : Ω → R be given.
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(a) The function g is zero-convex at y ∈ Ω with respect to some t ∈ ∂0g(y) if and only if there
exists a function ψ : R → R satisfying ψ(r) ≤ 0 for all r ≤ 0 such that

g(y) + 〈t, x− y〉 ≤ ψ(g(x)), ∀x ∈ g≤0. (3.1)

(b) If g is zero-convex, then its zero-level-set g≤0 is convex.
(c) If g≤0 is closed and convex, then g is zero-convex. In fact, if y ∈ g≤0, then 0 ∈ ∂0g(y), and if

y /∈ g≤0, then for

t =
g(y)

‖y −m‖2 (y −m), (3.2)

we have t ∈ ∂0g(y) where m ∈ M is the orthogonal projection of y onto a (closed) hyperplane
M strictly separating y from g≤0.

(d) If m is the (unique) orthogonal projection of y /∈ g≤0 onto g≤0, then for t defined in (3.2) we
have t ∈ ∂0g(y).

Proof It can be assumed that g≤0 6= ∅, otherwise the assertion holds trivially (void).

(a) If there exists such a function ψ, then (3.1) implies (2.1) since g(x) ≤ 0 implies ψ(g(x)) ≤ 0.
Hence g is zero-convex at y and t ∈ ∂0g(y). Conversely, if g is zero-convex at y and t ∈ ∂0g(y),
then (3.1) is satisfied with any function ψ : R → R satisfying ψ(r) = 0 whenever r ≤ 0.

(b) Suppose, by way of negation, that g≤0 is not convex. Then there exist two distinct points x1,
x2 ∈ g≤0 such that for some y in the line segment [x1, x2] we have y /∈ g≤0, namely g(y) > 0.
Since g is zero-convex on the convex subset Ω, thus at y, there is a point t ∈ H such that (2.1)
holds. This and the fact that g(xi) ≤ 0, i = 1, 2, imply that the function

f(x) := g(y) + 〈t, x− y〉 (3.3)

satisfies f(xi) ≤ 0, i = 1, 2. Since f(x) is convex and y ∈ [x1, x2] we also have f(y) ≤ 0. This is
a contradiction since f(y) = g(y) > 0.

(c) Given y ∈ Ω, distinguish between the cases y ∈ g≤0 or y /∈ g≤0. In the first case define t := 0.
Then for any x ∈ g≤0 we obviously have

g(y) + 〈t, x− y〉 ≤ 0 + 0, (3.4)

hence, (2.1) is satisfied. Now consider the case y /∈ g≤0. Since g≤0 is closed and convex, the
Hahn-Banach theorem, in one of its geometric versions [114, p. 38], ensures that there exists a
hyperplane M strictly separating y from g≤0. The hyperplane M is guaranteed to be a closed
set and, actually, it can be written as M = {x ∈ H | 〈e, x − m〉 = 0} where m ∈ M is the
orthogonal projection of y onto M and e = (y − m)/‖y − m‖. We have the decomposition
H =M ∪H1∪H2 where H1 = {x ∈ H | 〈e, x−m〉 > 0} and H2 = {x ∈ H | 〈e, x−m〉 < 0}. By
the definition of m, M , and e it follows that y ∈ H1 and g≤0 ⊆M ∪H2. Let β := g(y)/‖y−m‖
and t := βe, as in (3.2). Since g(y) > 0 we have β > 0. The above implies that for each x ∈ g≤0

g(y) + 〈t, x − y〉 = 〈t, y −m〉+ 〈t, x− y〉 = β〈e, x−m〉 ≤ 0, (3.5)

thus, (2.1) is satisfied again. As a matter of fact, by translating M slightly towards y we can
even ensure that g≤0 ⊂ H2 and so (3.5) will be satisfied with strict inequality.
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(d) Becausem is the orthogonal projection of y /∈ g≤0 onto g≤0 (whose existence and uniqueness are
well-known, see, e.g., [59]), then the hyperplane M which passes through m and is orthogonal
to y−m strictly separates y and g≤0. Indeed, since 〈y−m, y−m〉 > 0 (otherwise y ∈ g≤0) we
have y ∈ H1 = {x ∈ H | 〈y−m,x−m〉 > 0}. We can write M = {x ∈ H | 〈y−m,x−m〉 = 0}
and we have the decomposition H =M ∪H1 ∪H2 where H2 = {x ∈ H | 〈y −m,x−m〉 < 0}.
A well-known characterization of the orthogonal projection m of a point y onto a nonempty,
closed and convex subset says that 〈y −m,x − m〉 ≤ 0 for every x in the subset (see [11, p.
46]). Therefore g≤0 ⊆ M ∪H2 and hence g≤0 ∩H1 = ∅. Thus M strictly separates y and g≤0

and the assertion follows from part (c).

Remark 4 An alternative but somewhat related approach to the fact that the convexity of g≤0

implies the zero-convexity of g, based on an idea of Benar Svaiter [111], is as follows. Assume
that g≤0 6= ∅, otherwise the assertion holds trivially (void). Define the distance from x to g≤0 as
f(x) := d(x, g≤0) for each x. This continuous function is also convex since g≤0 is convex. Hence, as
is well-known [114, p.76], it has a (standard) subgradient s at any y. Let t := cs where

c :=

{
g(y)/f(y), if f(y) 6= 0,
0, otherwise.

(3.6)

Note that f(y) = 0 if and only if y ∈ g≤0 because g≤0 is closed. This implies (2.1) when y ∈ g≤0

with t = 0 (as in (3.4)). When y /∈ g≤0 we have f(y) > 0, g(y) > 0, and t = (g(y)/f(y))s. By the
subgradient inequality, which f satisfies, we have

f(y) + 〈s, x− y〉 ≤ f(x) = 0, ∀x ∈ g≤0. (3.7)

This implies (2.1) after multiplying this inequality by c = g(y)/f(y).

Corollary 1 Let H be a Hilbert space and Ω ⊆ H be nonempty, closed, and convex. Any lower
semicontinuous function g : Ω → R having a convex zero-level-set is zero-convex. In particular, if
g is lower semicontinuous and quasiconvex, then it is zero-convex.

Proof It can be assumed that g≤0 6= ∅, otherwise the assertion holds trivially (void). Since g is
lower semicontinuous g≤0 is closed in Ω (in the topology induced by the norm) and hence (Ω is
closed) in H . Thus, when g≤0 is assumed to be convex the assertion follows from Proposition 1(c).
The assertion about lower semicontinuous quasiconvex functions is a consequence of Proposition
1(c) and the fact that all their level-sets are closed and convex.

Proposition 2 Let H be a real Hilbert space and let Ω be a nonempty convex subset of H.

(a) If g : Ω → R is zero-convex at y with respect to both t1 ∈ ∂0g(y) and t2 ∈ ∂0g(y), then it is
zero-convex at y with respect to any convex combination of t1 and t2.

(b) Suppose that g : Ω → R is zero-convex at y with respect to some t ∈ ∂0g(y). Given α ≥ 0, the
function g̃ := αg is zero-convex at y with respect to t̃ = αt.

(c) Suppose that g1, g2, . . . , gm are given zero-convex functions at y. Then the envelope of {gi}mi=1,
defined by g(x) := max{gi(x) | i = 1, 2, . . . ,m}, is also zero-convex at y.

(d) Suppose that {gi| i ∈ I} is a family of (possibly infinitely many) lower semicontinuous zero-
convex functions defined on a closed subset Ω of H. Then g = sup{gi | i ∈ I} is zero-convex.



Zero-convexity, perturbation resilience, and subgradient projections for feasibility-seeking methods 15

(e) Suppose that g : Ω → R is zero-convex and that it has a closed zero-level-set. Let ψ : R → R

be a function satisfying ψ(r) ≤ 0 if and only if r ≤ 0. Then the composite function ψ ◦ g is
zero-convex. In particular the above holds when Ω is closed, g is lower semicontinuous and
zero-convex, and ψ satisfies the above-mentioned property.

(f) Suppose that g : Ω → R has a nonempty zero-level-set. If g is zero-convex at y and if g(y) > 0,
then any 0-subgradient t ∈ ∂0g(y) satisfies t 6= 0.

(g) Suppose that f : Ω → R and g : Ω → R are zero-convex at y ∈ Ω and that their zero-
level-sets coincide. If y is outside the zero-level-set and t ∈ ∂0f(y), then ct ∈ ∂0g(y) for any
c ≥ g(y)/f(y). In particular, if t ∈ ∂0g(y), then so does ct for all c ≥ 1.

Proof (a) Follows from multiplication of (2.1) by each of the convex combination coefficients and
adding the resulting inequalities.

(b) Follows from multiplication of (2.1) by α.
(c) For each i consider the associated subgradient ti ∈ ∂0gi(y). Let j be the index for which

g(y) = gj(y) and let t = tj . Suppose that x ∈ H satisfies g(x) ≤ 0. Then gj(x) ≤ 0, thus, by
(2.1),

〈t, x− y〉+ g(y) = 〈tj , x− y〉+ gj(y) ≤ 0, (3.8)

as required.
(d) Let x1, x2 ∈ g≤0. Then gi(x1) ≤ g(x1) ≤ 0 and gi(x2) ≤ 0 for any i ∈ I. From the convexity of

the zero-level-set of gi (Proposition 1(b)) it follows that gi(x) ≤ 0 for all x in the line segment
[x1, x2] and all i. Thus g(x) ≤ 0 and hence g≤0 is convex. It is well-known and not hard to
verify that g is lower semicontinuous. Therefore, Corollary 1 implies that g is zero-convex.

(e) By assumption g≤0 is closed and by Proposition 1(b) it is convex. By the nature of ψ the
zero-level-sets of g and of ψ ◦g coincide. Thus Proposition 1(c) implies that ψ ◦g is zero-convex.
Finally, if Ω is closed and g is also lower semicontinuous, then g≤0 is closed and the assertion
follows from the above discussion.

(f) Let t ∈ ∂0gi(y) and assume, to the contrary, that t = 0. If x ∈ Ω satisfies g(x) ≤ 0, then by
(2.1)

0 < g(y) = g(y) + 〈t, x− y〉 ≤ 0, (3.9)

which is a contradiction.
(g) From (2.1) and the equality between the zero-level-sets of the functions we have the inequality

〈t, x− y〉 ≤ −f(y) for any x ∈ g≤0. In addition, f(y) > 0, thus,

g(y) + 〈ct, x− y〉 ≤ g(y)− cf(y) ≤ 0, (3.10)

by the choice of c. Therefore, ct ∈ ∂0g(y). Finally, by taking f = g in the previous case, we
conclude that if t ∈ ∂0g(y), then ct ∈ ∂0g(y) for any c ≥ 1.

For later use (see, e.g., the discussion after Condition 3 below) we present a few propositions
which give sufficient conditions for the existence of bounded 0-subgradients. These propositions
also give some ideas regarding the way of computing 0-subgradients in certain settings. The first
proposition is a generalized variation of an assertion hidden in the proof of [8, Proposition 7.8,
(ii)=⇒(iii)] (namely, that the subgradients of a convex and Lipschitz function are uniformly bounded
by the Lipschitz constant).

Proposition 3 Let H be a real Hilbert space and let Ω be nonempty, closed and convex. Suppose
that g : Ω → R is zero-convex and Lipschitz on Ω with a Lipschitz constant α > 0 and that g≤0 6= ∅.
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Then for each y ∈ Ω there exists t ∈ ∂0g(y) satisfying ‖t‖ ≤ α. As a matter of fact, for each y /∈ g≤0

there exists t ∈ ∂0g(y), defined by (3.2), satisfying

‖t‖ ≤ α
‖y − z‖
‖y −m‖ , (3.11)

where m ∈ M is the projection of y onto a closed hyperplane strictly separating y from g≤0, and
z ∈ g≤0 is arbitrary. In particular, the above holds if Ω is contained in an open subset of H and g
is Gâteaux-differentiable on this open set and its derivative is uniformly bounded by some α > 0.

Proof If y ∈ g≤0, then we can take t = 0. Otherwise, let t ∈ ∂0g(y) be defined as in (3.2) where
m ∈ M is the projection of y onto a closed hyperplane M strictly separating y from g≤0, the
existence of which is ensured by the Hahn-Banach theorem since g≤0 is closed (g is continuous and
Ω is closed) and convex (Proposition 1(b)). From (3.2) we have ‖t‖ = g(y)/‖y −m‖. Let z ∈ g≤0

be given. Since g(z) ≤ 0 and g(y) > 0, the fact that the Lipschitz constant of g is α implies that

‖t‖ ≤ (g(y)− g(z))‖y − z‖
‖y − z‖‖y−m‖ ≤ α

‖y − z‖
‖y −m‖ . (3.12)

In particular, the above is true when m is the best approximation (orthogonal) projection of y onto
g≤0 and M passes through m and is orthogonal to y −m (see the proof of Proposition 1(d)). By
taking z = m we have ‖t‖ ≤ α, as claimed. Finally, a well-known consequence of the mean value
theorem says that when g is Gâteaux-differentiable and its derivative is bounded by some constant,
then g is Lipschitz with this constant [2, Theorem 1.8, p. 13] and hence the assertion follows.

Proposition 4 Let H be a real Hilbert space and let Ω be nonempty and convex. Let g : Ω → R be
zero-convex. Suppose that ∅ 6= g≤0 ⊆ B(c, r) where B(c, r) is the open ball with center c and radius
r > 0. Let ǫ > 0 be given. Suppose that B(c, r + ǫ) ⊂ Ω and that g is convex on this ball.

(a) If g is Lipschitz on Ω with constant α, then for each y ∈ Ω there exists t ∈ ∂0g(y) satisfying
‖t‖ ≤ α(1 + (2r/ǫ)). In fact, if y ∈ B(c, r + ǫ), then t can be taken as a standard subgradient
and if y /∈ B(c, r + ǫ), then t can be defined by (3.2).

(b) If g is bounded on Ω by some β > 0, then for each y ∈ Ω there exists t ∈ ∂0g(y) satisfying
‖t‖ ≤ 4β/ǫ. In fact, if y ∈ B(c, r + 0.5ǫ), then t can be taken as a standard subgradient, and if
y /∈ B(c, r + 0.5ǫ), then this t can be defined by (3.2).

Proof (a) Since g is Lipschitz and convex on the ball B(c, r + ǫ) with a Lipschitz constant α, it is
known that its standard subgradients at points in this ball are bounded by α (see the proof of
[8, Proposition 7.8, (ii)=⇒ (iii)] and replace there rBX by our ball). Any standard subgradient
is a 0-subgradient as explained in Example 1 above. Now let y ∈ Ω, y /∈ B(c, r+ ǫ) and consider
its projection m onto the closed ball B(c, r). Consider also the closed hyperplane M passing
through m and orthogonal to y −m. This M separates the ball and hence g≤0 from y and for
t defined by (3.2) we know from Proposition 1(c) that t ∈ ∂0g(y). Let z ∈ g≤0 be given. From
(3.11), the fact that z,m ∈ B(c, r), and the fact that ‖y −m‖ ≥ ǫ, we have

‖t‖ ≤ α
‖y − z‖
‖y −m‖ ≤ α

(‖y −m‖+ ‖m− z‖)
‖y −m‖ ≤ α

(
1 +

2r

ǫ

)
. (3.13)

Since the right-hand side of (3.13) is greater than α we conclude that in both cases discussed
above we can find t ∈ ∂0g(y) satisfying ‖t‖ ≤ α(1 + (2r/ǫ)).
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(b) The restriction of g to the ball B(c, r + ǫ) is a convex function which is bounded by β, thus
it is a known fact (which follows, e.g., from the proof of [114, Theorem 5.21, p. 69]) that g is
Lipschitz on the ball B(c, r+0.5ǫ) with constant 2β/(r+0.5ǫ− r) = 4β/ǫ. Hence, as explained
before, any standard subgradient (which is a 0-subgradient) of a point y in the ball is bounded
by this Lipschitz constant. Now consider a point y outside this ball. For t defined by (3.2) we
know from Proposition 1(c) that t ∈ ∂0g(y) and ‖t‖ = g(y)/‖y − m‖ ≤ 2β/ǫ. The assertion
follows.

Remark 5 In general, if some of the above conditions are not satisfied, then uniform boundedness
of a selection of 0-subgradients cannot be ensured even if the given function is continuous and
quasiconvex. A simple example is g : R → R defined by g(y) = 0 when y ≤ 0, and g(y) =

√
y

otherwise. This is a continuous and quasiconvex function, but when y > 0 and t ∈ ∂0g(y), it follows
from (2.1) (by putting x = 0 ∈ g≤0) that t ≥ 1/

√
y.

4 Formulation of the zero-convex feasibility problem and the associated algorithm

In this section we formulate our algorithm for solving the CFP with zero-convex functions. See
Section 7 below for a concrete example (including computational results). See also Subsection 1.5
and Section 2 above for related examples.

Let Ω be a nonempty closed and convex subset of the real Hilbert space H . Denote by PΩ the
best approximation (orthogonal) projection onto Ω. Let J be a finite or a countable set of indices.
For each j ∈ J , let gj : Ω → R be a continuous zero-convex function. For each j ∈ J let

Cj = {x ∈ Ω | gj(x) ≤ 0} (4.1)

and suppose that

C =
⋂

j∈J

Cj 6= ∅. (4.2)

Let {i(n)}∞n=0 be an infinite sequence indices i(n) ∈ J , henceforth called a control sequence, which
is almost cyclic in a generalized sense, i.e., i : N∪{0} → J and for each j ∈ J there exists an Lj ∈ N

such that the control selects the subset Cj at least once in each block of length Lj of successive
indices of J . Formally,

∀j ∈ J , ∃Lj ∈ N such that ∀ s ∈ N we have j ∈ {i(s), i(s+ 1), . . . , i(s+ Lj − 1)}. (4.3)

This definition seems to have been introduced by Browder [21, Definition 5]. See [43, pp. 209–210]
for an example with Lj = 2j , j ∈ J = N. A well-known particular case of (4.3) is the almost cyclic
control, namely J = {1, 2, . . . , ℓ}, ℓ ∈ N is given, and there exists L ∈ N such that Lj = L for all
j ∈ J . The particular case of the almost cyclic control when L = ℓ is the cyclic control. For other
types of controls which are related to (4.3), see [31].

We consider the following algorithm.

Algorithm 1 The Sequential Subgradient Projection (SSP) Method with Perturbations

Initialization: x0 ∈ Ω is arbitrary.
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Iterative Step:

xn+1 =




PΩ

(
xn − λn

gi(n)(xn)

‖ tn ‖2 tn + bn

)
, if gi(n)(xn) > 0,

xn, if gi(n)(xn) ≤ 0,
(4.4)

where tn ∈ ∂0gi(n)(xn) and {bn}∞n=0 is a sequence of elements in H.

Relaxation Parameters: {λn}∞n=0 is a sequence of real numbers satisfying the inequality

ǫ1 ≤ λn ≤ 2− ǫ2, ∀n ∈ N ∪ {0} (4.5)

for fixed, arbitrarily small, ǫ1, ǫ2 > 0 satisfying ǫ1 + ǫ2 ≤ 2.

Control Sequence: {i(n)}∞n=0 is almost cyclic in a generalized sense, i.e., it obeys (4.3).

Proposition 2(f) ensures that tn 6= 0 whenever gi(n)(xn) > 0, and hence xn+1 is well-defined.
The elements of the sequence {bn}∞n=0 act as perturbation terms in the algorithm. If bn = 0 for
all n then the algorithm is the ordinary feasibility-seeking Cyclic Subgradient Projection (CSP)
algorithm of [35], at least when the control is almost cyclic and the functions gj are convex. When
the first line of (4.4) occurs, then we say that the algorithm makes an active step at step n + 1.
When the second line of (4.4) occurs, then we say that the algorithm makes an inactive step at
step n+ 1.

5 Conditions for convergence

For the convergence analysis we will need the following conditions.

Condition 1 For some µ > 0 which is any number greater than the distance d(x0, C) between x0
and C, the following inequality is satisfied

‖ bn ‖≤ min

(
µ,

ǫ1ǫ2h
2
n

2(5µ+ 4hn)

)
, ∀n ∈ N, (5.1)

where

hn =

{
gi(n)(xn)/‖tn‖, if gi(n)(xn) > 0,
0, if gi(n)(xn) ≤ 0.

(5.2)

The construction of the sequence {bn}∞n=0 of perturbations is done in an adaptive way, in contrast
to other works dealing with inexact algorithms (such as [53,104]) in which such terms satisfy
a certain fixed (nonadaptive) condition, e.g., the summability condition

∑∞

n=1 ‖bn‖ < ∞ or some
other fixed conditions [45,50,108,109]. In our case one computes gi(n)(xn) and hn, and then chooses
any bn such that (5.1) holds. The only somewhat adaptive perturbation terms that we are aware of
appear in the very recent work [91, relations (31)–(32)].

It is interesting to note that Condition 1 actually implies that
∑∞

n=1 ‖bn‖ < ∞: see Remark 6
below. This means that Condition 1 is less general than summability, but this is not necessarily
a bad thing. Indeed, as argued briefly in [108, p. 216] and in a more detailed form in [112], the
summability condition is not satisfactory since it gives too much freedom for the perturbations and
hence it may lead to undesired practical results. On the one hand it allows perturbations of the form



Zero-convexity, perturbation resilience, and subgradient projections for feasibility-seeking methods 19

bn = n100n for each n ≤ 1022222 and bn = 10000−n for each n > 1022222, which means essentially
no convergence at all in practice. On the other hand, if bn = 10000−n right at the beginning,
then this implies that very soon the perturbations will be too small for the computing device to
make any difference as perturbations proceed (but usually this will not accelerate the convergence).
In contrast, conditions such as Condition 1 guide the user regarding the possible values of the
perturbation at the n-th iteration. These values are given in terms of previous iterations and they
do not depend on future iterations as in the case of the summability condition. In a sense they are
more adaptive to the whole problem: they are not too large and not too small.

As a final remark concerning Condition 1, we note that in order to verify (5.1) one has to know
µ, i.e., to have an upper bound on the (yet unknown) distance d(x0, C). However, in practice, when
applying Algorithm 1, one usually restricts the problem to a large closed, bounded, and convex
region Ω (say, a cube or a ball), due to limitations in the computing device, and the diameter of
this region can be taken as µ. In other cases one may have better estimates on the value of µ. For
instance, if one of the involved subsets Cj is bounded, then C ⊆ Cj is bounded and one can start
from a point x0 in Cj and take the diameter of Cj as µ.

The second condition for convergence is the following.

Condition 2 For each j ∈ J , the function gj is zero-convex, uniformly continuous on closed and
bounded subsets of Ω, and weakly sequential lower semicontinuous.

The condition of uniform continuity holds in many cases, e.g., when the space is finite-dimensional
(recall that gj is continuous with respect to the norm topology) or when gj satisfies a Lipschitz or
Hölder condition. The weakly sequential lower semicontinuity condition holds, for instance, when
the space is finite-dimensional, or when gj is quasiconvex (by [11, Proposition 10.23] and the as-
sumption that gj is continuous).

The last condition that we need is the following.

Condition 3 There exists a number K > 0 such that ‖tn‖ ≤ K for all n ∈ N ∪ {0}.
It seems that verification of Condition 3 requires knowledge about the functions that define the

subsets of the feasibility problem as level-sets. A possible relevant property which may help here is
that of uniform boundedness of the subgradients on bounded sets. This property is a standard one,
frequently used in theorems on subgradient projection methods, when the functions are convex.
If the space is finite-dimensional, then it holds, e.g., if the effective domain of all functions is
the whole space and there are finitely many functions, see, e.g., [8, Proposition 7.8 and Corollary
7.9]. If the space is infinite-dimensional but the functions are uniformly continuous on closed and
bounded subsets (as implied by Condition 2) and all the finitely many functions are convex, then
Condition 3 holds too, again from [8, Proposition 7.8]. When infinitely many functions are involved
in the algorithm and all of them are Lipschitz with uniformly bounded Lipschitz constants, then
Condition 3 holds too from [8, Proposition 7.8] since in this case the proof of this proposition implies
that K can be any upper bound on the Lipschitz constants.

In analogy with the above we want to define the property of uniform boundedness on bounded
sets of the 0-subgradients. However, because of Proposition 2(g) one cannot expect to have uniform
boundedness of all t ∈ ∂0gj(y) for a given y and a given j, namely that ‖t‖ ≤ K for all t ∈ ∂0gj(y).
It turns out that for all our purposes it is enough that a selection of 0-subgradients will be uniformly
bounded, and this is formulated in the following definition.

Definition 2 Given a family {gj}j∈J of zero-convex functions defined onΩ ⊆ H , if for any bounded
set U ⊆ Ω there exists a constant K, called a uniform bound, such that for all j ∈ J and all
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x ∈ U there exist at least one 0-subgradient t ∈ ∂0gj(x) satisfying ‖t‖ ≤ K, then we say that the
family of zero-convex functions has the property of partial uniform boundedness on bounded

sets of the 0-subgradients.

As shown in Lemma 1 below, the sequence {xn}∞n=0 generated by Algorithm 1 is contained in a
bounded set, independently of the assumption imposed by Condition 3. Thus, if it is assumed that
the family {gj}j∈J of zero-convex functions has the partial uniform boundedness on bounded sets
of the 0-subgradients, then Condition 3 holds for the selection of the corresponding 0-subgradient
tn ∈ ∂0gi(n)(xn), n ∈ N ∪ {0}. Example 1 (with convex functions), as well as Examples 4–5 and
Propositions 3-4 show that Condition 3 can hold in various scenarios. For instance, the condition
holds if we assume that there is a uniform Lipschitz constant for all of the functions gj and then

use Proposition 3 (with tn = 0 if y ∈ g≤0
i(n) and with tn defined by (3.2) when y /∈ g≤0

i(n)). On the

other hand, Remark 5 shows that this condition can be violated in some exotic cases.

6 The convergence theorem

The following theorem affirms convergence of the SSP feasibility-seeking algorithm with perturba-
tions.

Theorem 1 In the framework of, and under the assumptions in, Sections 4 and 5, any sequence
{xn}∞n=0, generated by Algorithm 1, converges weakly to a point in the set B[x0, 2µ] ∩ C, where
B[x0, 2µ] is the closed ball of radius 2µ centered at x0 and µ is a fixed positive number greater
than d(x0, C). In addition, if either the space is finite-dimensional or if the set B[x0, 2µ]∩C has a
nonempty interior with respect to H, then the sequence converges in norm to a point in this set.

The proof of Theorem 1 is based on the following lemmas.

Lemma 1 In the framework of, and under the assumptions in, Sections 4 and 5, let q be any real
number in the interval [µ, 2µ] and let x ∈ C be such that ‖x0−x‖ ≤ q. Then any sequence {xn}∞n=0,
generated by Algorithm 1, is contained in Ω and has the property that

‖xn+1 − x‖2 ≤ ‖xn − x‖2 − 0.5ǫ1ǫ2h
2
n (6.1)

for each n ∈ N ∪ {0}.
Proof Simple induction shows that xn ∈ Ω for all n ∈ N ∪ {0}. The assumptions C 6= ∅ and
d(x0, C) < µ ≤ q imply that there does exist an x ∈ C such that ‖x0 − x‖ ≤ q. Suppose that an
active step occurs at step n+ 1 and denote

an := λngi(n)(xn)/‖tn‖2. (6.2)

Since PΩ is nonexpansive [11, pp. 59-61], the equality x = PΩ(x) and direct calculation show that

‖xn+1 − x‖2 = ‖PΩ(xn − antn + bn)− PΩ(x)‖2

≤ ‖xn − antn + bn − x‖2

= ‖xn − x‖2 + ‖bn − antn‖2 + 2〈bn − antn, xn − x〉
= ‖xn − x‖2 + ‖bn‖2 + |an|2‖tn‖2 − 2an〈bn, tn〉
+ 2〈bn, xn − x〉 − 2an〈tn, xn − x〉. (6.3)
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Since x ∈ C it follows that gi(n)(x) ≤ 0, thus, by the 0-subgradient inequality (2.1) and the fact
that an ≥ 0 we get

− 2an〈tn, xn − x〉 ≤ −2angi(n)(xn). (6.4)

From (5.2), (6.2), (6.3), (6.4), and the Cauchy-Schwarz inequality,

‖xn+1 − x‖2 ≤ ‖xn − x‖2 + ‖bn‖2 + a2n‖tn‖2 − 2an〈bn, tn〉+ 2‖bn‖‖xn − x‖
− 2angi(n)(xn)

= ‖xn − x‖2 + (λ2n − 2λn)h
2
n + ‖bn‖2 − 2an〈bn, tn〉+ 2‖bn‖‖xn − x‖. (6.5)

By the properties of λn, the Cauchy-Schwarz inequality, the definition of hn, and the fact that
‖bn‖ ≤ µ, we reach

‖xn+1 − x‖2 ≤ ‖xn − x‖2 − ǫ1ǫ2h
2
n + ‖bn‖(‖bn‖+ 2‖xn − x‖) + 2an‖tn‖‖bn‖

≤ ‖xn − x‖2 − ǫ1ǫ2h
2
n + ‖bn‖(µ+ 2‖xn − x‖+ 4hn). (6.6)

Now let n = 0. If an active step occurs at step 1, then (6.1) holds because ‖x0 − x‖ ≤ q ≤ 2µ, by
(6.6), and by (5.1). In particular ‖x1 − x‖ ≤ ‖x0 − x‖ ≤ q. If an inactive step occurs at step 1, then
obviously (6.1) holds since h0 = 0 and xn+1 = xn. In particular, ‖x1 − x‖ ≤ q.

Continuing the induction, suppose that (6.1) holds up to some n ≥ 1. If an inactive step occurs
at step n + 1 of Algorithm 1, then hn = 0 and obviously (6.1) holds. Otherwise, since by the
induction hypothesis ‖xn − x‖ ≤ · · · ≤ ‖x0 − x‖ ≤ q ≤ 2µ, we obtain from (6.6) and (5.1) the
inequality (6.1). Therefore, (6.1) holds for n+ 1 and hence for every n ∈ N ∪ {0}.

Lemma 2 Under the assumptions of Lemma 1, there exist an integer ν0 ∈ N and a real α > 0 such
that

‖xn+1 − xn‖2 ≤ α(‖xn − x‖2 − ‖xn+1 − x‖2), (6.7)

for all n ≥ ν0.

Proof By (6.1) we have

h2n ≤ α1(‖xn − x‖2 − ‖xn+1 − x‖2), (6.8)

where α1 = 2/(ǫ1ǫ2). The fact that PΩ is nonexpansive, the equality xn = PΩ(xn), the inequality
|λn| ≤ 2, (6.8), the Cauchy-Schwarz inequality, and (4.4) imply that

‖xn+1 − xn‖2 ≤ ‖bn − (λnhntn/‖tn‖)‖2
≤ ‖bn‖2 + 4‖bn‖hn + 4α1(‖xn − x‖2 − ‖xn+1 − x‖2), (6.9)

whenever an active step occurs. However, (6.9) holds also when an inactive step occurs since in that
case the left-hand side is 0 and the right-hand side is nonnegative (from Lemma lem:fejerM). From
Lemma 1, the sequence {‖xn − x‖}∞n=0 is decreasing and bounded from below and hence converges
to a limit. Therefore, it is a Cauchy sequence and from (6.8) it follows that there exists a positive
integer ν0 having the property that hn < 1 whenever n ≥ ν0. Hence h

4
n ≤ h3n ≤ h2n for each n ≥ ν0.

Let α2 = (ǫ1ǫ2/(10µ))
2. From (5.1) and (6.8) it follows that

‖bn‖2 ≤ (ǫ1ǫ2h
2
n/(2 · (5µ+ 4hn)))

2

≤ α2h
4
n ≤ α2h

2
n ≤ α1α2(‖xn − x‖2 − ‖xn+1 − x‖2). (6.10)
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From (5.1), the inequality h3n ≤ h2n, and (6.8) it follows that

4‖bn‖hn ≤ 2(ǫ1ǫ2/(5µ))α1(‖xn − x‖2 − ‖xn+1 − x‖2). (6.11)

This and (6.9) imply (6.7) with

α = α1(4 + α2 + (2ǫ1ǫ2/(5µ))), (6.12)

whenever n ≥ ν0.

Remark 6 It follows from (5.1) and (6.8) that
∑∞

n=0 ‖bn‖ <∞. Indeed, from (6.8) we have
∑∞

n=1 h
2
n ≤

(2/(ǫ1ǫ2))‖x0 − x‖2 <∞ and from (5.1) we have
∑∞

n=0 ‖bn‖ ≤ β
∑∞

n=1 h
2
n for some β > 0.

Lemma 3 Under the assumptions of Lemma 1, let some τ > 0 be given. There exists an integer
ν1 = ν1(τ) ∈ N, ν1 ≥ ν0, where ν0 is from Lemma 2, such that gi(n)(xn) < τ/2 whenever n ≥ ν1.

Proof By (6.8) and the fact that the sequence {‖xn − x‖}∞n=0 is a Cauchy sequence it follows that
there exists an integer ν1 ≥ ν0 such Khn < τ/2 for any n ≥ ν1, where K is from Condition 3. Let
n ≥ ν1 be given. If an inactive step occurs at step n+ 1, then gi(n)(xn) ≤ 0 < τ/2. Otherwise, an
active step occurs at step n+1. By Condition 3 it follows that ‖tn‖ ≤ K. The definition of hn then
implies that gi(n)(xn)/K ≤ hn. As a result, gi(n)(xn) ≤ Khn < τ/2.

Lemma 4 Under the assumptions of Lemma 1, let j ∈ J and τ > 0 be given. Let ν1 = ν1(τ) be
taken from Lemma 3. Then there exists an integer ν2,j = ν2,j(τ) ∈ N, such that ν2,j ≥ ν1 and
|gj(xn+s)− gj(xn)| < τ/2 for all n ≥ ν2,j and all s ∈ {1, 2, . . . , Lj}, where Lj is from (4.3).

Proof By Lemma 1 the sequence {xn}∞n=0 is contained in the closed ball B[x, q] of radius q and
center x. Since gj is uniformly continuous on B[x, q]

⋂
Ω there exists a positive number δj such

that for all u, v ∈ B[x, q]
⋂
Ω, if ‖u− v‖ < δj then |gj(u)− gj(v)| < τ/2.

By (6.7) and the fact that the sequence {‖xn − x‖}∞n=0 is (bounded below and decreasing and
hence) a Cauchy sequence, it follows that there exists ν2,j ∈ N, ν2,j ≥ ν1 such that

‖xn+1 − xn‖ < δj/Lj for all n ≥ ν2,j. (6.13)

From (6.13) and the triangle inequality it follows that ‖xn+s − xn‖ < δj for all n ≥ ν2,j and all
integers s ∈ {1, 2, . . . , Lj}. Since xn, xn+s ∈ B[x, q]

⋂
Ω, we conclude that

|gj(xn+s)− gj(xn)| < τ/2 whenever n ≥ ν2,j . (6.14)

Lemma 5 Under the assumptions of Lemma 1, any weak cluster point of a sequence {xn}∞n=0,
generated by Algorithm 1, belongs to C.

Proof Suppose that y ∈ H is a weak cluster point of {xn}∞n=0, i.e., a subsequence {xnk
}∞k=0 of

{xn}∞n=0 converges weakly to y.
Let j ∈ J and τ > 0 be given. Let k be large enough so that nk > ν2,j where ν2,j is from Lemma

4. Since the control sequence satisfies (4.3) there exists an integer s ∈ [nk, Lj − 1 + nk] such that
i(s) = j. From Lemma 4 we know that

gj(xnk
)− gj(xs) < τ/2. (6.15)
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Consequently, if gj(xs) ≤ 0, then

gj(xnk
) = gj(xnk

)− gj(xs) + gj(xs) < τ/2 + 0. (6.16)

If gj(xs) > 0, then an active step occurs at step s + 1. Since s ≥ nk > ν2,j ≥ ν1 and j = i(s), it
follows from the definitions of ν1, ν2,j and from Lemma 3 that gj(xs) < τ/2. Hence, as in (6.16),
we have

gj(xnk
) < τ/2 + τ/2 = τ. (6.17)

Therefore, from the weakly sequential lower semicontinuity of gj we conclude that the inequality
gj(y) ≤ lim infk→∞ gj(xnk

) ≤ τ holds for each τ > 0. As a result, gj(y) ≤ 0 for each j ∈ J and,
thus, y ∈ C.

In order to prove Theorem 1 we need one of the following two general lemmas.

Lemma 6 Suppose that {xn}∞n=0 is a bounded sequence and that the limit limn→∞ ‖xn − z‖ exists
for each weak limit point z of the sequence. Then the whole sequence converges weakly.

Lemma 6 is a particular case of [102, Lemma 3.4] (take there X to be a Hilbert space, T to be
the weak topology, D(x, y) = ‖x − y‖ or D(x, y) = ‖x − y‖2, and also use [102, Example 2.5] or
[102, Example 2.6]). Lemma 6 can also be deduced, after some manipulations, from [57, Theorem
4.2] or from the proof of [1, Proposition 1(iii)].

Lemma 7 Let F be a closed and convex subset of a Hilbert space H, and suppose that {xn}∞n=0 is
a bounded sequence in H such that

(a) {xn}∞n=0 is Fejér monotone with respect to F , that is, the sequence {‖xn−x‖}∞n=0 is decreasing
for each x ∈ F .

(b) Each weak cluster point of the sequence {xn}∞n=0 lies in F .

Then {xn}∞n=0 converges weakly to a point in F . Alternatively, if (a) holds and the interior of
F is nonempty, then the sequence converges strongly to a point in H.

The weak convergence part of Lemma 7 is from either [21, Lemma 6] (but, as noted in [21],
this lemma was essentially proved by Opial in [89, Lemma 1]) or [8, Theorem 2.16(ii)]. The strong
convergence part is from [8, Theorem 2.16(iii)].

It is interesting to note that both lemmas hold in a more general context: Lemma 6 holds in
the general setting of weak-strong spaces and corresponding Bregman distances without Bregman
functions, while Lemma 7 can be generalized to uniformly convex Banach spaces having a weakly
continuous duality mapping [21, Lemma 11] (see also [89, Lemma 3]). In addition, as observed in
[11, Theorem 5.5, Proposition 5.10], the subset F does not have to be closed and convex but rather
it can be arbitrary nonempty (or, respectively, with a nonempty interior) when the space is Hilbert.
In fact, as observed [44, Proposition 3.10], in this case {xn}∞n=0 may be just quasi-Fejér.

Now we are ready to prove Theorem 1.

Proof (proof of Theorem 1) Let x ∈ C be such that d(x, x0) < µ. There exists such an x since
d(x0, C) < µ. From Lemma 1 (with this x) it follows that {xn}∞n=0 is contained in the ball B[x, µ].
Hence it has at least one weak cluster point. Any weak cluster point y of the sequence belongs to
this ball since by the lower semicontinuity of the norm we have ‖y−x‖ ≤ lim infn→∞ ‖xn−x‖ ≤ µ.
From Lemma 5 we know that y ∈ C. In addition, since

‖x0 − y‖ ≤ ‖x0 − x‖ + ‖x− y‖ ≤ 2µ (6.18)
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we can apply Lemma 1 with y instead of x to conclude that the sequence {‖xn−y‖}∞n=0 of nonnega-
tive numbers is decreasing and hence converges to a nonnegative number. The previous consideration
holds for any weak limit point. As a result, Lemma 6 ensures that {xn}∞n=0 converges weakly to
some point, which, by Lemma 5, belongs to C, and, by the above, to F := B[x0, 2µ] ∩ C.

Alternatively, the above already proves that any weak cluster point y of the sequence belongs to
the closed and convex subset F and also that the nonnegative sequence {‖xn−y‖}∞n=0 is decreasing.
Hence, from Lemma 7 it follows that {xn}∞n=0 converges weakly to some point in F . By the same
lemma, the convergence is strong if F has a nonempty interior. The corresponding limit point is in
F since it coincides with the unique weak limit point which is there. The strong convergence holds
also if the space is finite-dimensional since in this case the weak and strong topologies coincide.

7 Computational results

In this section we present a concrete example of the CFP with zero-convex functions, together with
relevant computational results. The example is related to Examples 5 and 6 above. The context is
molecular biology.

7.1 The setting

The setting of the example is as follows. There is a material located in a 3D box Ω and composed
of two types of molecules. Each molecule type is modeled by a ball. One type has radius r and
the other has radius R > r, measured in angstroms (Å). This scenario is common in molecular
biology [56,58] where the first molecule typw is water (r = 1.4Å) and the second type is a material
which comes in contact with water such as some compounds of a protein (on the protein surface).
An example of such a material is alpha carbon (CA) whose radius is R = 1.87Å. As explained in
Example 6 above and the references therein, the additively weighted Voronoi cell of a given molecule
plays an important role in this context.

Consider now a water molecule whose center is p. Denote by Vp its additively weighted Voronoi
cell. We look for a point in Vp which is not too far from p and not too far from a certain neighboring
alpha carbon molecule. In other words, we want to find a point in the intersection of Vp and two
balls. Such a point may help in trimming parts of the interaction interface using a spherical probe
[77].

In what follows we formulate the problem as a convex feasibility problem. Let the locations of
all molecules different from p be denoted by the 3-dimensional vectors a0, a1, . . . , aℓ. Let Iwater =
{0, 1, . . . , jwater} be the set of indices of water molecules and Iα = {jwater + 1, jwater + 2, . . . , ℓ} be
the set of indices of the alpha carbon molecules. For each j ∈ I := {0, 1, . . . , ℓ} = Iwater

⋃
Iα let

wj = r when molecule j is a water molecule and wj = R when this molecule is alpha carbon. From
Example 6 we know that

Vp = {x ∈ Ω | d(x, p)− r ≤ d(x, aj)− wj , j ∈ I} =
⋂

j∈I

{x ∈ Ω | d(x, p)− r ≤ d(x, aj)− wj}

=




⋂

j∈Iwater

{x ∈ Ω | d(x, p) ≤ d(x, aj)}




⋂




⋂

j∈Iα

{x ∈ Ω | d(x, p)− d(x, aj) +R− r ≤ 0}



 .

(7.1)
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Given j ∈ Iwater let Cj = {x ∈ Ω | d(x, p) ≤ d(x, aj)}. This set is the intersection of a half-

space and Ω and it can be written as Cj = g≤0
j where gj : Ω → R is the function defined

by gj(x) = 〈x − 0.5(aj + p), (aj − p)/‖aj − p‖〉. Given j ∈ Iα, let gj : Ω → R be defined by
gj(x) = d(x, p) − d(x,Bj), where Bj is the closed ball of radius R − r around aj, and let Cj =

{x ∈ Ω | d(x, p)− d(x, aj) +R− r ≤ 0}. Example 6 above shows that Cj = g≤0
j . Finally, define two

additional functions gℓ+1, gℓ+2 : Ω → R by gℓ+1(x) = d(x, p)− ρ and gℓ+2(x) = d(x, aℓ)− ρ, where
ρ is the radius of the probe and aℓ is the location of the alpha carbon molecule mentioned earlier
and related to the probe. Let Cj = g≤0

j , j = ℓ + 1, ℓ + 2, and let J = {0, 1, 2, . . . , ℓ + 2}. Our goal
is to find a point in the set

C := Vp
⋂
Cℓ+1

⋂
Cℓ+2 =

⋂

j∈J

Cj . (7.2)

Example 5 above ensures that gj is zero-convex (and continuous) for each j ∈ J . Hence Cj is closed

and convex for all j ∈ J . For the selection of the 0-subgradients it suffices to consider y /∈ g≤0
j and to

divide the discussion into several cases. If j = ℓ+1, then gj (and its extension to R
3 defined by the

same formula) is convex and since it is smooth at y we can take t = ∇gj(y) = (y− p)/‖y− p‖. The
norm of t is bounded by 1. In the same way we can take t = (y−aℓ)/‖y−aℓ‖ when j = ℓ+2. If j ∈ I,
then we can use (2.12) with a = aj+(wj−r)(y−aj)/‖y−aj‖ if y /∈ Bj and a = y otherwise, because
this a satisfies d(y,Bj) = d(y, a) < d(y, p) (we denote Bj := {aj} when j ∈ Iwater). According to
Example 5, the norms of the resulting 0-subgrdients are bounded by 2.

Regarding the locations of the molecules, we assume that they roughly form a two-sided ar-
rangement, where the CA molecules are in one side of the cube Ω, and the water molecules are in
another side of Ω. The molecule located at p is in the middle of the cube, namely, p = (0, 0, 0). It
may happen that this configuration of locations is not likely to be realized (or will not be stable),
since these data are not taken from measurements or from related computer experiments. However,
different locations of the molecules will merely result in different values of some parameters but
will usually not affect the essential properties of the setting (zero-convexity of the functions, etc.).
The main goal of this example is to illustrate the methods and concepts discussed in this paper. To
see that the algorithm really works also in other configurations, we made simulations in the case of
random configurations of molecules in 3D and higher dimensions. See Table 3 below.

7.2 Concrete values in the simulations

In the concrete simulations the box was Ω = [−4, 4]3 (in the higher dimensional version of the prob-
lem we took Ω = [−4, 4]dim). There were 16 water molecules located at a0 = (3.5,−3.5,−3.5), a1 =
(3.5, 0.0,−3.5), a2 = (3.5, 3.5,−3.5), a3 = (3.5,−3.5, 0.0), a4 = (3.5, 0.0, 0.0), a5 = (3.5, 3.5, 0.0),
a6 = (3.5,−3.5, 3.5), a7 = (3.5, 0.0, 3.5), a8 = (3.5, 3.5, 3.5), a9 = (0.0,−3.5,−3.5), a10 = (0.0, 0.0,−3.5),
a11 = (0.0, 3.5,−3.5), a12 = (0.0,−3.5, 0.0), a13 = (0.0, 3.5, 0.0), a14 = (0.0,−3.5, 3.5), a15 =
(0.0, 3.5, 3.5), and 10 CA molecules located at a16 = (−3.5,−3.5,−3.5), a17 = (−3.5, 0.0,−3.5),
a18 = (−3.5, 3.5,−3.5), a19 = (−3.5,−3.5, 0.0), a20 = (−3.5, 0.0, 0.0), a21 = (−3.5, 3.5, 0.0),
a22 = (−3.5,−3.5, 3.5), a23 = (−3.5, 0.0, 3.5), a24 = (−3.5, 3.5, 3.5), a25 = (0.0, 0.0, 3.5). The
maximum index was therefore ℓ = 25 and the total number of functions was 28 = ℓ+ 3 =: ℓ3.

For the stopping condition, we defined a variable called “smallNumber” and checked every period
that gj(xn) ≤ smallNumber for all j ∈ J , namely that xn is in the smallNumber-level set of gj for
all j ∈ J . We took smallNumber = 0.00001. When the control was cyclic, the period mentioned
above was the length of a cycle, namely ℓ3 (the total number of functions). When the control was
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almost cyclic, the period was 3ℓ3 as explained below. If the number of iterations exceeded a certain
large number chosen by the user (5 · 106 in our case) without finding a feasible point, then the
process stopped with an output saying this.

The almost cyclic control was constructed in the following way. First, we constructed an array
called almost cycle of length 2ℓ3 (starting from 0) whose first ℓ3 entires were selected randomly
from {0, 1}. For k ∈ {ℓ3, ℓ3 + 1, . . . , 2ℓ3 − 1}, entry number k was 1−almost cycle[k − ℓ3]. We con-
structed the control i(n) as follows: when both almost cycle[n mod (2ℓ3)] = 1 and (n mod 2ℓ3) ∈
{0, 1, . . . , ℓ3− 1} held true, then i(n) was n mod (2ℓ3). When both almost cycle[n mod (2ℓ3)] = 1
and (n mod 2ℓ3) ∈ {ℓ3, ℓ3 + 1, . . . , 2ℓ3 − 1} held true, we had i(n) = (n mod 2ℓ3)− ℓ3. Otherwise
(namely, when almost cycle[n mod (2ℓ3)] = 0) the control value i(n) was selected randomly from
{0, 1, . . . , ℓ3−1}. A simple checking (which merely needs to take into account the case almost cycle[n
mod (2ℓ3)] = 1) shows that every index j ∈ J = {0, 1, . . . , ℓ + 2} is selected at least once in any
block of nonnegative consecutive integers whose length is at least 3ℓ3. Thus, this control is indeed
almost cyclic with period 3ℓ3.

For the perturbations, we constructed random vectors whose length is the right-hand side of
(5.1). The user could also choose to perform a calculation with zero perturbations.

For the relaxation parameters, we either took λn = ǫ1 for all n, or λn = 2 − ǫ2 for all n, or
λn = 0.5(ǫ1 + 2− ǫ2) for all n, or λn=a random number in the interval [ǫ1, 2− ǫ2] for all n.

7.3 The computational results

The tables below describe the computational results. Here is a legend of abbreviation that are
used: no.=the serial number of each experimental run of the algorithm; perturb=the perturbation
terms were nonzero; ac=almost cyclic; c=cyclic; min numb. iter.=minimum number of iterations
among 10 trials; max numb. iter.=maximum number of iterations among 10 trials; aver. numb.
iter.=average number of iterations among 10 trials; feasible point: the feasible point obtained after
the specified number of iterations in the minimum case; dim=dimension.

7.4 Discussion

The results show that usually the perturbation terms have little influence on both the number
of iterations and the obtained feasible point (see, e.g, line 13 and beyond in Table 1). However,
sometimes it may have a certain influence, when combined with another source of randomization
(e.g., the random almost cyclic control used in the simulations), as shown in lines 1,9 and 7-8 of
Table 1). In order to draw stronger conclusions, more simulations are needed.

The relaxation parameters seem to contribute significantly to the speed of convergence: the
greater they are, the faster the convergence, but this dependence is not purely monotone (lines
21-24 of Table 1). On the other hand, because of (6.1) one may expect that the greater the product
ǫ1ǫ2, the faster the convergence, but at least in our setting this has not been observed. In this
connection, an interesting and unexplained phenomenon is described in lines 41-44 of Table 1: we
have ǫ1+ ǫ2 > 2 but still the algorithm works. However, when we tried to take ǫ1 ≥ 2.1 the program
crashed.

Regarding the control, sometimes (e.g., line 13 comparing to line 15 in Table 1) the cyclic
control leads to faster convergence, but not always (line 1 comparing to line 5 in Table 1). From
the comparisons of line 23 to line 32 we see that the speed can also be quite similar. However,
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Table 1: Two-sided 3D arrangement,
x0 = (4, 3.853, 4), ρ = 2.0318

no. ǫ1 ǫ2 λn control perturb min

numb.

iter.

max

numb.

iter.

aver.

numb.

iter.

feasible point

1 0.303 0.57 1.43 ac no 84 2688 621.6 (−0.053, 0.375, 1.504)
2 0.303 0.57 0.303 ac no 25788 26880 26342.4 (0.288, 0.283, 1.509)
3 0.303 0.57 random c no 5404 5880 5656 (−0.030, 0.403, 1.509)
4 0.303 0.57 0.88 c no 6104 6104 6104 (−0.003, 0.404, 1.509)
5 0.303 0.57 1.43 c no 1764 1764 1764 (−0.310, 0.258, 1.509)
6 0.303 0.57 0.303 c no 25368 25368 25368 (0.263, 0.306, 1.509)
7 0.303 0.57 random ac no 168 8064 6745.2 (0.340, 0.193, 1.508)
8 0.303 0.57 random ac yes 7476 8316 7845.6 (0.338, 0.221, 1.509)
9 0.303 0.57 1.43 ac yes 168 2688 1142.4 (0.029, 0.143, 1.503)
10 0.303 0.57 0.88 c yes 6104 6104 6104 (−0.003, 0.404, 1.509)
11 0.303 0.57 1.43 c yes 1764 1764 1764 (−0.31, 0.258, 1.509)
12 0.303 0.57 0.303 c yes 25368 25368 25368 (0.264, 0.306, 1.509)
13 1 1 1 c no 4676 4676 4676 (−0.090, 0.397, 1.509)
14 1 1 1 c yes 4676 4704 4678.8 (−0.089, 0.394, 1.509)
15 1 1 1 ac no 6804 7644 7341.6 (0.199, 0.351, 1.509)
16 1 1 random ac yes 6804 7644 7257.6 (0.198, 0.352, 1.509)
17 0.1 1.9 0.1 c no 84924 84924 84924 (0.285, 0.286, 1.509)
18 0.1 1.9 0.1 c yes 84924 84924 84924 (0.285, 0.286, 1.509)
19 0.01 1.99 0.01 c no 884772 884772 884772 (0.289, 0.282, 1.509)
20 0.01 1.99 0.01 c yes 884772 884772 884772 (0.289, 0.281, 1.509)
21 1.9 0.1 1.9 c no 168 168 168 (−0.051, 0.057, 1.498)
22 1.9 0.1 1.9 c yes 168 168 168 (−0.051, 0.057, 1.498)
23 1.99 0.01 1.99 c no 308 308 308 (−0.001, 0.001, 1.470)
24 1.99 0.01 1.99 c yes 308 308 308 (0.000, 0.000, 1.470)
25 1.95 0.01 1.95 c no 224 224 224 (−0.011, 0.013, 1.469)
26 1.95 0.01 1.95 c yes 224 224 224 (−0.011, 0.013, 1.469)
27 1.95 0.01 1.99 c no 252 252 252 (−0.004, 0.004, 1.484)
28 1.95 0.01 1.99 c yes 308 308 308 (0.000, 0.000, 1.470)
29 1.95 0.01 1.97 c no 252 252 252 (−0.004, 0.004, 1.485)
30 1.95 0.01 1.97 c yes 252 252 252 (−0.004, 0.004, 1.484)
31 1.95 0.01 random c no 252 280 254.8 (−0.623, 0.747, 0.730)
32 1.99 0.01 1.99 ac no 168 504 302.4 (0.008, 0.000, 1.476)
33 0.01 1.99 0.01 ac no 863016 883764 879018 (0.293, 0.278, 1.509)
34 1.4 0.6 1.4 c no 1932 1932 1932 (−0.304, 0.265, 1.509)
35 1.4 0.6 1.4 c yes 1932 1932 1932 (−0.304, 0.265, 1.509)
36 0.6 1.4 0.6 c no 10752 10752 10752 (0.151, 0.374, 1.509)
37 0.6 1.4 0.6 c yes 10752 10752 10752 (0.156, 0.373, 1.509)
38 0.7 1.3 0.7 c no 8596 8596 8596 (0.097, 0.392, 1.509)
39 1.95 0.05 1.95 c no 224 224 224 (−0.011, 0.013, 1.470)
40 1.96 0.04 1.96 c no 252 252 252 (−0.007, 0.008, 1.513)
41 2.02 0.1 2.02 c no 448 448 448 (0, 0, 1.473)
42 2.02 1.4 2.02 c no 448 448 448 (0, 0, 1.473)
43 2.02 1.4 2.02 ac no 84 504 289.3 (−0.123, 0.140, 1.494)
44 1.4 1.4 1.4 c yes 1932 1932 1932 (−0.304, 0.265, 1.509)
45 1.7 0.2 1.7 c yes 140 168 148.4 (−0.271, 0.201, 1.510)
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Table 2: Two-sided 3D arrangement,
x0 = (−4, 3.853,−4)

no. ρ ǫ1 ǫ2 λn control perturb min

numb.

iter.

max

numb.

iter.

aver.

numb.

iter.

feasible point

1 3 0.02 1.5 0.02 ac yes 17136 18228 17816.4 (−0.908, 0.984, 0.815)
2 3 0.02 1.5 0.02 c no 17724 17724 17724 (−0.921, 0.986, 0.821)
3 3 0.02 1.5 0.02 c yes 17724 17724 17724 (−0.925, 0.983, 0.821)
4 3 0.7 1.5 0.7 c no 280 280 280 (−1.163, 0.998, 0.921)
5 3 0.7 1.5 0.7 c yes 280 280 280 (−1.166, 0.988, 0.919)
6 3 1.7 0.2 1.7 c no 28 28 28 (−0.448, 0.359, 0.567)
7 3 1 1 1 c no 28 28 28 (−1.137, 1.098, 0.950)
8 3 1 1 1 c yes 28 56 42 (−1.153, 1.088, 0.954)
9 3 1.99 0.01 1.99 c yes 28 28 28 (−0.380, 0.228, 0.713)
10 2.0318 1.7 0.2 1.7 c yes 140 140 140 (−0.103, 0.080, 1.472)
11 2.0318 1.7 0.2 1.7 c no 112 112 112 (−0.104, 0.083, 1.473)
12 2.0318 1.4 0.6 1.4 c no 1736 1736 1736 (−0.283, 0.288, 1.509)
13 2.0318 1.4 0.6 1.4 c yes 1708 1764 1744.4 (−0.278, 0.292, 1.509)
14 2.0318 1 1 1 c yes 4704 4704 4704 (−0.286, 0.285, 1.509)
15 2.0318 1 1 1 c no 4704 4704 4704 (−0.290, 0.281, 1.509)
16 2.0318 0.1 1.9 0.1 c no 84224 84224 84224 (−0.282, 0.289, 1.509)
17 2.0318 0.1 1.9 0.1 c yes 84168 84280 84218.4 (−0.281, 0.290, 1.509)
18 2.0318 1.9 1.9 1.9 c yes 168 196 170.8 (−0.014, 0.006, 1.504)
19 2.0318 1.9 1.9 1.9 c no 168 168 168 (−0.022, 0.011, 1.477)
20 2.0318 1.9 1 1.9 c no 168 168 168 (−0.022, 0.011, 1.477)
21 1.5 1.9 0.1 1.9 c no 5 · 106 5 · 106 5 · 106 not found
22 1 1.9 0.1 1.9 c no 5 · 106 5 · 106 5 · 106 not found

since the comparison was limited (not only because of the number of simulations and the way the
control was created, but also because we used a concrete type of zero-convex functions), and since
we sometimes had some problems with the random number generator (and hence with the random
vector generator), one has to be careful when drawing conclusions regarding the advantage of one
control over the other.

In the higher dimensional version of the original 3D setting, the data in Table 3 show that the
algorithm works in this case too. This is of course not really surprising, in view of Theorem 1, but
still one has to be careful since in some rare cases (2.19) can be violated (when the dimension grows
usually 0.47 = R − r < ‖aj − p‖ even if each component of aj − p is very small). The last lines of
this table show that the algorithm works when the dimension is 3 and locations of the molecules
are random (with the exception that we always took p = (0, 0, 0) and aℓ = (0, 0, 3.5)). The value
5 · 106 that sometimes appear there means that no feasible point was found after 5 · 106 iterations.

8 Further discussion

This section concludes the paper with further discussion of certain issues. In Subsection 8.1 we
discuss the possibility of inner perturbations. In Subsection 8.2 we compare briefly the SSP approach
for solving the CFP to other possible optimization approaches. In Subsection 8.3 we explain how
the results of this paper can be used for approximate minimization. Finally, in Subsection 8.4 we
mention several open problems and lines for further investigation.
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Table 3: random configurations in vari-
ous dimensions

no. ρ ǫ1 ǫ2 λn control perturb min

numb.

iter.

max

numb.

iter.

aver.

numb.

iter.

dim

1 75 1.99 0.01 1.99 c yes 56 84 67.2 2500
2 180 1.99 0.01 1.99 c yes 0 0 0 2500
3 60 1.99 0.01 1.99 c yes 224 476 364 2500
4 59 1.99 0.01 1.99 c yes 336 1428 638.4 2500
5 59 1.99 0.01 1.99 c no 392 980 616 2500
6 13 1.99 0.01 1.99 c yes 84 280 128.8 100
7 13 1.5 0.4 1.5 c no 56 84 64.4 100
8 13 1.7 0.3 1.7 c no 84 140 95.2 100
9 40 1.6 0.4 1.6 c no 56 84 81.2 1000
10 50 1.9 0.1 1.9 c no 56 56 56 1000
11 50 1.9 0.1 1.9 c no 56 56 56 1000
12 40 1 1 1 c yes 1680 2660 2063.6 1000
13 3 1 1 1 c no 28 5 · 106 500151.2 3
14 3 1 1 1 c yes 28 184996 18743.2 3
15 3 1 1 1 ac no 84 1344 294 3
16 3 1.99 0.01 1.99 c no 28 112 53.2 3
17 3 1.99 0.01 1.99 ac no 84 84 84 3
18 3 0.01 1.99 0.01 c no 28504 82852 46015.2 3
19 3 0.01 1.99 0.01 ac no 26544 112392 47292 3
20 2.0318 0.01 1.99 0.01 c no 863240 5 · 106 2526148 3
21 2.0318 1.99 0.01 1.99 c no 56 5 · 106 1500210 3

8.1 Two alternative presentations of perturbation resilience

The perturbation resilience result established in Theorem 1 above looks different in nature than
the results described in [24,32,33,48,68]. There the perturbed iterative step was of the form

xn+1 = An(xn + bn) (8.1)

for some sequence of perturbation vectors bn and a sequence of algorithmic operators An : Rd → R
d.

That format enabled the creation of superiorized algorithms that use the perturbations proactively
in order to achieve an additional aim while being guaranteed that the original convergence of the
algorithm is preserved. In contrast, in (4.4), at least when Ω = H , the perturbed iterative step has
the form

xn+1 = An(xn) + b̃n (8.2)

where

b̃n :=

{
bn, if gi(n)(xn) > 0,
0, if gi(n)(xn) ≤ 0.

(8.3)

In this form the perturbations express the computational (numerical) error resulting from a non-
ideal computation of An(xn). However, it is possible to obtain a convergence result in the spirit
of (8.1) by modifying an argument which appears in [24, p. 541]. Indeed, define the sequence of
operators An : H → H

An(x) :=




x− λn

gi(n)(x)

‖tn‖2
tn, if gi(n)(x) > 0,

x, if gi(n)(x) ≤ 0,
(8.4)
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and a new algorithmic sequence of vectors
{
z0 = A0(x0),

zn+1 = An+1(zn + b̃n).
(8.5)

Using this notation we obtain the following proposition.

Proposition 5 Let {xn}∞n=0 be a sequence in Ω := H, generated by (8.2), and let {zn}∞n=0 be the

sequence generated by (8.5) with b̃n and An(x) defined as in (8.3) and (8.4), respectively. Suppose
that {bn}∞n=1 is a sequence in H satisfying limn→∞ bn = 0. If {xn}∞n=0 converges weakly to some
x∗, then also {zn}∞n=0 converges weakly to x∗ and vice versa. If {xn}∞n=0 converges strongly, then
{zn}∞n=0 converges strongly to the same limit and vice versa.

Proof It follows, by induction, that

xn+1 = zn + b̃n, ∀n ∈ N ∪ {0}. (8.6)

Since limn→∞ bn = 0 we have limn→∞ ‖bn‖ = 0. Thus limn→∞ ‖b̃n‖ = 0. Since x∗ is the weak limit
of the sequence {xn}∞n=0 it follows from (8.6) that the weak limn→∞ zn exists and equals x∗. A
similar reason implies that if {xn}∞n=0 converges strongly, then {zn}∞n=0 converges strongly to the
same limit. Finally, the reverse directions, namely the convergence of {xn}∞n=0 from the convergence
of {zn}∞n=0, hold by the same reasoning.

Since under the conditions of Theorem 1 any sequence {xn}∞n=0, generated by Algorithm 1,
converges (weakly or strongly) to a point in the feasible set, then so does the sequence {zn}∞n=0,
generated by (8.5). Thus, Theorem 1 and Proposition 5 can be used in the superiorization method-
ology by allowing the algorithmic sequence to have the form defined in either (8.2) or (8.5).

8.2 Comparison with other methods for solving the CFP

A possible way to solve the CFP is to formulate it as a minimization problem. For example, one
can define a function f : Ω → R by f(x) := max{supj∈J gj(x), 0} and solve the problem

min
x∈Ω

f(x) (8.7)

which has an optimal value 0, given that the CFP is feasible (i.e., C from (4.2) is nonempty).
One may use many of the known methods to solve the above optimization problem, e.g., the usual
subgradient descent methods. However, these methods require the functions gj to be convex (so
that f will be convex), while in Algorithm 1 we allow the functions gj to be zero-convex (in [110] the
target function f may be nonconvex, but no convergence to the optimal value is proved unless f is
strongly convex, and additional assumptions are needed in the analysis). In addition, each iteration
in Algorithm 1 (in (4.4)) depends only on one function gj, while in (8.7) each iteration depends on
all the functions due to the definition of f . This dependence makes each iteration computationally
demanding when many functions are involved. In addition, the convergence result described in
Theorem 1 holds in a quite general setting, while in the case of (8.7), if for instance one allows
perturbations, then some restrictions are imposed (e.g., the underlying Ω should be compact or the
function f should have a set of sharp minima [86]). On the other hand, in the case of (8.7) one may
have convergence even if the problem is not feasible, while we do not know what happens in this
case for the sequence generated by Algorithm 1.
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8.3 Approximate minimization

The results of this paper can be used for approximate minimization of a quasiconvex function
f : Ω → R on C =

⋂
j∈J g

≤0
j . More precisely, assume that α ∈ R is a known upper bound on

infC f and that we want to find an α-approximate minimizer of f , that is, a point x ∈ C satisfying
f(x) ≤ α. Denote g−1 := f − α (still quasiconvex and hence 0-convex), and assume that all the
assumptions of Theorem 1 are satisfied with respect to the functions gj, j ∈ J

⋃{−1}. Assume also
that −1 /∈ J . Apply Algorithm 1 with these functions. Theorem 1 ensures that we will obtain a
point x belonging to the set C

⋂
g≤0
−1, that is, a point x ∈ C satisfying f(x) ≤ α, as required. The

above generalizes [10, Corollary 6.11(i)] from the setting of approximate minimization of a convex
function using the SSP without perturbations.

8.4 Open questions and issues for future investigation

We conclude the paper by listing several open questions and lines for further investigation.

Regarding weakening Theorem 1, we ask if Condition 3 can be removed, for instance, when the
growth of ‖tn‖ is not too large. Second, can the weak convergence be extended to strong convergence
without the assumption that the interior of F is nonempty? Third, can the assumption (4.3) on the
control be relaxed to random (repetitive) controls? or at least can it be modified to other controls
such as the most violated constraint control? In this connection, it may also be interesting to say
something about the growth rate of the sequence {Lj}j∈J from (4.3) when J is infinite (see also
[31]).

Another question is to obtain explicit error estimates for the speed of convergence in Theorem
1. It is not so easy to find such explicit estimates in many closely related theorems in the literature
(theorems in which Fejér monotonicity is used for proving convergence), and unfortunately, so far
this is true also regarding Theorem 1. However, if one imposes additional assumptions, then it seems
reasonable to believe that actually such explicit estimates (in fact, strong convergence in a linear
rate) can be obtained. This belief is based on analogous results in the literature (for projection
algorithms) in the case where the subsets Cj , j ∈ J (J is finite) are boundedly linearly regular
(in particular, hyperplanes) [8, Sections 5-7], or certain affine subspaces [9, Theorem 5.7.8], or a
Slater-type condition is satisfied and the control is almost cyclic [8, Theorem 7.18], [51, Theorem
2].

A different approach to the question of explicit estimates is to follow the analysis in [115,116] in
which one does not obtain a convergence result but rather obtains explicit time complexity estimates
for approximate solutions. More precisely, given a tolerance parameter ǫ > 0 and an upper bound
δ > 0 on the perturbations, one finds explicitly an iteration index k0 and a point xk0

∈ H such that
gj(xk0

) ≤ ǫ for all j, under certain assumptions on the setting (e.g., there are finitely many convex
and Lipschitz functions gj and the control is cyclic). In this case it may happen that xk0

is located
far away from the intersection C =

⋂
j∈J Cj , but perhaps under some additional assumptions on

the subsets Cj , e.g., that there exists ∆ ∈ (0, 1] such that {x ∈ H | gj(x) ≤ ∆, ∀j ∈ J} 6= ∅
(a Slater-type condition) and that C is bounded, one can also find an explicit upper bound for
d(xk0

, C) as done in [115, Section 6]. The closely related analysis given in [51], which preceded [115,
116], seems to help too in this direction.

The computational results of Section 7, and, in particular, the improvement in the speed of con-
vergence when the relaxation parameters grow, deserve an explanation. An intuitive and incomplete
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explanation of this phenomenon is the geometric interpretation of the algorithm which is closely
related to Remark 1 and Figure 3.

It may be of interest to study further the notion of zero-convexity in various ways. One possibility
is to follow the path of many works related to quasiconvex programming or generalized convexity,
e.g., [5,28,46,63,82], and in particular to study notions of duality in this context. Another possibility
is to consider spaces which are more general than Hilbert spaces. As said after Definition 1, the
notion of zero-convexity can be generalized almost word for word to arbitrary normed spaces and
beyond. This fact and the analysis of the proof of Theorem 1 cause us to believe that (perhaps slight
variations of) this theorem hold in the case where the setting is certain Banach spaces (uniformly
convex Banach spaces having a weakly continuous duality mapping), certain Bregman distances
(thus generalizing [78]), and certain Riemannian manifolds (thus generalizing [16]). Indeed, the
proof of Theorem 1 is constructed in such a way that the assumption that H is Hilbert does not
appear in too many places and at least in some places where it appears there are more general
results in the literature which can be used, as noted after Lemma 7.

In addition to generalizations of the above type, we believe that the notion of zero-convexity
can be modified (and be useful) so it will cover zero-level-sets composed of a disjoint union of closed
and convex subsets, and also to certain β-level sets instead of just 0-level sets.

Finally, it would be interesting to consider algorithmic schemes different from Algorithm 1 that
will not be anymore sequential, but rather mixed or parallel (taking into account blocks, strings,
weighted sums), and also to obtain results in the infeasible case (where the intersection C from
(4.2) is empty).
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