Skip to main content
Log in

On the convergence rate of Douglas–Rachford operator splitting method

  • Short Communication
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

This note provides a simple proof of a worst-case convergence rate measured by the iteration complexity for the Douglas–Rachford operator splitting method for finding a root of the sum of two maximal monotone set-valued operators. The accuracy of an iterate to the solution set is measured by the residual of a characterization of the original problem, which is different from conventional measures such as the distance to the solution set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  2. Auslender, A., Teboulle, M.: Interior projection-like methods for monotone variational inequalities. Math. Program. 104, 39–68 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L.: Resolvents of Monotone Operators, in Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  Google Scholar 

  4. Cai, X.J., Gu, G.Y., He, B.S.: On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339–363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, T.F., Glowinski, R.: Finite Element Approximation and Iterative Solution of a Class of Mildly Non-linear Elliptic Equations. Technical report, Stanford University, Stanford (1978)

  6. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eckstein, J.: Splitting methods for monotone operators with applications to parallel optimization, Doctoral dissertation, Department of Civil Engineering, Massachusetts Institute of Technology. Available as Report LIDS-TH-1877, Laboratory for Information and Decision Sciences, MIT Cambridge (1989)

  9. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fukushima, M.: The primal Douglas–Rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem. Math. Program. 72, 1–15 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  12. Glowinski, R., Marrocco, A.: Approximation par é’ements finis d’ordre un et résolution par pénalisation-dualité d’une classe de problèmes non linéaires, R.A.I.R.O., R2, pp. 41–76 (1975)

  13. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics, Philadelphia (1989)

    Book  MATH  Google Scholar 

  14. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Optim. 29(2), 403–419 (1991)

    Article  MATH  Google Scholar 

  15. He, B.S., Liao, L.-Z., Wang, S.L.: Self-adaptive operator splitting methods for monotone variational inequalities. Numer. Math. 94, 715–737 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, B.S., Yuan, X.M.: On the O(1/n) convergence rate of Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Martinet, B.: Regularisation, d’inéquations variationelles par approximations succesives. Rev. Francaise d’Inform. Recherche Oper. 4, 154–159 (1970)

    MathSciNet  MATH  Google Scholar 

  19. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29(2), 341–346 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moreau, J.J.: Proximité et dualit ’e dans un espace Hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  21. Nemirovski, A.: Prox-method with rate of convergence \(O(1/t)\) for variational inequality with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15, 229–251 (2005)

    Article  MathSciNet  Google Scholar 

  22. Rockafellar, R.T.: Monotone operators and proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1966)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to three anonymous referees for their constructive suggestions which have helped us improve the presentation of this paper substantially. In particular, one referee’s valuable comments including the suggestion of using the reflection operator to address the general case where both the operators \(A\hbox { and }B\) are set-valued are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingsheng He.

Additional information

Bingsheng He was supported by the NSFC Grant 91130007, and the grant of MOE of China 20110091110004. Xiaoming Yuan was partially supported by the General Research Fund from Hong Kong Research Grants Council: 203613.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Yuan, X. On the convergence rate of Douglas–Rachford operator splitting method. Math. Program. 153, 715–722 (2015). https://doi.org/10.1007/s10107-014-0805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0805-x

Keywords

Mathematics Subject Classification

Navigation