Skip to main content
Log in

A framework of discrete DC programming by discrete convex analysis

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

A theoretical framework of difference of discrete convex functions (discrete DC functions) and optimization problems for discrete DC functions is established. Standard results in continuous DC theory are exported to the discrete DC theory with the use of discrete convex analysis. A discrete DC algorithm, which is a discrete analogue of the continuous DC algorithm (Concave–Convex procedure in machine learning) is proposed. The algorithm contains the submodular-supermodular procedure as a special case. Exploiting the polyhedral structure of discrete convex functions, the algorithms tailored to specific types of discrete DC functions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. M\(^\natural \)-convex and L\(^\natural \)-convex functions are introduced by Murota and Shioura [38], and Fujishige and Murota [12], respectively, as variants of M-convex and L-convex functions; see [36]. M\(^\natural \)-concave functions on \(\{0,1\}^n\) are essentially valuated matroids of Dress and Wenzel [4]. We note that “M” stands for matroid, and “L” stands for lattice, and the symbol \(\natural \) is to read “natural.”

  2. The original definition [33] of matroid valuation on independent sets is a set function \(\zeta : 2^V \rightarrow \mathbb {Z} \cup \{-\infty \}\) that satisfies (i) \(\zeta (X)\) is not identically \(-\infty \), (ii) If \(X \subseteq Y\) then \(\zeta (X) \ge \zeta (Y)\), (iii) If \(X \subseteq Y\), \(|X| < |Y|\), and \(\zeta (Y) \ne -\infty \), there exists \(v \in V {\setminus } X\) such that \(\zeta (Y) = \zeta (Y + v)\), (iv) For \(X, Y \subseteq V\) and \(u \in X {\setminus } Y\), there exists \(v \in Y {\setminus } X\) such that \(\zeta (X) + \zeta (Y) \le \zeta (X - u + v) + \zeta (Y + u - v)\).

  3. Usually this theorem is used in combination of Hartman’s theorem [13] to prove the statement that “every \(C^2\) function is a continuous DC function.” See Hartman [13], Hiriart-Urruty [15] or Tuy [51].

References

  1. Bačák, M., Borwein, J.M.: On difference convexity of locally Lipschitz functions. Optimization 60, 961–978 (2011)

    Article  MathSciNet  Google Scholar 

  2. Birkhoff, G.: Rings of sets. Duke Math. J. 3, 443–454 (1937)

    Article  MathSciNet  Google Scholar 

  3. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40, 1740–1766 (2011)

    Article  MathSciNet  Google Scholar 

  4. Dress, A.W.M., Wenzel, W.: Valuated matroids. Adv. Math. 93, 214–250 (1992)

    Article  MathSciNet  Google Scholar 

  5. Edmonds, J.: Submodular functions, matroids and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their Applications, pp. 69–87. Gordon and Breach, New York (1970)

    Google Scholar 

  6. Favati, P., Tardella, F.: Convexity in nonlinear integer programming. Ricerca Operat. 53, 3–44 (1990)

    Google Scholar 

  7. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40, 1133–1153 (2011)

    Article  MathSciNet  Google Scholar 

  8. Frank, A.: Generalized polymatroids. In: Hajnal, A., Lovász, L., Sós, V. T. (eds.) Finite and Infinite Sets, (Proceedings of 6th Hungarian Combinatorial Colloquium, 1981), Colloquia Mathematica Societatis János Bolyai, vol. 37, pp. 285–294, North-Holland (1984)

  9. Frank, A.: Connections in Combinatorial Optimization. Oxford Lecture Series in Mathematics and its Applications, 38, Oxford University Press, Oxford (2011)

  10. Frank, A., Tardos, É.: Generalized polymatroids and submodular flows. Math. Program. 42, 489–563 (1988)

    Article  MathSciNet  Google Scholar 

  11. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Annals of Discrete Mathematics, vol. 58. Elsevier, Amsterdam (2005)

  12. Fujishige, S., Murota, K.: Notes on L-/M-convex functions and the separation theorems. Math. Program. 88, 129–146 (2000)

    Article  MathSciNet  Google Scholar 

  13. Hartman, P.: On functions representable as a difference of convex functions. Pac. J. Math. 9, 707–713 (1959)

    Article  Google Scholar 

  14. Hirai, H., Murota, K.: M-convex functions and tree metric. Jpn. J. Ind. Appl. Math. 21, 391–403 (2004)

    Article  MathSciNet  Google Scholar 

  15. Hiriart-Urruty, J.B.: Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. Lecture Note Econ. Math. Syst. 256, 37–70 (1985)

    Article  MathSciNet  Google Scholar 

  16. Hiriart-Urruty, J.B.: From convex optimization to nonconvex optimization, Part I: Necessary and sufficient conditions for global optimality. In: Clarke, F.H., Dem’yanov, V.F., Giannessi, F. (eds.) Nonsmooth Optimization and Related Topics, Ettore Majorana International Sciences, Physical Sciences, Series 43, pp. 219–239. Plenum Press, New York (1989)

    Google Scholar 

  17. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993)

    Google Scholar 

  18. Horst, R., Thoai, N.V.: DC Programming: overview. J. Opt. Theory Appl. 103, 1–43 (1999)

    Article  MathSciNet  Google Scholar 

  19. Iwata S., Orlin, J.B.: A simple combinatorial algorithm for submodular function minimization. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, pp. 1230–1237 (2009)

  20. Iyer, R., Bilmes, J.: Algorithms for approximate minimization of the difference between submodular functions, with applications. In: Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, pp. 407–417. Also: http://arxiv.org/abs/1207.0560 (2012)

  21. Iyer, R., Jegelka, S., Bilmes, J.: Fast semidifferential-based submodular function optimization. In: Proceedings of the 30th International Conference on Machine Learning, pp. 855–863 (2013)

  22. Kawahara, Y., Nagano, K., Okamoto, Y.: Submodular fractional programming for balanced clustering. Pattern Recogn. Lett. 32, 235–243 (2011)

    Article  Google Scholar 

  23. Kawahara, Y., Washio, T.: Prismatic algorithm for discrete D.C. programming problem. In: Proceedings of the 25th Annual Conference on Neural Information Processing Systems, pp. 2106–2114 (2011)

  24. Kolmogorov, V., Shioura, A.: New algorithms for convex cost tension problem with application to computer vision. Discret. Optim. 6, 378–393 (2009)

    Article  MathSciNet  Google Scholar 

  25. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 323–332 (2009)

  26. McCormick, S.T.: Submodular containment is hard, even for networks. Oper. Res. Lett. 19, 95–99 (1996)

    Article  MathSciNet  Google Scholar 

  27. McCormick, S.T.: Submodular function minimization. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Discrete Optimization, Handbooks in Operations Research and Management Science, Chap. 7, vol. 12, pp. 321–391. Elsevier Science Publishers, Berlin (2006)

    Google Scholar 

  28. Miller, B.L.: On minimizing nonseparable functions defined on the integers with an inventory applications. SIAM J. Appl. Math. 21, 166–185 (1971)

    Article  MathSciNet  Google Scholar 

  29. Moriguchi, S., Murota, K.: Discrete Hessian matrix for L-convex functions. In: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E83-A, pp. 1104–1108 (2005)

  30. Moriguchi, S., Murota, K.: On discrete Hessian matrix and convex extensibility. J. Oper. Res. Soc. Jpn. 55, 48–62 (2012)

    MathSciNet  Google Scholar 

  31. Murota, K.: Valuated matroid intersection, I: optimality criteria. SIAM J. Discret. Math. 9, 545–561 (1996)

    Article  MathSciNet  Google Scholar 

  32. Murota, K.: Valuated matroid intersection, II: algorithms. SIAM J. Discret. Math. 9, 562–576 (1996)

    Article  MathSciNet  Google Scholar 

  33. Murota, K.: Matroid valuation on independent sets. J. Combinatorial Theory Ser. B 69, 59–78 (1997)

    Article  MathSciNet  Google Scholar 

  34. Murota, K.: Discrete convex analysis. Math. Program. 83, 313–371 (1998)

    MathSciNet  Google Scholar 

  35. Murota, K.: Matrices and Matroids for Systems Analysis. Springer, Berlin (2000)

    Google Scholar 

  36. Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  Google Scholar 

  37. Murota, K.: Recent developments in discrete convex analysis. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, Chap. 11, pp. 219–260. Springer, Berlin (2009)

    Chapter  Google Scholar 

  38. Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)

    Article  MathSciNet  Google Scholar 

  39. Murota, K., Shioura, A.: Exact bounds for steepest descent algorithms of L-convex function minimization. Oper. Res. Lett. to appear (2014)

  40. Narasimhan, M., Bilmes, J.: A submodular-supermodular procedure with applications to discriminative structure learning. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, pp. 404–412 (2005)

  41. Onn, S.: Nonlinear Discrete Optimization: An Algorithmic Theory. European Mathematical Society, Zurich (2010)

    Book  Google Scholar 

  42. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math. Program. Ser. A 118, 237–251 (2009)

    Article  MathSciNet  Google Scholar 

  43. Queyranne, M., Tardella, F.: Submodular function minimization in \(\mathbb{Z}^n\) and searching in Monge arrays. Unpublished manuscript, Presented by M. Queyranne at CTW04 (Cologne Twente Workshop 2004), Electronic Notes in Discrete Mathematics, vol. 17, p. 5 (2004)

  44. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)

    Google Scholar 

  45. Singer, I.: A Fenchel-Rockafellar type duality theorem for maximization. Bull. Aust. Math. Soc. 20, 193–198 (1979)

    Article  Google Scholar 

  46. Tao, P.D., El Bernoussi, S.: Duality in D.C. (difference of convex functions) optimization: Subgradient methods. In: Hoffman, K.H., Zowe, J., Hiriart-Urruty, J.B., Lemaréchal, C. (eds.) Trends in Mathematical Optimization, International Series of Numerical Mathematics, vol. 84, pp. 277–293. Basel, Birkhäuser (1987)

  47. Tao, P.D.: Hoai An, L.T.: Convex analysis approach to D.C. programming: Theory, algorithms and applications. Acta Math. Vietnam. 22, 289–355 (1997)

    MathSciNet  Google Scholar 

  48. Toland, J.F.: A duality principle for non-convex optimisation and the calculus of variations. Arch. Ration. Mech. Anal. 71, 41–61 (1979)

    Article  MathSciNet  Google Scholar 

  49. Topkis, D.M.: Minimizing a submodular function on a lattice. Oper. Res. 26, 305–321 (1978)

    Article  MathSciNet  Google Scholar 

  50. Tuy, H.: Global minimization of a difference of two convex functions. Math. Program. Study 30, 150–182 (1987)

    Article  Google Scholar 

  51. Tuy, H.: D.C. optimization: Theory, methods and algorithms. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 149–216. Kluwer Academic Publishers, Dordrecht (1995)

  52. Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 67–74 (2008)

  53. Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Comput. 15, 915–936 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Satoru Iwata and Akiyoshi Shioura for helpful discussions, Tom McCormick and Maurice Queyranne for communicating references [43]. This work is supported by KAKENHI (21360045, 26280004) and the Aihara Project, the FIRST program from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Maehara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maehara, T., Murota, K. A framework of discrete DC programming by discrete convex analysis. Math. Program. 152, 435–466 (2015). https://doi.org/10.1007/s10107-014-0792-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0792-y

Mathematics Subject Classification

Navigation