
This is a repository copy of Higher-order reverse automatic differentiation with emphasis
on the third-order.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/147114/

Version: Accepted Version

Article:

Gower, R.M. and Gower, A.L. orcid.org/0000-0002-3229-5451 (2016) Higher-order reverse
automatic differentiation with emphasis on the third-order. Mathematical Programming, 155
(1-2). pp. 81-103. ISSN 0025-5610

https://doi.org/10.1007/s10107-014-0827-4

This is a post-peer-review, pre-copyedit version of an article published in Mathematical
Programming. The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10107-014-0827-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ar
X

iv
:1

30
9.

54
79

v1
 [

cs
.M

S]
 2

1
Se

p
20

13

Higher-order Reverse Automatic Differentiation

with emphasis on the third-order.

R. Gower∗ · A. Gower†

September 24, 2013

Abstract

It is commonly assumed that calculating third order information is
too expensive for most applications. But we show that the directional
derivative of the Hessian (D3f(x) · d) can be calculated at a cost pro-
portional to that of a state-of-the-art method for calculating the Hessian
matrix. We do this by first presenting a simple procedure for designing
high order reverse methods and applying it to deduce several methods in-
cluding a reverse method that calculates D3f(x)·d. We have implemented
this method taking into account symmetry and sparsity, and successfully
calculated this derivative for functions with a million variables. These
results indicate that the use of third order information in a general non-
linear solver, such as Halley-Chebyshev methods, could be a practical
alternative to Newton’s method.

1 Introduction

Derivatives permeate mathematics and engineering right from the first steps of
calculus, which together with the Taylor series expansion is a central tool in
designing models and methods of modern mathematics. Despite this, successful
methods for automatically calculating derivatives of n-dimensional functions is
a relatively recent development. Perhaps most notably amongst recent methods
is the advent of Automatic Differentiation (AD), which has the remarkable
achievement of the “cheap gradient principle”, wherein the cost of evaluating
the gradient is proportional to that of the underlying function [11]. This AD
success is not only limited to the gradient, there also exists a number of efficient
AD algorithms for calculating Jacobian [6, 10] and Hessian matrices [8, 7], that
can accommodate for large dimensional sparse instances. The same success has
not been observed in calculating higher order derivatives.

The assumed cost in calculating high-order derivatives drives the design
of methods, typically favouring the use of lower-order methods. In the opti-
mization community it is generally assumed that calculating any third-order
information is too costly, so the design of methods revolves around using first

∗School of Mathematics and Maxwell Institute for Mathematical Sciences The University
of Edinburgh, e-mail: gowerrobert@gmail.com

†School of Mathematics, Statistics and Applied Mathematics, National University of Ire-
land Galway

1

http://arxiv.org/abs/1309.5479v1

and second order information. We will show that third-order information can
be used at a cost proportional to the cost of calculating the Hessian. This has
an immediate application in third-order nonlinear optimization methods such
as the Chebyshev-Halley Family [14]. Furthermore, the need for higher order
differentiation finds applications in calculating quadratures [16, 4], bifurcations
and periodic orbits [13]. In the fields of numerical integration and solution of
PDE’s, a lot of attention has been given to refining and adapting meshes to
then use first and second-order approximations over these meshes. An alterna-
tive paradigm would be to use fixed coarse meshes and higher approximations.
With the capacity to efficiently calculate high-order derivatives, this approach
could become competitive and lift the fundamental deterrent in higher-order
methods.

Current methods for calculating derivatives of order three or higher in the
AD community typically propagate univariate Taylor series [12] or repeatedly
apply the tangent and adjoint operations [18]. In these methods, each element of
the desired derivative is calculated separately. If AD has taught us anything it is
that we should not treat elements of derivatives separately, for their computation
can be highly interlaced. The cheap gradient principle illustrates this well, for
calculating the elements of the gradient separately yields a time complexity of n
times that of simultaneously calculating all entries. This same principle should
be carried over to higher order methods, that is, be wary of overlapping calcu-
lations in individual elements. Another alternative for calculating high order
derivatives is the use of forward differentiation [19]. The drawback of forward
propagation is that it calculates the derivatives of all intermediate functions,
in relation to the independent variables, even when these do not contribute to
the desired end result. For these reasons, we look at calculating high-order
derivatives as a whole and focus on reverse AD methods.

An efficient alternative to AD is that the end users hand code their deriva-
tives. Though with the advent of evermore complicated models, this task is
becoming increasingly error prone, difficult to write efficient code, and, let’s face
it, boring. This approach also rules out methods that use high order derivatives,
for no one can expect the end user to code the total and directional derivatives
of high order tensors.

The article flows as follows, first we develop algorithms that calculate deriva-
tives in a more general setting, wherein our function is described as a sequence
of compositions of maps, Section 2. We then use Griewank and Walther’s [11]
state-transformations in Section 3, to translate a composition of maps into an
AD setting and an efficient implementation. Numerical tests are presented in
Section 4, followed by our conclusions in Section 5.

2 Derivatives of Sequences of Maps

In preparation for the AD setting, we first develop algorithms for calculating
derivatives of functions that can be broken into a composition of operators

F (x) = Ψℓ ◦Ψℓ−1 ◦ · · · ◦Ψ1(x). (1)

for Ψi’s of varying dimension: Ψ1(x) ∈ C2(Rn,Rm1) and Ψi(x) ∈ C2(Rmi−1 ,Rmi),
each mi ∈ N and for i = 2, . . . , ℓ, so that F : Rn → R

mℓ . From this we define a
functional f(x) = yTF (x), where y ∈ R

mℓ , and develop methods for calculating

2

the gradient ∇f(x) = yTDF (x), the Hessian D2f(x) = yTD2F (x) and the
Tensor D3f(x) = yTD3F (x).

For a given d ∈ R
n, we also develop methods for the directional derivative

DF (x) · d, D2F (x) · d, the Hessian-vector product D2f(x) · d = yTD2F (x) · d
and the Tensor-vector product D3f(x) · d = yTD3F (x) · d. Notation will be
gradually introduced and clarified as is required, including the definition of the
preceding directional derivatives.

2.1 First-Order Derivatives

Taking the derivative of F , equation (1), and recursively applying the chain
rule, we get

yTDF = yTDΨℓDΨℓ−1 · · ·DΨ1. (2)

Note that yTDF is the transpose of the gradient ∇(yTF). For simplicity’s sake,
the argument of each function is omitted in (2), but it should be noted that
DΨi is evaluated at the argument (Ψi−1 ◦ · · · ◦ Ψ1)(x), for each i from 1 to ℓ.
If each of these arguments has been recorded, the gradient of yTF (x) can be
calculated with what’s called a reverse sweep in Algorithm (1). Reverse, for it
transverses the maps from the last Ψℓ to the first Ψ1, the opposite direction in
which (1) is evaluated. The intermediate stages of the gradient calculation are
accumulated in the vector v, its dimension changing from one iteration to the
next. This will be a recurring fact in the matrices and vectors used to store the
intermediate phases of the archetype algorithms presented in this article.

Algorithm 1: Archetype Reverse Gradient.

initialization: v = y
for i = ℓ, . . . , 1 do

vT ← vTDΨi

end

Output: yTDF (x) = vT

For a given direction d ∈ R
n, we define the directional derivative of F (x) as

d

dt
F (x+ td) = DiF (x + td)di := DF (x+ td) · d, (3)

where we have omitted the summation symbol for i, and instead, use Einstein
notation where a repeated indexes implies summation over that index. We use
this notation throughout the article unless otherwise stated. Again using the
chain-rule and (1), we find

DF (x) · d = DΨℓDΨℓ−1 · · ·DΨ1 · d.

This can be efficiently calculated using a forward sweep of the computational
graph, detailed below.

2.2 Second-Order Derivatives

Here we develop a reverse algorithm for calculating the Hessian D2(yTF (x)).
First we determine the Hessian for F as a composition of two maps, then we
use induction to design a method for when F is a composition of ℓ maps.

3

Algorithm 2: Archetype 1st Order Directional Derivative.

initialization: v̇0 = d
for i = 1, . . . , ℓ do

v̇← DΨiv̇
end

Output: DF (x) · d = v̇ℓ

For F (X) = Ψ2 ◦Ψ1(x) and ℓ = 2, we find the Hessian by differentiating in
the j-th and k-th coordinate,

Djk(yiFi) = (yiDrsΨ
2
i)DjΨ

1
rDkΨ

1
s + (yiDrΨ

2
i)DjkΨ

1
r, (4)

where the arguments have been omitted. So the (j, k) component of the Hessian
[D2(yTF)]jk = Djk(y

TF). The higher the order of the derivative, the more
messy and unclear component notation becomes. A way around this issue is to
use a tensor notation

yTD2F · (v, w) := yiDjkFivjwk,

and

(yTD2F · w) · v := yTD2F · (v, w), (5)

for any vectors v, w ∈ R
n, and in general,

[yTD2F · (△,�)]t2···tqs2···sp := yiDt1s1Fi△t1t2···tq�s1s2···sp , (6)

and

(yTD2F ·�) · △ := yTD2F · (△,�) (7)

for any compatible △ and � . To use a matrix notation for a composition of
maps can be aesthetically unpleasant. Using this tensor notation the Hessian
of yTF , see equation (4), becomes

yTD2F = yTD2Ψ2 · (DΨ1, DΨ1) + yTDΨ2 ·D2Ψ1 . (8)

We recursively use the identity (8) to design an algorithm that calculates the
Hessian of a function yTF (x) composed of ℓ maps, as defined in equation (1).

4

Algorithm 3: Archetype Reverse Hessian.

initialization: v = y, W = 0
for i = ℓ, . . . , 1 do

W ←W · (DΨi, DΨi)

W ←W + vTD2Ψi

vT ← vTDΨi

end

Output: yTD2F ←W, yTDF ← vT

Proof of Algorithm: We will use induction on the number of compositions
ℓ. For ℓ = 1 the output is W = yTD2Ψ1. Now we suppose the Algorithm is
correct for m − 1 map compositions, and use this assumption to show that for
ℓ = m the output is W = yTD2F . Let

yTX = yTΨm ◦ · · · ◦Ψ2,

so that yTF = yTX ◦ Ψ1. Then at the end of the iteration i = 2, by the chain
rule, vT = yTDX and, by induction, W = yTD2X . This way, at termination,
or after the iteration i = 1, we get

W = yTD2X · (DΨ1, DΨ1) + yTDX ·D2Ψ1

= yTD2(X ◦Ψ1) [Equation (8)]

= yTD2F.

Now we take a small detour to show how to calculate Hessian-vector products
in a similar manner. We do this because it is an important component of graph-
coloring based algorithms for calculating the Hessian [7] and its complexity is
surprisingly the same as evaluating yTF , the underlying functional [3]. Thus,
analogously, we calculate the directional derivative of the gradient yTDF (x),
for ℓ = 2,

yTDjkFdk = yTDrsΨ
2DjΨ

1
rDkΨ

1
sdk + yTDrΨ

2DjkΨ
1
rdk,

(9)

or simply,

yTD2F · d = yTD2Ψ2 · (DΨ1, DΨ1 · d) + yTDΨ2 ·D2Ψ1 · d , (10)

and use this recursively to calculate the directional derivative of yTDF (x) in
Algorithm 4. This algorithm was first described in [3].
Proof of Algorithm: Let yTF be a composition of ℓ maps as in (1) and

Xm = yTΨℓ ◦ · · · ◦Ψm,

so that Xm−1 = Xm ◦ Ψm−1. The first for loop simply accumulates the direc-
tional derivative DF ·d. For the second for loop, we use an induction hypothesis
that at the end of the i = m iteration w = D2Xm · v̇m−1. The first iteration,
i = ℓ, the output is w = yTD2Ψℓ · d = D2Xℓ · v̇ℓ−1. Now suppose our hypoth-
esis is true for i = m+ 1, so that at the end of the i = m + 1 iteration, by the
induction hypothesis,

w = D2Xm+1 · v̇m = D2Xm+1 ·DΨm · v̇m−1,

5

Algorithm 4: Archetype Gradient Directional Derivative

initialization: v̇0 = d, v = y ∈ R
mℓ , w = 0 ∈ R

mℓ

for i = 1, . . . , ℓ do
v̇i ← DΨi · v̇i−1

end

for i = ℓ, . . . , 1 do

w ← w ·DΨi

w ← w + vTD2Ψi · v̇i−1

vT ← vTDΨi

end

Output: yTD2F (x) · d← w, yTDF ← vT

and, by calculus,
vT = yTDΨℓ · · ·DΨm+1 = DXm+1.

Then for the next step, the i = m iteration,

w ← w ·DΨm + vTD2Ψm · v̇m−1

= (D2Xm+1 ·DΨm · v̇m−1) ·DΨm +DXm+1 ·D2Ψm · v̇m−1

= D2Xm+1 · (DΨm, DΨm · v̇m−1) +DXm+1 ·D2Ψm · v̇m−1

= D2(Xm+1 ◦Ψm) · v̇i−1 [Equation (10)]

= D2Xm · v̇m−1.

Thus by induction we have proved that at the end of the i = 1 iteration,

w = D2X1 · v̇0 = D2X1 · d = yTD2F (x) · d.

2.3 Third-Order Methods

Now we move on to the directional derivative of yTD2F (x), that is, the deriva-
tive of yTD2F (x+ td) in t, where d ∈ R

n, to get

d

dt
yTD2F (x+ td) = yi

d

dt
DjkFi(x+ td)

= yiDjkmFi(x+ td)dm

:= yTD3F (x + td) · d. (11)

Here our tensor notation really facilitates working with third-order derivatives.
Using matrix notation would lead to confusing equations and possibly detter
intuition. The notation conventions from before carry over naturally to third-
order derivatives, with

(yTD3F · (△,�,♦))t2...tqs2...spl2...lr := yiD
3Ft1s1l1△t1...tq�s1...sp♦l1...lr , (12)

and

yTD3F · (△,�,♦) = (yTD3F · ♦) · (△,�) = ((yTD3F · ♦) ·�) · △, (13)

6

for any compatible △, � and ♦. We begin by calculating the directional deriva-
tive of a composition of two maps F = Ψ2 ◦Ψ1,

d

dt

(

yTD2F (x+ dt)
)

=D
(

yTD2Ψ2 · (DΨ1, DΨ1)
)

· d+D
(

(yTDΨ2) ·D2Ψ1
)

· d

=(yTD3Ψ2 ·DΨ1 · d) · (DΨ1, DΨ1) + (yTD2Ψ2) · (DΨ1, D2Ψ1 · d)

+ (yTD2Ψ2) · (D2Ψ1 · d,DΨ1) + (yTDΨ2) ·D3Ψ1 · d

+ (yTD2Ψ2 ·DΨ1 · d) ·D2Ψ1,

in conclusion, after some rearrangement,

yT
d

dt
D2F (x+ dt) = yTD3Ψ2 · (DΨ1, DΨ1, DΨ1 · d) + yTDΨ2 ·D3Ψ1 · d

+ yTD2Ψ2 ·
(

(DΨ1, D2Ψ1 · d) + (D2Ψ1 · d,DΨ1) + (D2Ψ1, DΨ1 · d)
)

(14)

As usual, we have omitted all arguments to the maps. The above applied
recursively gives us the Reverse Hessian Directional Derivative Algorithm 5, or
RevHedir for short. To prove the correctness of RevHedir, we use induction
based on Xm = yTΨℓ ◦ · · · ◦Ψm, working from m = ℓ backwards towards m = 1
to calculate yTD3F (x) · d.

Algorithm 5: Archetype Reverse Hessian Directional Derivative
(RevHedir)

initialization: v̇1 = d, v = y,W = Td = 0 ∈ R
mℓ×mℓ

for i = 1, . . . , ℓ do
v̇i ← DΨi · v̇i−1

end

for i = ℓ, . . . , 1 do

Td← Td · (DΨi, DΨi)

Td← Td+W ·
(

(DΨi, D2Ψi · v̇i−1) + (D2Ψi · v̇i−1, DΨi)
)

Td← Td+W · (D2Ψi, DΨi · v̇i−1)

Td← Td+ vTD3Ψi · v̇i−1

W ←W · (DΨi, DΨi) + vTD2Ψi

vT ← vTDΨi

end

Output: yTD3F (x) · d← Td, yTD2F ←W, yTDF ← vT

Proof of Algorithm: Our induction hypothesis is that at the end of the i = m
iteration Td = yTD3Xm · v̇i−1. After the first iteration i = ℓ, paying attention
to the initialization of the variables, we have that Td = vTD3Ψℓ · v̇ℓ−1 =
yTD3Xℓ · v̇ℓ−1. Now suppose the hypothesis is true for iterations up to m+ 1,
so that at the beginning of the i = m iteration Td = yTD3Xm+1 · v̇m. To prove
the hypothesis we need the following results: at the end of the i = m iteration

vT = yTDXm and W = yTD2Xm, (15)

7

both are demonstrated in the proof of Algorithm 10. Now we are equipt to
examine Td at the end of the i = m iteration,

Td← Td · (DΨm, DΨm) +W ·
(

(DΨm, D2Ψm · v̇m−1) + (D2Ψm · v̇m−1, DΨm)
)

+W · (D2Ψm, DΨm · v̇m−1) + vTD3Ψm · v̇m−1,

using the induction hypothesis followed by property (13) we get Td·(DΨm, DΨm) =
yTD3Xm+1 · v̇m · (DΨm, DΨm) = yTD3Xm+1 · (DΨm, DΨm, v̇m), and from the
algorithm v̇m = DΨm · v̇m−1. Then using equations (15) to substitute W and
vT we arrive at

Td =yTD3Xm+1 ·
(

DΨm, DΨm, DΨm · v̇m−1
)

+ yTD2Xm ·
(

(DΨm, D2Ψm · v̇m−1) + (D2Ψm · v̇m−1, DΨm)
)

+ yTD2Xm · (D2Ψm, DΨm · v̇m−1) +
(

yTDXm
)

D3Ψm · v̇m−1

=yTD3Xm · v̇m−1 [Using equation 14].

Finally, after iteration i = 1, we have

Td = yTD3X1 · v̇0 = yTD3F · d.

As is to be expected, in the computation of the Tensor-vector product, only
2-dimensional tensor arithmetic, or matrix arithmetic, is used, and it is not
necessary to form a 3-dimensional tensor. On the other hand, calculating the
entire yTD3F Tensor does involve 3-dimensional arithmetic. The final archetype
algorithm we present is a reverse method for calculating the entire third-order
Tensor yTD3F (x). We want an expression for the derivative such that

yT
d

dt
D2F (x+ td) = yTD3F (x+ td) · d (16)

for any d. From equation (14), we see that d is contracted with the last coor-
dinate in every term except one. To account for this term, we need a switching
tensor S such that

yTD2Ψ2 · (D2Ψ1 · d,DΨ1) = yTD2Ψ2 · (D2Ψ1, DΨ1) · S · d,

in other words we define S as

S · (v, w, z) = (v, z, w) or Sabcijkviwjzk = vazbwc (17)

for any vectors v, w and z. This implies that S’s components are Sabcijk =
δaiδcjδbk, where δnm = 1 if n = m and 0 otherwise. Then for F = Ψ2 ◦ Ψ1 we
use equation (14) to reach

yTD3F · d =
(

yTD3Ψ2 · (DΨ1, DΨ1, DΨ1) + yTDΨ2 ·D3Ψ1

+ yTD2Ψ2 ·
(

(DΨ1, D2Ψ1) + (D2Ψ1, DΨ1) · S + (D2Ψ1, DΨ1)
))

· d. (18)

The above is true for all vectors d, thus we can remove d from both sides to arrive
at our desired expression for yTD3F. With this notation we have, as expected,
(yTD3F)ijk = yTDijkF . We can now use this result to build a recurrence for

8

Algorithm 6: Archetype Reverse Third Order Derivative

initialization: v = y,W = 0 ∈ R
mℓ×mℓ , T ∈ R

mℓ×mℓ×mℓ

for i = ℓ, . . . , 1 do

T ← T · (DΨi, DΨi, DΨi)

T ← T +W ·
(

(DΨi, D2Ψi) + (D2Ψi, DΨi)
)

T ← T +W · (D2Ψi, DΨi) · S + vTD3Ψi

W ←W · (DΨi, DΨi) + vTD2Ψi

vT ← vTDΨi

end

Output: yTD3F (x) · d← T, yTD2F ←W, yTDF ← vT

D3Xm, defined by Xm = yTΨℓ ◦ · · · ◦ Ψm, working from m = ℓ backwards
towards m = 1 to calculate yTD3F (x) · d.
Proof of Algorithm: the demonstration of this algorithm can be carried out
in an analogous fashion to the proof of Algorithm 5.

This notation, together with a closed expression for high-order derivatives
of a composition of two maps, see [5], can be used to design algorithms of
even higher-orders. Though this would require the presentation of a rather
cumbersome notation. What we can extract from this generic formula in [5], is
that the number of terms that need to be calculated grows combinatorially in
the order of the derivative, thus posing a lasting computational challenge.

3 Implementing through State Transformations

When coding a function, the user would not commonly write a composition of
maps such as the form used in the previous section, see equation (1). Instead
users implement functions in a number of different ways. Automatic Differentia-
tion (AD) packages standardize these hand written functions, through compiler
tools and operator overloading, into an evaluation that fits the format of Al-
gorithm 7. As an example, consider the function f(x, y, z) = xy sin(z), and its
evaluation for a given (x, y, z) through the following list of commands

v−2 = x

v−1 = y

v0 = z

v1 = v−2v−1

v2 = sin(v0)

v3 = v2v1.

By naming the functions φ1(v−2, v−1) := v−2v−1, φ2(v0) := sin(v0) and φ3(v2, v1) :=
v2v1, this evaluation fits the format in Algorithm 7.

In general, each φi is an elemental function such as addition, multiplication,
sin(·), exp(·), etc, which together with their derivatives are already coded in the
AD package. In order, the algorithm first copies the independent variables xi

into internal intermediate variables vi−n, for i = 1, . . . , n. Following convention,
we use negative indexes for elements that relate to independent variables. For

9

consistency, we will shift all indexes of vectors and matrices by −n from here
on, e.g., the components of x ∈ R

n are xi−n for i = 1 . . . n.
The next step in Algorithm 7, calculates the value v1 that only depends on

the intermediate variables vi−n, for i = 1, . . . , n. In turn, the value v2 may
now depend on vi−n, for i = 1, . . . , n+ 1, then v3 may depend on vi−n, for i =
1, . . . , n+2 and so on for all ℓ intermediate variables. Each vi is calculated using
only one elemental function φi. There is a dependency amongst the intermediate
variables, for φi is evaluated at previously calculated intermediate variables. We
say that j is a predecessor of i if vj is a necessary argument of φi. Let P (i) be the
set of predecessors of i and vP (i) the vector of predecessors, thus φi(vP (i)) = vi
and necessarily j < i for any j ∈ P (i). Analogously, S(i) is the set of successors
of i.

Algorithm 7: Function evaluation

Input: vi−n = xi, for i = 1, . . . n
for i = 1 . . . ℓ do

vi ← φi(vP (i))
end

Output: f(x)← vℓ

We can bridge this algorithmic description of a function with that of com-
positions of maps (1) using Griewank and Walther’s [11] state-transformations

Φi : Rn+ℓ → R
n+ℓ,

v 7→ (v1−n, . . . , vi−1, φi(vP (i)), vi+1, . . . , vℓ)
T , (19)

for i = 1, . . . ℓ. In components,

Φi
r(v) = vr(1− δri) + δriφi(vP (i)), (20)

where here, and in the remainder of this article, we abandon Einstein’s notation
of repeated indexes, because having the limits of summation is useful for imple-
menting. With this, the function f(x) defined by Algorithm 7 can be written
as

f(x) = eTℓ+nΦ
ℓ ◦ Φℓ−1 ◦ · · · ◦ Φ1 ◦ (PTx), (21)

where eℓ+n is the (ℓ+n)th canonical vector and P is the immersion matrix [I 0]
with I ∈ R

n×n and 0 ∈ R
n×(ℓ−n). The Jacobian of the ith state transformation

Φi, in coordinates, is simply

DjΦ
i
r(v) = δrj(1− δri) + δri

∂φi

∂vj
(vP (i)). (22)

With the state-transforms and the structure of their derivatives, we look
again at a few of the archetype algorithms in Section 2 and build a corre-
sponding implementable version. Our final goal is to implement the RevHedir

algorithm 5, for which we need the implementation of the reverse gradient and
Hessian algorithms.

10

3.1 First-Order

To design an algorithm to calculate the gradient of f(x), given in equation (21),
we turn to the Archetype Reverse Gradient Algorithm 1 and identify1 the Φi’s
in place of the Ψi’s. Using (22) we find that vT ← vTDΦi becomes

v̄j ← v̄j(1− δij) + v̄i
∂φi

∂vj
(vP (i)) ∀j ∈ {1− n, . . . , ℓ} (23)

where v̄i is the i-th component of v, also known as the i-th adjoint in the AD
literature. Note that if j 6= i in the above, then the above step will only alter v̄j
if j ∈ P (i). Otherwise if j = i, then this update is equivalent to setting v̄i = 0.
We can disregard this update, as v̄i will not be used in subsequent iterations.
This is because i 6∈ P (m), for m ≤ i. With these considerations, we arrive at
the Algorithm 8, the component-wise version of Algorithm 1. Note how we have
used the abbreviated operation a+ = b to mean a← a+b. Furthermore, the last
step vT ← vTPT selects the adjoints corresponding to independent variables.

An abuse of notation that we will employ throughout, is that whenever we
refer to v̄i in the body of the text, we are referring to the value of v̄i after
iteration i of the Reverse Gradient algorithm has finished.

Algorithm 8: Reverse Gradient.

initialization: v = e1 ∈ R
ℓ+n

for i = ℓ, . . . , 1 do
for j ∈ P (i) do v̄j+ = v̄i∂φi(vP (i))/∂vj

end

Output: ∇f ← vTPT = (v̄1−n, . . . , v̄0)
T

Similarly, by using (22) again, each iteration i of the Archetype 1st Order
Directional Derivative Algorithm 2, can be reduced to a coordinate form

v̇r ← (1 − δri)v̇r + δri
∑

j∈P (i)

v̇j
∂φi

∂vj
(vP (i)),

where v̇j is the j-th component of v̇. If r 6= i in the above, then v̇r remains
unchanged, while if r = i then we have

v̇i ←
∑

j∈P (i)

v̇j
∂φi

∂vj
(vP (i)). (24)

We implement this update by sweeping through the successors of each interme-
diate variable and incrementing a single term to the sum on the right-hand side
of (24), see Algorithm 9. It is crucial to observe that the i-th component of v̇
will remain unaltered after the i-th iteration.

Again, when we refer to v̇i in the body of the text from this point on, we
are referring to the value of v̇i after iteration i has finished in Algorithm 9.

1Especifically PT would be Ψ1 and Φi would be Ψi+1.

11

Algorithm 9: 1st Order Directional Derivative.

initialization: v̇ = PTd ∈ R
ℓ+n

for j = 1, . . . , ℓ do
for i ∈ S(j) do v̇i+ = v̇j∂φi(vP (i))/∂vj

end

Output: DF · d = (v̇1−n, . . . , v̇0)
T

3.2 Second-Order

Just by substituting Ψis for Φis in the Archetype Reverse Hessian, Algorithm 3,
we can quickly reach a very efficient component-wise algorithm for calculating
the Hessian of f(x), given in equation (21). This component-wise algorithm
is also known as edge pushing, and has already been detailed in Gower and
Mello [8]. Here we use a different notation which leads to a more concise pre-
sentation. Furthermore, the results below form part of the calculations needed
for third order methods.

There are two steps of Algorithm 3 we must investigate, for we already
know how to update v from the above section. For these two steps, we need to
substitute

DjkΦ
i
r(v) =

∂2Φi
r

∂vj∂vk
(v) = δri

∂2φi

∂vj∂vk
(vP (i)), (25)

and DΦi, equation (22), in W ←W · (DΦi, DΦi) + vTD2Φi, resulting in

Wjk ←

ℓ
∑

s,t=1−n

∂Φi
s

∂vj
Wst

∂Φi
t

∂vk
+

ℓ
∑

s=1−n

v̄s
∂2Φi

s

∂vj∂vk

=(1− δji)Wjk(1− δki) +
∂φi

∂vj
Wii

∂φi

∂vk

+
∂φi

∂vj
Wik(1− δki) + (1− δji)Wji

∂φi

∂vk
(26)

+ v̄i
∂2φi

∂vj∂vk
. (27)

Before translating these updates into an algorithm, we need a crucial result: at
the beginning of iteration i − 1, the element Wjk is zero if j ≥ i for all k. We
show this by using induction on the iterations of Algorithm 3. Note that W is
initially set to zero, so the first step from (26) and (27) reduce to

Wjk ← v̄ℓ
∂2φℓ

∂vj∂vk
,

which is zero for j = ℓ because ℓ /∈ P (ℓ). Now we assume the induction hypoth-
esis holds at the beginning of the iteration i, so that Wjk = 0 for j ≥ i + 1.
So letting j ≥ i+ 1 and executing the iteration i we get from the updates (26)
and (27)

Wjk ←Wjk +Wji

∂φi

∂vk
,

because j /∈ P (i). Together with our hypothesis Wjk = 0 and Wji = 0, we see
that Wjk remains zero. While if j = i, then (26) and (27) sets Wjk ← 0 because

12

i 6∈ P (i). Hence at the beginning of iteration i − 1 we have that Wjk = 0 for
j ≥ i and this completes the induction.

Furthermore, W is symmetric at the beginning of iteration i because it is
initialized to W = 0 and each iteration preserves symmetry. Consequentially,
the only nonzero components Wjk appear when both j, k ≤ i. We make use
of this symmetry to avoid unnecessary calculations on symmetric counterparts.
Let W{jk} denote both Wjk and Wkj . To accommodate for this symmetric rep-
resentation, we perform (27) once for each pair {j, k}, as to opposed for every
coordinate pair, see the Creating step in Algorithm 10.

The calculations in (26) are done by sweeping through the nonzero elements
of W and then updating their contribution to the overall calculation.

Thus if W{ii} 6= 0, looking to (26), this triggers the following increment

W{jk}+ =
∂φi

∂vj
W{ii}

∂φi

∂vk
.

Similarly to Creating step, the above should only be carried out for every pair
{j, k}. While each nonzero off diagonal term Wik and Wki, for k < i, according
to (26), has the effect of

Wjk+ =
∂φi

∂vj
Wik, (28)

Wkj+ =
∂φi

∂vj
Wki. (29)

It is redundant to update both symmetric elements, so we substitute both for
just

W{jk}+ =
∂φi

∂vj
W{ik}.

Though we must take care when j = k, for according to (28) and (29), the two
symmetric updates “double up” on the diagonal

W{jj}+ = 2
∂φi

∂vj
W{ij}. (30)

The operation (26) has been implemented with these above considerations in the
Pushing step in Algorithm 10. The names of the steps Creating and Pushing

are elusive to a graph interpretation [8].

3.3 Third-Order

The final algorithm that we translate to implementation is the Hessian direc-
tional derivative, the RevHedir Algorithm 5. This implementation has an im-
mediate application in the Halley-Chebyshev class of third-order optimization
methods, for at each step of these algorithms, such a directional derivative is
required. For this reason we pay special attention to its implementation.

Identifying each Ψi with Φi, we address each of the five operations on the
matrix Td in Algorithm 5 separately, pointing out how each one preserves the
symmetry of Td and how to perform the component-wise calculations.

First, given that Td is symmetric, the 2D pushing update

Td← Td ·
(

DΦi, DΦi
)

, (31)

13

Algorithm 10: component-wise form of edge pushing.

Input: Function evaluation 7, x ∈ R
n.

initialization: v̄ = eℓ+n ∈ R
ℓ+n, W = 0 ∈ R

(ℓ+n)×(ℓ+n)

for i = ℓ, . . . , 1 do

Pushing

foreach k ≤ i such that W{ki} 6= 0 do

if k < i then
foreach j ∈ P (i) do

if j = k then
W{jj}+ = 2DjφiW{ji}

else
W{jk}+ = DjφiW{ki}

end

end

else k = i
foreach unordered pair {j, p} ⊂ P (i) do

W{jp}+ = DpφiDjφiW{ii}

end

end

end

Creating

foreach unordered pair {j, p} ⊂ P (i) do
W{jp}+ = v̄iDpjφi

end

Adjoint

foreach j ∈ P (i) do
v̄j+ = v̄iDjφi

end

end

Output: D2f = (Wjk)1−n≤j,k≤0

14

is exactly as detailed in (26) and the surrounding comments. While 3D creating

Td← Td+ vTD3Φi · v̇i−1,

can be written in coordinate form as

Tdjk ← Tdjk +

ℓ
∑

r,p=1−n

vrDjkpΦ
i
rv̇

i−1
p

= Tdjk +
∑

p∈P (i)

vi
∂3φi

∂vj∂vk∂vp
v̇p, (32)

where v̇p is the value given to v̇p after iteration p in Algorithm 9. Note that
v̇i−1
p = v̇p for p ∈ P (i), because p ≤ i−1, so on the iteration i−1 of Algorithm 9

the calculation of v̇p will already have been finalized. Another trick we employ
is that, since the above calculation is performed on iteration i, we know that v̄i
has already been calculated. These substitutions involving v̄is and v̇is will be
carried out in the rest of the text with little or no comment. The update (32)
also preserves the symmetry of Td.

To examine the update,

Td← Td+W ·
(

DΦi, D2Φi · v̇i−1
)

, (33)

we use (22) and (25) to obtain the coordinate form

Tdjk ← Tdjk +

ℓ
∑

r,s=1−n

Wrs

(

δrj(1− δri) + δri
∂φi

∂vj

)

δsi
∂2φi

∂vk∂vp
v̇p

= Tdjk +Wji(1− δji)
∂2φi

∂vk∂vp
v̇p +Wii

∂φi

∂vj

∂2φi

∂vk∂vp
v̇p. (34)

Upon inspection, the update

Td← Td+W ·
(

D2Φi · v̇i−1, DΦi
)

is the transpose of (34) due to the symmetry of W . So it can be written in
coordinate form as

Tdjk ← Tdjk +Wik(1− δki)
∂2φi

∂vj∂vp
v̇p +Wii

∂φi

∂vk

∂2φi

∂vj∂vp
v̇p. (35)

Thus update (35) together with (34) is equivalent to summing a symmetric
matrix to Td, so the symmetry of Td is still preserved.

Last we translate

Td← Td+W ·
(

D2Φi, DΦi · v̇i−1
)

, (36)

to its coordinate form

Tdjk ← Tdjk +

ℓ
∑

r,s=1−n

WrsδriDjkΦ
i
r

(

δsp(1− δsi) + δsi
∂φi

∂vp

)

v̇p

= Tdjk +Wip

∂2φi

∂vj∂vk
(1 − δpi)v̇p +Wii

∂2φi

∂vj∂vk
Dpφiv̇p. (37)

15

No change is affected by interchanging the indices j and k on the right-
hand side of (37), so once again Td remains symmetric. For convenience of
computing, we group updates (34), (35) and (37) into a set of updates called 2D

Connecting. The name indicating that these updates “connect” objects that
contain second order derivative information.

More then just symmetric, through closer inspection of these operations, we
see that the sparsity structure of Td is contained in that of W . This remains
true even after execution, at which point Td = D3f(x) · d and W = D2f(x)
where, for each j, k, p ∈ {1− n, . . . , 0}, we have

Djkf(x) = 0 =⇒ Djkpf(x)dp = 0.

This fact should be explored when implementing the method, in that, the data
structure of Td should imitate that of W .

3.3.1 Implementing Third-Order Directional Derivative

The matrices Td and W are symmetric, and based on the assumption that they
will be sparse, we will represent them using a symmetric sparse data structure.
Thus we now identify each pair (Wjk ,Wkj) and (Tdjk, T dkj) with the element
W{jk} and Td{jk}, respectively. Much like was done with edge pushing, Algo-
rithm 10, we will organize the computations by sweeping through all nonzero
elements of Td{ik} andW{ik} and then updating their contribution to the overall
calculation.

We must take care when updating our symmetric representation of Td,
both for the 2D pushing update (31) and for the redundant symmetric coun-
terparts (34) and (35) which “double-up” on the diagonal, much like in the
Pushing operations of Algorithm 10.

Each operation (34), (35) and (37) depends on a diagonal element W{ii}

and an off-diagonal element W{ik} of W , for k 6= i. Grouping together all terms
that involve W{ii} we get the resulting update

Td{jk}+ = W{ii}

∑

p∈P (i)

v̇p

(

∂φi

∂vj

∂2φi

∂vk∂vp
+

∂φi

∂vk

∂2φi

∂vj∂vp
+

∂φi

∂vp

∂2φi

∂vj∂vk

)

. (38)

By appropriately renaming the indices in (34), (35) and (37), each nonzero off
diagonal elements W{ik} gives the updates (39), (40) and (41), respectively.

Tdjk+ =
∑

p∈P (i)

v̇p
∂2φi

∂vj∂vp
Wik, ∀j ∈ P (i) (39)

Tdkj+ =
∑

p∈P (i)

v̇p
∂2φi

∂vj∂vp
Wki, ∀j ∈ P (i) (40)

Tdjp+ =
∑

p∈P (i)

v̇k
∂2φi

∂vj∂vp
Wik, ∀j ∈ P (i) (41)

Note that (39) and (40) are symmetric updates, and when j = k these two
operations “double-up” resulting in the update

Tdjj+ = 2
∑

p∈P (i)

v̇p
∂2φi

∂vj∂vp
Wij .

16

Passing to our symmetric notation, we dispense with (40) and account for this
doubling effect in Algorithm 11. Finally we can eliminate redundant symmetric
calculations performed in (41) by only performing this operation for each pair
{j, p}. All these considerations relating to 2D connecting have been factored
into our implementation of the RevHedir Algorithm 11.

Performing 3D Creating (32) using this symmetric representation is simply
a matter of not repeating the obvious symmetric counterpart, but instead, per-
forming these operations on Td{jk} once for each appropriate pair {j, k}, see 3D
Creating in to Algorithm 11.

Algorithm 11: component-wise form of RevHedir.

Input: Function evaluation 7, x ∈ R
n.

Initialization: v̄1−n = · · · = v̄ℓ−1 = 0, v̄ℓ = 1, Wjk = 0, Td{jk} = 0,
j < k ∈ {1− n, . . . , ℓ}
Calculate first order directional derivative v̇ using Algorithm (9)
for i = ℓ, . . . , 1 do

2D Pushing of Td, see Pushing in Algorithm 10
2D Connecting

foreach p ∈ P (i), {j, k} ⊂ P (i) do
Td{jk}+ = W{ii}v̇p (DjφiDkpφi +DkφiDjpφi +DpφiDjkφi)

end

foreach k < i,W{ik} 6= 0 do

foreach (j, p) ∈ P (i)2 do

if j = k then

Td{kk}+ = 2W{ik}v̇pDjpφi

end

if j 6= k then

Td{jk}+ = W{ik}v̇pDjpφi

end

if j ≥ p then

Td{jp}+ = W{ik}v̇kDjpφi

end

end

end

3D Creating

foreach p ∈ P (i), {j, k} ⊂ P (i) do
Td{jk}+ = viDjkpφiv̇p

end

Pushing and creating applied to W , see Algorithm 10
Adjoint Iteration applied to v̄, see Algorithm 8

end

Output: (D3f(x) · d)jk = Td{jk}, D
2f(x)jk = W{jk}

for each j ≤ k ∈ {1− n, . . . , 0}.

17

4 Numerical experiment

We have implemented the RevHedir Algorithm 11 as an additional driver of
ADOL-C, a well established automatic differentiation library coded in C and
C++ [9]. We used version ADOL-C-2.4.0, the most recent available 2. The
tests where carried out on a personal laptop with 1.70GHz dual core processors
Intel Core i5-3317U, 4GB of RAM, with the Ubuntu 13.0 operating system.

For those interested in replicating our implementation, we used a sparse undi-
rected weighted graph data structure to represent the matrices W and Td. The
data structure is an array of weighted neighbourhood sets, one for each node,
where each neighbourhood set is a dynamic array that resizes when needed.
Each neighbourhood set is maintained in order and the method used to insert
or increment the weight of an edge is built around a binary search.

We have hand-picked sixteen problems from the CUTE collection [2], augm-

lagn from [15], toiqmerg (Toint Quadratic Merging problem) and chainros trigexp

(Chained Rosenbrook function with Trigonometric and exponential constraints)
from [17] for the experiments. We have also created a function

heavey band(x, band) =
n−band
∑

i=1

sin





band
∑

j=1

xi+j



 .

For our experiments, we tested heavey band(x, 20). The problems were selected
based on the sparsity pattern of D3f(x).d, dimension scalability and sparsity.
Our goal was to cover a variety of patterns, to easily change the dimension of
the function and work with sparse matrices.

In Table 1, the “Pattern” column indicates the type of sparsity pattern:
bandwidth3 of value x (B x), arrow, frame, number of diagonals (D x), or irreg-
ular pattern. The “nnz/n” column gives the number of nonzeros in D3f(x).d
over the dimension n, which serves as a of measure density. For each problem,
we applied RevHedir and edge pushing Algorithm 11 and 10 to the objective
function f : Rn → R, with xi = i and di = 1, for i = 1, . . . , n, and give the
runtime of each method for dimension n = 106 in Table 1. Note that all of these
matrices are very sparse, partly due to the “thinning out” caused by the high
order differentiation. This probably contributed to the relatively low runtime,
for in these tests, the run-times have a 0.75 correlation with the density measure
“nnz/n”. This leads us to believe that the actual pattern is not a decisive factor
in runtime.

We did not benchmark our results against an alternative algorithm for we
could not find a known AD package that is capable of efficiently calculating such
directional derivatives for such high dimensions. For small dimensions, we used
the tensor eval of ADOL-C to calculate the entire tensor using univariate
forward Taylor series propagation[12]. Then we contract the resulting tensor
with the vector d. This was useful to check that our implementation was correct,
though it would struggle with dimensions over n = 100, thus not an appropriate
comparison.

A remarkable feature of these tests, is that the time spent by RevHedir to
calculate D3f(x) · d was, on average, 108% that of calculating D2f(x). Thus,

2As checked May 28th, 2013
3The bandwidth of matrix M = (mij) is the maximum value of 2|i − j| + 1 such that

mij 6= 0.

18

name Pattern nnz/n edge pushing RevHedir

cosine B 3 3.0000 2.89 5.25
bc4 B 3 3.0000 3.93 7.87
cragglevy B 3 2.9981 5.41 10.6
chainwood B 3 1.4999 4.04 7.22
morebv B 3 3.0000 4.57 9.44
scon1dls B 3 0.7002 3.99 8.12
bdexp B 5 0.0004 2.21 3.86
pspdoc B 5 4.9999 3.05 5.97
augmlagn 5× 5 diagonal blocks 4.9998 4.15 9.28
brybnd B 11 12.9996 14.19 38.79
chainros trigexp B 3 + D 6 4.4999 6.51 12.87
toiqmerg B 7 6.9998 4.33 8.89
arwhead arrow 3.0000 3.63 6.78
nondquar arrow + B 3 4.9999 2.9 5.61
sinquad frame + diagonal 4.9999 5.12 10.01
bdqrtic arrow + B 7 8.9998 8.98 19.62
noncvxu2 irregular 6.9998 4.95 9.55
ncvxqp3 irregular 6.9997 2.9 6.48
heavey band B 39 38.9995 20.74 61.27

Table 1: Description of problem set together with the execution time in seconds
of edge push and RevHedir for n = 106.

if the user is prepared to pay the price for calculating the Hessian, he could
also gain some third order information for approximately the same cost. The
code for these tests can be downloaded from the Edinburgh Research Group in
Optimization website: http://www.maths.ed.ac.uk/ERGO/.

5 Conclusion

Our contribution boils down to a framework for designing high order reverse
methods, and an efficient implementation of the directional derivative of the
Hessian called RevHedir. The framework paves the way to obtaining a reverse
method for all orders once and for all. Such an achievement could cause a
paradigm shift in numerical method design, wherein, instead of increasing the
number of steps or the mesh size, increasing the order of local approximations
becomes conceivable. We have also shed light on existing ADmethods, providing
a concise proof of the edge pushing [8] and the reverse gradient directional
derivative [1] algorithms.

The novel algorithms 5 and 6 for calculating the third-order derivative and
its contraction with a vector, respectively, fulfils what we set out to achieve:
they accumulate the desired derivative “as a whole”, thus taking advantage of
overlapping calculations amongst individual components. This is in contrast
with what is currently being used, e.g., univariate Taylor expansions [12] and
repeated tangent/adjoint operations [18]. These algorithms can also make use of
the symmetry, as illustrated in our implementation of RevHedir Algorithm 11,
wherein all operations are only carried out on a lower triangular matrix.

We implemented and tested the RevHedir with two noteworthy results. The
first is its capacity to solve sparse problems of large dimension of up to a million
variables. The second is how the time spent by RevHedir to calculate the direc-
tional derivative D3f(x) · d was very similar to that spent by edge pushing to
calculate the Hessian. We believe this is true in general and plan on confirming

19

http://www.maths.ed.ac.uk/ERGO/

this in future work through complexity analysis. Should this be confirmed, it
would have an immediate consequence in the context of nonlinear optimization,
in that the third-order Halley-Chebyshev methods could be used to solve large
dimensional problems with an iteration cost proportional to that of Newton
step. In more detail, at each step the Halley-Chebyshev methods require the
Hessian matrix and its directional derivative. The descent direction is then
calculated by solving the Newton system, and an additional system with the
same sparsity pattern as the Newton system. If it is confirmed that solving
these systems costs the same, in terms of complexity, then the cost of a Halley-
Chebyshev iteration will be proportional to that of a Newton step. Though this
comparison only holds if one uses these automatic differentiation procedures to
calculate the derivatives in both methods.

The CUTE functions used to test both edge pushing and RevHedir are
rather limited, and further tests on real-world problems should be carried out.
Also, complexity bounds need to be developed for both algorithms.

A current limitation of reverse AD procedures, such as the ones we have
presented, is their issue with memory usage. All floating point values of the
intermediate variables must be recorded on a forward sweep and kept for use
in the reverse sweep. This can be a very substantial amount of memory, and
can be prohibitive for large-scale functions [21]. As an example, when we used
dimensions of n = 107, most of our above test cases exhausted the available
memory on the personal laptop used. A possible solution to this, is to allow
a trade off between run-time and memory usage by reversing only parts of the
procedure at a time. This method is called checkpointing [21, 20].

References

[1] J. Abate, C. Bischof, L. Roh, and A. Carle, Algorithms and design
for a second-order automatic differentiation module, in Proceedings of the
1997 International Symposium on Symbolic and Agebraic Computation,
New York, 1997, ACM, pp. 149–155.

[2] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, CUTE:
constrained and unconstrained testing environment, ACM Transactions on
Mathematical Software, 21 (1995), pp. 123–160.

[3] B. Christianson, Automatic Hessians by reverse accumulation, IMA
Journal of Numerical Analysis, 12 (1992), pp. 135–150.

[4] G. F. Corliss, A. Griewank, and P. Henneberger, High-order stiff
ODE solvers via automatic differentiation and rational prediction, in Lec-
ture Notes in Computer Science, Springer, 1997, pp. 114–125.

[5] L. E. Fraenkel, Formulae for high derivatives of composite functions,
Mathematical Proceedings of the Cambridge Philosophical Society, 83
(2008), p. 159.

[6] A. H. Gebremedhin, F. Manne, and A. Pothen, What color is your
Jacobian? Graph coloring for computing derivatives, SIAM Review, 47
(2005), pp. 629–705.

20

[7] A. H. Gebremedhin, A. Tarafdar, A. Pothen, and A. Walther,
Efficient computation of sparse Hessians using coloring and automatic dif-
ferentiation, INFORMS Journal on Computing, 21 (2009), pp. 209–223.

[8] R. M. Gower and M. P. Mello, A new framework for the computation
of Hessians, Optimization Methods and Software, 27 (2012), pp. 251–273.

[9] A. Griewank, D. Juedes, and J. Utke, ADOL-C, a package for the
automatic differentiation of algorithms written in C/C++, ACM Transac-
tions on Mathematical Software, 22 (1996), pp. 131–167.

[10] A. Griewank and U. Naumann, Accumulating Jacobians as chained
sparse matrix products, Mathematical Programming, 95 (2003), pp. 555–
571.

[11] A. Griewank and A. Walther, Evaluating derivatives, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second
edi ed., 2008.

[12] A. Griewank, A. Walther, and J. Utke, Evaluating higher derivative
tensors by forward propagation of univariate Taylor series, Mathematics of
Computation, 69 (2000), pp. 1117–1130.

[13] J. Guckenheimer and B. Meloon, Computing periodic orbits and their
bifurcations with automatic differentiation, SIAM Journal on Scientific
Computing, 22 (2000), pp. 951–985.

[14] J. Gutiérrez and M. Hernández, A family of Chebyshev-Halley type
methods in Banach spaces, Bulletin of the Australian Mathematical Society,
55 (1997), p. 113.

[15] W. Hock and K. Schittkowski, Test examples for nonlinear program-
ming codes, Journal of Optimization Theory and Applications, 30 (1980),
pp. 127–129.

[16] V. Kariwala, Automatic Differentiation-Based Quadrature Method of
Moments for Solving Population Balance Equations, AIChE Journal, 58
(2012), pp. 842–854.

[17] Ladislav Luksan Jan Vlcek, Test problems for unconstrained optimiza-
tion, Tech. Report 897, Academy of Sciences of the Czech Republic, 2003.

[18] U. Naumann, The Art of Differentiating Computer Programs: An Intro-
duction to Algorithmic Differentiation, no. 24 in Software, Environments,
and Tools, SIAM, Philadelphia, PA, 2012.

[19] R. D. Neidinger, An Efficient Method for the Numerical Evaluation of
Partial Derivatives of Arbitrary Order, ACM Transactions on Mathemati-
cal Software, 18 (1992), pp. 159–173.

[20] J. Sternberg and A. Griewank, Reduction of Storage Requirement by
Checkpointing for Time-Dependent Optimal Control Problems in ODEs,
in Automatic Differentiation: Applications, Theory, and Implementations,
B. N. M. Bücker, G. Corliss, P. Hovland, U. Naumann, ed., no. 0, Springer,
1 ed., 2006, pp. 99–110.

21

[21] A. Walther and A. Griewank, Advantages of Binomial Checkpoint-
ing for Memory-reduced Adjoint Calculations, Numerical Mathematics and
Advanced Applications, (2004), pp. 834–843.

22

	1 Introduction
	2 Derivatives of Sequences of Maps
	2.1 First-Order Derivatives
	2.2 Second-Order Derivatives
	2.3 Third-Order Methods

	3 Implementing through State Transformations
	3.1 First-Order
	3.2 Second-Order
	3.3 Third-Order
	3.3.1 Implementing Third-Order Directional Derivative

	4 Numerical experiment
	5 Conclusion

