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entiable (possibly nonconvex) component, together with a certain non-differentiable
(but convex) component. In order to solve these problems, we propose a random-
ized stochastic projected gradient (RSPG) algorithm, in which proper mini-batch
of samples are taken at each iteration depending on the total budget of stochastic
samples allowed. The RSPG algorithm also employs a general distance function
to allow taking advantage of the geometry of the feasible region. Complexity of
this algorithm is established in a unified setting, which shows nearly optimal com-
plexity of the algorithm for convex stochastic programming. A post-optimization
phase is also proposed to significantly reduce the variance of the solutions returned
by the algorithm. In addition, based on the RSPG algorithm, a stochastic gradient
free algorithm, which only uses the stochastic zeroth-order information, has been
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1 Introduction

In this paper, we consider the following problem

Ψ∗ := min
x∈X

{Ψ(x) := f(x) + h(x)}, (1)

where X is a closed convex set in Euclidean space R
n, f : X → R is continuously

differentiable, but possibly nonconvex, and h is a simple convex function with
known structure, but possibly nonsmooth (e.g. h(x) = ‖x‖1 or h(x) ≡ 0). We also
assume that the gradient of f is L-Lipschitz continuous for some L > 0, i.e.,

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖, for any x, y ∈ X, (2)

and Ψ is bounded below over X, i.e. Ψ∗ is finite. Although f is Lipschitz con-
tinuously differentiable, we assume that only the noisy gradient of f is available
via subsequent calls to a stochastic first-order oracle (SFO). Specifically, at the
k-th call, k ≥ 1, for the input xk ∈ X, SFO would output a stochastic gradi-

ent G(xk, ξk), where ξk is a random variable whose distribution is supported on
Ξk ⊆ R

d. Throughout the paper, we make the following assumptions for the Borel
functions G(xk, ξk).

A1: For any k ≥ 1, we have

a) E[G(xk, ξk)] = ∇f(xk), (3)

b) E

[

‖G(xk, ξk)−∇f(xk)‖2
]

≤ σ2, (4)

where σ > 0 is a constant. For some examples which fit our setting, one may refer
the problems in references [1,11,12,15,16,21,22,23,32].

Stochastic programming (SP) problems have been the subject of intense stud-
ies for more than 50 years. In the seminal 1951 paper, Robbins and Monro [30]
proposed a classical stochastic approximation (SA) algorithm for solving SP prob-
lems. Although their method has “asymptotically optimal” rate of convergence for
solving a class of strongly convex SP problems, the practical performance of their
method is often poor (e.g., [33, Section 4.5.3]). Later, Polyak [28] and Polyak and
Juditsky [29] proposed important improvements to the classical SA algorithms,
where larger stepsizes were allowed in their methods. Recently, there have been
some important developments of SA algorithms for solving convex SP problems
(i.e., Ψ in (1) is a convex function). Motivated by the complexity theory in convex
optimization [25], these studies focus on the convergence properties of SA-type
algorithms in a finite number of iterations. For example, Nemirovski et al. [24]
presented a mirror descent SA approach for solving general nonsmooth convex
stochastic programming problems. They showed that the mirror descent SA ex-
hibits an optimal O(1/ǫ2) iteration complexity for solving these problems with an
essentially unimprovable constant factor. Also, Lan [19] presented a unified op-
timal method for smooth, nonsmooth and stochastic optimization. This unified
optimal method also leads to optimal methods for strongly convex problems [13,
14]. However, all of the above mentioned methods need the convexity of the prob-
lem to establish their convergence and cannot deal with the situations where the
objective function is not necessarily convex.

When problem (1) is nonconvex, the research on SP algorithms so far is very
limited and still far from mature. For the deterministic case, i.e., σ = 0 in (4), the
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complexity of the gradient descent method for solving problem (1) has been stud-
ied in [6,26]. Very recently, Ghadimi and Lan [15] proposed an SA-type algorithm
coupled with a randomization scheme, namely, a randomized stochastic gradient
(RSG) method, for solving the unconstrained nonconvex SP problem, i.e., prob-
lem (1) with h ≡ 0 and X = R

n. In their algorithm, a trajectory {x1, . . . , xN} is
generated by a stochastic gradient descent method, and a solution x̄ is randomly
selected from this trajectory according to a certain probability distribution. They
showed that the number of calls to the SFO required by this algorithm to find
an ǫ-solution, i.e., a point x̄ such that E[‖∇f(x̄)‖22] ≤ ǫ, is bounded by O(σ2/ǫ2).
They also presented a variant of the RSG algorithm, namely, a two-phase ran-
domized stochastic gradient (2-RSG) algorithm to improve the large-deviation
results of the RSG algorithm. Specifically, they showed that the complexity of
the 2-RSG algorithm for computing an (ǫ, Λ)-solution, i.e., a point x̄ satisfying
Prob{‖∇f(x̄)‖22 ≤ ǫ} ≥ 1− Λ, for some ǫ > 0 and Λ ∈ (0,1), can be bounded by

O
{

log(1/Λ)σ2

ǫ

[

1

ǫ
+

log(1/Λ)

Λ

]}

.

They also specialized the RSG algorithm and presented a randomized stochastic
gradient free (RSGF) algorithm for the situations where only noisy function values
are available. It is shown that the expected complexity of this RSGF algorithm is
O(nσ2/ǫ2).

While the RSG algorithm and its variants can handle the unconstrained non-
convex SP problems, their convergence cannot be guaranteed for stochastic com-
posite optimization problems in (1) whereX 6= R

n and/or h(·) is non-differentiable.
Our contributions in this paper mainly consist of developing variants of the RSG
algorithm by taking a mini-batch of samples at each iteration of our algorithm
to deal with the constrained composite problems while preserving the complexity
results. More specifically, we first modify the scheme of the RSG algorithm to
propose a randomized stochastic projected gradient (RSPG) algorithm to solve
constrained nonconvex stochastic composite problems. Unlike the RSG algorithm,
at each iteration of the RSPG algorithm, we take multiple samples such that the
total number of calls to the SFO to find a solution x̄ ∈ X such that E[‖gX (x̄)‖2] ≤ ǫ,
is still O(σ2/ǫ2), where gX (x̄) is a generalized projected gradient of Ψ at x̄ over
X. In addition, our RSPG algorithm is in a more general setting depending on
a general distance function rather than Euclidean distance [15]. This would be
particularly useful for special structured constrained set (e.g., X being a standard
simplex). Secondly, we present a two-phase randomized stochastic projected gradi-
ent (2-RSPG) algorithm, the RSPG algorithm with a post-optimization phase, to
improve the large-deviation results of the RSPG algorithm. And we show that the
complexity of this approach can be further improved under a light-tail assump-
tion about the SFO. Thirdly, under the assumption that the gradient of f is also
bounded on X, we specialize the RSPG algorithm to give a randomized stochas-
tic projected gradient free (RSPGF) algorithm, which only uses the stochastic
zeroth-order information. Finally, we present some numerical results to show the
effectiveness of the aforementioned randomized stochastic projected gradient al-
gorithms, including the RSPG, 2-RSPG and RSPGF algorithms. Some practical
improvements of these algorithms have been also discussed.

The remaining part of this paper is organized as follows. We first describe some
properties of the projection based on a general distance function in Section 2. In
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section 3, a deterministic first-order method for problem (1) is proposed, which
mainly provides a basis for our stochastic algorithms developed in later sections.
Then, by incorporating a randomized scheme, we present the RSPG and 2-RSPG
algorithms for solving the SP problem (1) in Section 4. In section 5, we discuss how
to generalize the RSPG algorithm to the case when only zeroth-order information
is available. Some numerical results and discussions from implementing our algo-
rithms are presented in Section 6. Finally, in Section 7, we give some concluding
remarks.

Notation. We use ‖ · ‖ to denote a general norm with associated inner product
〈·, ·〉. For any p ≥ 1, ‖ · ‖p denote the standard p-norm in R

n, i.e.

‖x‖pp =
n
∑

i=1

|xi|p, for any x ∈ R
n.

For any convex function h, ∂h(x) is the subdifferential set at x. Given any Ω ⊆ R
n,

we say f ∈ C1,1
L (Ω), if f is Lipschitz continuously differentiable with Lipschitz

constant L > 0, i.e.,

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖, for any x, y ∈ Ω, (5)

which clearly implies

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ L

2
‖y − x‖2, for any x, y ∈ Ω. (6)

For any real number r, ⌈r⌉ and ⌊r⌋ denote the nearest integer to r from above and
below, respectively. R+ denotes the set of nonnegative real numbers.

2 Some properties of generalized projection

In this section, we review the concept of projection in a general sense as well as
its important properties. This section consists of two subsections. We first discuss
the concept of prox-function and its associated projection in Subsection 2.1. Then,
in Subsection 2.2, we present some important properties of the projection, which
will play a critical role for the proofs in our later sections.

2.1 Prox-function and projection

It is well-known that using a generalized distance generating function, instead of
the usual Euclidean distance function, would lead to algorithms that can be ad-
justed to the geometry of the feasible set and/or efficient solutions of the projection
[2,3,5,19,24,34]. Hence, in this paper we would like to set up the projection based
on the so-called prox-function.

A function ω : X → R is said to be a distance generating function with modulus
α > 0 with respect to ‖ · ‖, if ω is continuously differentiable and strongly convex
satisfying

〈x− z,∇ω(x)−∇ω(z)〉 ≥ α‖x− z‖2, ∀x, z ∈ X. (7)
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Then, the prox-function associated with ω is defined as

V (x, z) = ω(x)− [ω(z) + 〈∇ω(z), x− z〉]. (8)

In this paper, we assume that the prox-function V is chosen such that the gener-
alized projection problem given by

x+ = arg min
u∈X

{

〈g, u〉+ 1

γ
V (u, x) + h(u)

}

(9)

is easily solvable for any γ > 0, g ∈ R
n and x ∈ X. Apparently, different choices

of ω can be used in the definition of prox-function. One simple example would be
ω(x) = ‖x‖22/2, which gives V (x, z) = ‖x − z‖22/2. And in this case, x+ is just the
usual Euclidean projection. Some less trivial examples can be found, e.g., in [2,4,
8,18,25].

2.2 Properties of Projection

In this subsection, we discuss some important properties of the generalized pro-
jection defined in (9). Let us first define

PX(x, g, γ) =
1

γ
(x− x+), (10)

where x+ is given in (9). We can see that PX(x,∇f(x), γ) can be viewed as a
generalized projected gradient of Ψ at x. Indeed, if X = R

n and h vanishes, we
would have PX(x,∇f(x), γ) = ∇f(x) = ∇Ψ(x).

The following lemma provides a bound for the size of PX(x, g, γ).

Lemma 1 Let x+ be given in (9). Then, for any x ∈ X, g ∈ R
n and γ > 0, we have

〈g, PX(x, g, γ)〉 ≥ α‖PX (x, g, γ)‖2 + 1

γ

[

h(x+)− h(x)
]

. (11)

Proof By the optimality condition of (9) and the definition of prox-function in (8),
there exists a p ∈ ∂h(x+) such that

〈g + 1

γ

[

∇ω(x+)−∇ω(x)
]

+ p, u− x+〉 ≥ 0, for any u ∈ X.

Letting u = x in the above inequality, by the convexity of h and (7), we obtain

〈g, x− x+〉 ≥ 1

γ
〈∇ω(x+)−∇ω(x), x+ − x〉+ 〈p, x+ − x〉

≥ α

γ
‖x+ − x‖2 +

[

h(x+)− h(x)
]

,

which in the view of (10) and γ > 0 clearly imply (11).

It is well-known [31] that the Euclidean projection is Lipschitz continuous.
Below, we show that this property also holds for the general projection.
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Lemma 2 Let x+
1 and x+

2 be given in (9) with g replaced by g1 and g2 respectively.

Then,

‖x+
2 − x+

1 ‖ ≤ γ

α
‖g2 − g1‖, (12)

where α > 0 is the modulus of strong convexity of ω defined in (7).

Proof By the optimality condition of (9), for any u ∈ X, there exist p1 ∈ ∂h(x+
1 )

and p2 ∈ ∂h(x+
2 ) such that

〈g1 +
1

γ

[

∇ω(x+
1 )−∇ω(x)

]

+ p1, u− x+
1 〉 ≥ 0, (13)

and

〈g2 +
1

γ

[

∇ω(x+
2 )−∇ω(x)

]

+ p2, u− x+
2 〉 ≥ 0. (14)

Letting u = x+
2 in (13), by the convexity of h, we have

〈g1, x+
2 − x+

1 〉 ≥ 1

γ
〈∇ω(x)−∇ω(x+

1 ), x
+
2 − x+

1 〉+ 〈p1, x+
1 − x+

2 〉

≥ 1

γ
〈∇ω(x+

2 )−∇ω(x+
1 ), x

+
2 − x+

1 〉+ 1

γ
〈∇ω(x)−∇ω(x+

2 ), x
+
2 − x+

1 〉

+h(x+
1 )− h(x+

2 ). (15)

Similarly, letting u = x+
1 in (14), we have

〈g2, x+
1 − x+

2 〉 ≥ 1

γ
〈∇ω(x)−∇ω(x+

2 ), x
+
1 − x+

2 〉+ 〈p2, x+
2 − x+

1 〉

≥ 1

γ
〈∇ω(x)−∇ω(x+

2 ), x
+
1 − x+

2 〉+ h(x+
2 )− h(x+

1 ). (16)

Summing up (15) and (16), by the strong convexity (7) of ω, we obtain

‖g1 − g2‖‖x+
2 − x+

1 ‖ ≥ 〈g1 − g2, x
+
2 − x+

1 〉 ≥ α

γ
‖x+

2 − x+
1 ‖2,

which gives (12).

As a consequence of the above lemma, we have PX(x, ·, γ) is Lipschitz contin-
uous.

Proposition 1 Let PX(x, g, γ) be defined in (10). Then, for any g1 and g2 in R
n, we

have

‖PX (x, g1, γ)− PX(x, g2, γ)‖ ≤ 1

α
‖g1 − g2‖, (17)

where α is the modulus of strong convexity of ω defined in (7).

Proof Noticing (10), (13) and (14), we have

‖PX (x, g1, γ)−PX(x, g2, γ)‖ = ‖1
γ
(x−x+

1 )−
1

γ
(x−x+

2 )‖ =
1

γ
‖x+

2 −x+
1 ‖ ≤ 1

α
‖g1−g2‖,

where the last inequality follows from (12).

The following lemma (see, e.g., Lemma 1 of [19] and Lemma 2 of [13]) charac-
terizes the solution of the generalized projection.

Lemma 3 Let x+ be given in (9). Then, for any u ∈ X, we have

〈g, x+〉+ h(x+) +
1

γ
V (x+, x) ≤ 〈g, u〉+ h(u) +

1

γ
[V (u, x)− V (u, x+)]. (18)



NONCONVEX STOCHASTIC COMPOSITE OPTIMIZATION 7

3 Deterministic first-order methods

In this section, we consider the problem (1) with f ∈ C1,1
L (X), and for each input

xk ∈ X, we assume that the exact gradient ∇f(xk) is available. Using the exact
gradient information, we give a deterministic projected gradient (PG) algorithm
for solving (1), which mainly provides a basis for us to develop the stochastic
first-order algorithms in the next section.

A projected gradient (PG) algorithm

Input: Given initial point x1 ∈ X, total number of iterations N , and the
stepsizes {γk} with γk > 0, k ≥ 1.
Step k = 1, . . . , N . Compute

xk+1 = arg min
u∈X

{

〈∇f(xk), u〉+
1

γk
V (u, xk) + h(u)

}

. (19)

Output: xR ∈ {xk, . . . , xN} such that

R = arg min
k∈{1,...,N}

‖gX,k‖, (20)

where the gX,k is given by

gX,k = PX(xk,∇f(xk), γk). (21)

We can see that the above algorithm outputs the iterate with the minimum
norm of the generalized projected gradient. In the above algorithm, we have not
specified the selection of the stepsizes {γk}. We will return to this issue after
establishing the following convergence results.

Theorem 1 Suppose that the stepsizes {γk} in the PG algorithm are chosen such that

0 < γk ≤ 2α/L with γk < 2α/L for at least one k. Then, we have

‖gX,R‖2 ≤ LD2
Ψ

∑N
k=1(αγk − Lγ2

k/2)
, (22)

where

gX,R = PX (xR,∇f(xR), γR) and DΨ :=

[

(Ψ(x1)− Ψ∗)

L

]
1
2

. (23)

Proof Since f ∈ C1,1
L (X), it follows from (6), (10), (19) and (21) that for any

k = 1, . . . , N , we have

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

= f(xk)− γk〈∇f(xk), gX,k〉+
L

2
γ2
k‖gX,k‖2. (24)

Then, by Lemma 1 with x = xk, γ = γk and g = ∇f(xk), we obtain

f(xk+1) ≤ f(xk)−
[

αγk‖gX,k‖2 + h(xk+1)− h(xk)
]

+
L

2
γ2
k‖gX,k‖2,
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which implies

Ψ(xk+1) ≤ Ψ(xk)−
(

αγk − L

2
γ2
k

)

‖gX,k‖2. (25)

Summing up the above inequalities for k = 1, . . . , N , by (20) and γk ≤ 2α/L, we
have

‖gX,R‖2
N
∑

k=1

(

αγk − L

2
γ2
k

)

≤
N
∑

k=1

(

αγk − L

2
γ2
k

)

‖gX,k‖2

≤ Ψ(x1)− Ψ(xk+1) ≤ Ψ(x1)− Ψ∗. (26)

By our assumption,
∑N

k=1

(

αγk − Lγ2
k/2
)

> 0. Hence, dividing both sides of the

above inequality by
∑N

k=1

(

αγk − Lγ2
k/2
)

, we obtain (22).

The following corollary shows a specialized complexity result for the PG algo-
rithm with one proper constant stepsize policy.

Corollary 1 Suppose that in the PG algorithm the stepsizes γk = α/L for all k =
1, . . . , N . Then, we have

‖gX,R‖2 ≤ 2L2D2
Ψ

α2N
. (27)

Proof With the constant stepsizes γk = α/L for all k = 1, . . . , N , we have

LD2
Ψ

∑N
k=1(αγk − Lγ2

k/2)
=

2L2D2
Ψ

Nα2
, (28)

which together with (22), clearly imply (27).

4 Stochastic first-order methods

In this section, we consider problem (1) with f ∈ C1,1
L (X), but its exact gradient is

not available. We assume that only noisy first-order information of f is available
via subsequent calls to the stochastic first-order oracle SFO. In particular, given
the k-th iteration xk ∈ X of our algorithm, the SFO will output the stochastic
gradient G(xk, ξk), where ξk is a random vector whose distribution is supported
on Ξk ⊆ R

d. We assume the stochastic gradient G(xk, ξk) satisfies Assumption A1.

This section also consists of two subsections. In Subsection 4.1, we present a
stochastic variant of the PG algorithm in Section 3 incorporated with a random-
ized stopping criterion, called the RSPG algorithm. Then, in Subsection 4.2, we
describe a two phase RSPG algorithm, called the 2-RSPG algorithm, which can
significantly reduce the large-deviations resulted from the RSPG algorithm.



NONCONVEX STOCHASTIC COMPOSITE OPTIMIZATION 9

4.1 A randomized stochastic projected gradient method

Convexity of the objective function often plays an important role on establishing
the convergence results for the current SA algorithms [13,14,24,20,19]. In this
subsection, we give an SA-type algorithm which does not require the convexity of
the objective function. Moreover, this weaker requirement enables the algorithm
to deal with the case in which the random noises {ξk}, k ≥ 1 could depend on the
iterates {xk}.
A randomized stochastic projected gradient (RSPG) algorithm

Input: Given initial point x1 ∈ X, iteration limit N , the stepsizes {γk} with
γk > 0, k ≥ 1, the batch sizes {mk} with mk > 0, k ≥ 1, and the probability
mass function PR supported on {1, . . . , N}.
Step 0. Let R be a random variable with probability mass function PR.
Step k = 1, . . . , R − 1. Call the SFO mk times to obtain G(xk, ξk,i), i =
1, . . . ,mk, set

Gk =
1

mk

mk
∑

i=1

G(xk, ξk,i), (29)

and compute

xk+1 = arg min
u∈X

{

〈Gk, u〉+
1

γk
V (u, xk) + h(u)

}

. (30)

Output: xR.

Unlike many SA algorithms, in the RSPG algorithm we use a randomized
iteration count to terminate the algorithm. In the RSPG algorithm, we also need
to specify the stepsizes {γk}, the batch sizes {mk} and probability mass function
PR. We will again address these issues after presenting some convergence results
of the RSPG algorithm.

Theorem 2 Suppose that the stepsizes {γk} in the RSPG algorithm are chosen such

that 0 < γk ≤ α/L with γk < α/L for at least one k, and the probability mass function

PR are chosen such that for any k = 1, . . . , N ,

PR(k) := Prob{R = k} =
αγk − Lγ2

k
∑N

k=1(αγk − Lγ2
k)

. (31)

Then, under Assumption A1,

(a) for any N ≥ 1, we have

E[‖g̃X,R‖2] ≤
LD2

Ψ + (σ2/α)
∑N

k=1(γk/mk)
∑N

k=1(αγk − Lγ2
k)

, (32)

where the expectation is taken with respect to R and ξ[N ] := (ξ1, . . . , ξN ), DΨ is

defined in (23), and the stochastic projected gradient

g̃X,k := PX(xk, Gk, γk), (33)

with PX defined in(10);
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(b) if, in addition, f in problem (1) is convex with an optimal solution x∗, and the

stepsizes {γk} are non-decreasing, i.e.,

0 ≤ γ1 ≤ γ2 ≤ ... ≤ γN ≤ α

L
, (34)

we have

E
[

Ψ(xR)− Ψ(x∗)
]

≤ (α− Lγ1)V (x∗, x1) + (σ2/2)
∑N

k=1(γ
2
k/mk)

∑N
k=1(αγk − Lγ2

k)
, (35)

where the expectation is taken with respect to R and ξ[N ]. Similarly, if the stepsizes

{γk} are non-increasing, i.e.,

α

L
≥ γ1 ≥ γ2 ≥ ... ≥ γN ≥ 0, (36)

we have

E
[

Ψ(xR)− Ψ(x∗)
]

≤ (α− LγN )V̄ (x∗) + (σ2/2)
∑N

k=1(γ
2
k/mk)

∑N
k=1(αγk − Lγ2

k)
, (37)

where V̄ (x∗) := maxu∈X V (x∗, u).

Proof Let δk ≡ Gk − ∇f(xk), k ≥ 1. Since f ∈ C1,1
L (X), it follows from (6), (10),

(30) and (33) that, for any k = 1, . . . , N , we have

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

= f(xk)− γk〈∇f(xk), g̃X,k〉+
L

2
γ2
k‖g̃X,k‖2

= f(xk)− γk〈Gk, g̃X,k 〉+
L

2
γ2
k‖g̃X,k‖2 + γk〈δk, g̃X,k〉. (38)

So, by Lemma 1 with x = xk, γ = γk and g = Gk, we obtain

f(xk+1) ≤ f(xk)−
[

αγk‖g̃X,k‖2 + h(xk+1)− h(xk)
]

+
L

2
γ2
k‖g̃X,k‖2

+γk〈δk, gX,k〉+ γk〈δk, g̃X,k − gX,k 〉,

where the projected gradient gX,k is defined in (21). Then, from the above inequal-
ity, (21) and (33), we obtain

Ψ(xk+1) ≤ Ψ(xk)−
(

αγk − L

2
γ2
k

)

‖g̃X,k‖2 + γk〈δk, gX,k 〉+ γk‖δk‖‖g̃X,k − gX,k‖

≤ Ψ(xk)−
(

αγk − L

2
γ2
k

)

‖g̃X,k‖2 + γk〈δk, gX,k 〉+
γk
α

‖δk‖2,

where the last inequality follows from Proposition 1 with x = xk, γ = γk, g1 = Gk

and g2 = ∇f(xk). Summing up the above inequalities for k = 1, . . . , N and noticing
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that γk ≤ α/L, we obtain

N
∑

k=1

(

αγk − Lγ2
k

)

‖g̃X,k‖2 ≤
N
∑

k=1

(

αγk − L

2
γ2
k

)

‖g̃X,k‖2

≤ Ψ(x1)− Ψ(xk+1) +
N
∑

k=1

{

γk〈δk, gX,k〉+
γk
α

‖δk‖2
}

≤ Ψ(x1)− Ψ∗ +
N
∑

k=1

{

γk〈δk, gX,k 〉+
γk
α

‖δk‖2
}

. (39)

Notice that the iterate xk is a function of the history ξ[k−1] of the generated
random process and hence is random. By part a) of Assumption A1, we have

E[〈δk, gX,k 〉|ξ[k−1]] = 0. In addition, denoting Sj =
∑j

i=1 δk,i, and noting that
E[〈Si−1, δk,i〉|Si−1] = 0 for all i = 1, . . . ,mk, we have

E[‖Smk‖2] = E

[

‖Smk−1‖2 + 2〈Smk−1, δk,mk
〉+ ‖δk,mk

‖2
]

= E[‖Smk−1‖2] + E[‖δk,mk
‖2] = . . . =

mk
∑

i=1

‖δk,i‖2,

which, in view of (29) and Assumption A1.b), then implies that

E[‖δk‖2] =
1

m2
k

E[‖Smk‖2] =
1

m2
k

mk
∑

i=1

E[‖δk,i‖2] ≤
σ2

mk
. (40)

With these observations, now taking expectations with respect to ξ[N ] on both
sides of (39), we get

N
∑

k=1

(

αγk − Lγ2
k

)

Eξ[N ]
‖g̃X,k‖2 ≤ Ψ(x1)− Ψ∗ + (σ2/α)

N
∑

k=1

(γk/mk).

Then, since
∑N

k=1

(

αγk − Lγ2
k

)

> 0 by our assumption, dividing both sides of the

above inequality by
∑N

k=1

(

αγk − Lγ2
k

)

and noticing that

E[‖g̃X,R‖2] = ER,ξ[N ]
[‖g̃X,R‖2] =

∑N
k=1

(

αγk − Lγ2
k

)

Eξ[N ]
‖g̃X,k‖2

∑N
k=1

(

αγk − Lγ2
k

)
,

we have (32) holds.
We now show part (b) of the theorem. By Lemma 3 with x = xk, γ = γk, g = Gk

and u = x∗, we have

〈Gk, xk+1〉+h(xk+1)+
1

γk
V (xk+1, xk) ≤ 〈Gk, x

∗〉+h(x∗)+
1

γk
[V (x∗, xk)−V (x∗, xk+1)],

which together with (6) and definition of δk give

f(xk+1) + 〈∇f(xk) + δk, xk+1〉+ h(xk+1) +
1

γk
V (xk+1, xk)

≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 + 〈∇f(xk) + δk, x

∗〉+ h(x∗)

+
1

γk
[V (x∗, xk)− V (x∗, xk+1)].
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Simplifying the above inequality, we have

Ψ(xk+1) ≤ f(xk) + 〈∇f(xk), x
∗ − xk〉+ h(x∗) + 〈δk, x∗ − xk+1〉+

L

2
‖xk+1 − xk‖2

− 1

γk
V (xk+1, xk) +

1

γk
[V (x∗, xk)− V (x∗, xk+1)].

Then, it follows from the convexity of f , (7) and (8) that

Ψ(xk+1) ≤ f(x∗) + h(x∗) + 〈δk, x∗ − xk+1〉+
(

L

2
− α

2γk

)

‖xk+1 − xk‖2

+
1

γk
[V (x∗, xk)− V (x∗, xk+1)]

= Ψ(x∗) + 〈δk, x∗ − xk〉+ 〈δk, xk − xk+1〉+
Lγk − α

2γk
‖xk+1 − xk‖2

+
1

γk
[V (x∗, xk)− V (x∗, xk+1)]

≤ Ψ(x∗) + 〈δk, x∗ − xk〉+
γk

2(α− Lγk)
‖δk‖2 +

1

γk
[V (x∗, xk)− V (x∗, xk+1)],

where the last inequality follows from Young’s inequality. Noticing γk ≤ α/L,
multiplying both sides of the above inequality by (αγk −Lγ2

k) and summing them
up for k = 1, . . . , N , we obtain

N
∑

k=1

(αγk − Lγ2
k)
[

Ψ(xk+1)− Ψ(x∗)
]

≤
N
∑

k=1

(αγk − Lγ2
k)〈δk, x∗ − xk〉+

N
∑

k=1

γ2
k

2
‖δk‖2

+
N
∑

k=1

(α− Lγk)
[

V (x∗, xk)− V (x∗, xk+1)
]

.(41)

Now, if the increasing stepsize condition (34) is satisfied, we have from V (x∗, xN+1) ≥
0 that

N
∑

k=1

(α− Lγk)
[

V (x∗, xk)− V (x∗, xk+1)
]

= (α− Lγ1)V (x∗, x1) +
N
∑

k=2

(α− Lγk)V (x∗, xk)−
N
∑

k=1

(α− Lγk)V (x∗, xk+1)

≤ (α− Lγ1)V (x∗, x1) +
N
∑

k=2

(α− Lγk−1)V (x∗, xk)−
N
∑

k=1

(α− Lγk)V (x∗, xk+1)

= (α− Lγ1)V (x∗, x1)− (α− LγN )V (x∗, xN+1)

≤ (α− Lγ1)V (x∗, x1).

Taking expectation on both sides of (41) with respect to ξ[N ], again using the

observations that E[‖δ2k‖] ≤ σ2 and E[〈δk, gX,k〉|ξ[k−1]] = 0, then it follows from the
above inequality that

N
∑

k=1

(αγk − Lγ2
k)Eξ[N ]

[

Ψ(xk+1)− Ψ(x∗)
]

≤ (α− Lγ1)V (x∗, x1) +
σ2

2

N
∑

k=1

(γ2
k/mk).
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Finally, (35) follows from the above inequality and the arguments similar to the
proof in part (a). Now, if the decreasing stepsize condition (36) is satisfied, we
have from the definition V̄ (x∗) := maxu∈X V (x∗, u) ≥ 0 and V (x∗, xN+1) ≥ 0 that

N
∑

k=1

(α− Lγk)
[

V (x∗, xk)− V (x∗, xk+1)
]

= (α− Lγ1)V (x∗, x1) + L

N−1
∑

k=1

(γk − γk+1)V (x∗, xk+1)− (α− LγN )V (x∗, xN+1)

≤ (α− Lγ1)V̄ (x∗) + L

N−1
∑

k=1

(γk − γk+1)V̄ (x∗)− (α− LγN )V (x∗, xN+1)

≤ (α− LγN )V̄ (x∗),

which together with (41) and similar arguments used above would give (37).

A few remarks about Theorem 2 are in place. Firstly, if f is convex and the
batch sizes mk = 1, then by properly choosing the stepsizes {γk} (e.g., γk =
O(1/

√
k) for k large), we can still guarantee a nearly optimal rate of convergence

for the RSPG algorithm (see (35) or (37), and [24,19]). However, if f is possibly
nonconvex and mk = 1, then the RHS of (32) is bounded from below by

LD2
Ψ + (σ2/α)

∑N
k=1 γk

∑N
k=1(αγk − Lγ2

k)
≥ σ2

α2
,

which does not necessarily guarantee the converge of the RSPG algorithm, no
matter how the stepsizes {γk} are specified. This is exactly the reason why we
consider taking multiple samples G(xk, ξk,i), i = 1, . . . ,mk, for some mk > 1 at
each iteration of the RSPG method.

Secondly, from (39) in the proof of Theorem 2, we see that the stepsize policies
can be further relaxed to get a similar result as (32). More specifically, we can
have the following corollary.

Corollary 2 Suppose that the stepsizes {γk} in the RSPG algorithm are chosen such

that 0 < γk ≤ 2α/L with γk < 2α/L for at least one k, and the probability mass

function PR are chosen such that for any k = 1, . . . , N

PR(k) := Prob{R = k} =
αγk − Lγ2

k/2
∑N

k=1(αγk − Lγ2
k/2)

. (42)

Then, under Assumption A1, we have

E[‖g̃X,R‖2] ≤
LD2

Ψ + (σ2/α)
∑N

k=1(γk/mk)
∑N

k=1(αγk − Lγ2
k/2)

, (43)

where the expectation is taken with respect to R and ξ[N ] := (ξ1, ..., ξN ).

Based on the Theorem 2, we can establish the following complexity results of
the RSPG algorithm with proper selection of stepsizes {γk} and batch sizes {mk}
at each iteration.
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Corollary 3 Suppose that in the RSPG algorithm the stepsizes γk = α/(2L) for all

k = 1, . . . , N , and the probability mass function PR are chosen as (31). Also assume

that the batch sizes mk = m, k = 1, . . . , N , for some m ≥ 1. Then under Assumption

A1, we have

E[‖gX,R‖2] ≤
8L2D2

Ψ

α2N
+

6σ2

α2m
and E[‖g̃X,R‖2] ≤

4L2D2
Ψ

α2N
+

2σ2

α2m
, (44)

where gX,R and g̃X,R are defined in (21) and (33), respectively. If, in addition, f in the

problem (1) is convex with an optimal solution x∗, then

E
[

Ψ(xR)− Ψ(x∗)
]

≤ 2LV (x∗, x1)

Nα
+

σ2

2Lm
. (45)

Proof By (32), we have

E[‖g̃X,R‖2] ≤
LD2

Ψ + σ2

mα

∑N
k=1 γk

∑N
k=1(αγk − Lγ2

k)
,

which together with γk = α/(2L) for all k = 1, . . . , N imply that

E[‖g̃X,R‖2] =
LD2

Ψ + σ2N
2mL

Nα2

4L

=
4L2D2

Ψ

Nα2
+

2σ2

mα2
.

Then, by Proposition 1 with x = xR, γ = γR, g1 = ∇f(xR), g2 = Gk, we have from
the above inequality and (40) that

E[‖gX,R‖2] ≤ 2E[‖g̃X,R‖2] + 2E[‖gX,R − g̃X,R‖2]

≤ 2

(

4L2D2
Ψ

Nα2
+

2σ2

α2m

)

+
2

α2
E

[

‖Gk −∇f(xR)‖2
]

≤ 8L2D2
Ψ

Nα2
+

6σ2

α2m
.

Moreover, since γk = α/(2L) for all k = 1, . . . , N , the stepsize conditions (34)
are satisfied. Hence, if the problem is convex, (45) can be derived in a similar way
as (35).

Note that all the bounds in the above corollary depend on m. Indeed, if m is
set to some fixed positive integer constant, then the second terms in the above
results will always majorize the first terms when N is sufficiently large. Hence,
the appropriate choice of m should be balanced with the number of iterations N ,
which would eventually depend on the total computational budget given by the
user. The following corollary shows an appropriate choice of m depending on the
total number of calls to the SFO.

Corollary 4 Suppose that all the conditions in Corollary 3 are satisfied. Given a fixed

total number of calls N̄ to the SFO, if the number of calls to the SFO (number of

samples) at each iteration of the RSPG algorithm is

m =

⌈

min

{

max

{

1,
σ
√
6N̄

4LD̃

}

, N̄

}⌉

, (46)
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for some D̃ > 0, then we have (α2/L) E[‖gX,R‖2] ≤ BN̄ , where

BN̄ :=
16LD2

Ψ

N̄
+

4
√
6σ√
N̄

(

D2
Ψ

D̃
+ D̃max

{

1,

√
6σ

4LD̃
√
N̄

})

. (47)

If, in addition, f in problem (1) is convex, then E[Ψ(xR)−Ψ(x∗)] ≤ CN̄ , where x∗

is an optimal solution and

CN̄ :=
4LV (x∗, x1)

αN̄
+

√
6σ

α
√
N̄

(

V (x∗, x1)

D̃
+

αD̃

3
max

{

1,

√
6σ

4LD̃
√
N̄

})

. (48)

Proof Given the total number of calls to the stochastic first-order oracle N̄ and the
number m of calls to the SFO at each iteration, the RSPG algorithm can perform
at most N = ⌊N̄/m⌋ iterations. Obviously, N ≥ N̄/(2m). With this observation
and (44), we have

E[‖gX,R‖2] ≤
16mL2D2

Ψ

α2N̄
+

6σ2

α2m

≤ 16L2D2
Ψ

α2N̄

(

1 +
σ
√
6N̄

4LD̃

)

+max

{

4
√
6LD̃σ

α2
√
N̄

,
6σ2

α2N̄

}

=
16L2D2

Ψ

α2N̄
+

4
√
6Lσ

α2
√
N̄

(

D2
Ψ

D̃
+ D̃max

{

1,

√
6σ

4LD̃
√
N̄

})

, (49)

which gives (47). The bound (48) can be obtained in a similar way.

We now would like add a few remarks about the above results in Corollary 4.
Firstly, although we use the constant value for mk = m at each iteration, one
can also choose it adaptively during the execution of the RSPG algorithm while
monitoring the convergence. For example, in practice mk could adaptively depend
on σ2

k := E
[

‖G(xk, ξk)−∇f(xk)‖2
]

. Secondly, we need to specify the parameter

D̃ in (46). It can be seen from (47) and (48) that when N̄ is relatively large such
that

max
{

1,
√
6σ/(4LD̃

√

N̄)
}

= 1, i.e., N̄ ≥ 3σ2/(8L2D̃2), (50)

an optimal choice of D̃ would be DΨ and
√

3V (x∗, x1)/α for solving nonconvex
and convex SP problems, respectively. With this selection of D̃, the bounds in (47)
and (48), respectively, reduce to

α2

L
E[‖gX,R‖2] ≤

16LD2
Ψ

N̄
+

8
√
6DΨσ√
N̄

(51)

and

E[Ψ(x∗)− Ψ(x1)] ≤
4LV (x∗, x1)

αN̄
+

2
√

2V (x∗, x1)σ√
αN̄

. (52)

Thirdly, the stepsize policy in Corollary 3 and the probability mass function (31)
together with the number of samples (46) at each iteration of the RSPG algorithm
provide a unified strategy for solving both convex and nonconvex SP problems. In
particular, the RSPG algorithm exhibits a nearly optimal rate of convergence for
solving smooth convex SP problems, since the second term in (52) is unimprovable
(see e.g., [25]), while the first term in (52) can be considerably improved [19].
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4.2 A two-phase randomized stochastic projected gradient method

In the previous subsection, we present the expected complexity results over many
runs of the RSPG algorithm. Indeed, we are also interested in the performance of
a single run of RSPG. In particular, we want to establish the complexity results
for finding an (ǫ, Λ)-solution of the problem (1), i.e., a point x ∈ X satisfying
Prob{‖gX (x)‖2 ≤ ǫ} ≥ 1 − Λ, for some ǫ > 0 and Λ ∈ (0,1). Noticing that by the
Markov’s inequality and (47), we can directly have

Prob

{

‖gX,R‖2 ≥ λLBN̄

α2

}

≤ 1

λ
, for any λ > 0. (53)

This implies that the total number of calls to the SFO performed by the RSPG
algorithm for finding an (ǫ,Λ)-solution, after disregarding a few constant factors,
can be bounded by

O
{

1

Λǫ
+

σ2

Λ2ǫ2

}

. (54)

In this subsection, we present a approach to improve the dependence of the above
bound on Λ. More specifically, we propose a variant of the RSPG algorithm which
has two phases: an optimization phase and a post-optimization phase. The opti-
mization phase consists of independent single runs of the RSPG algorithm to gen-
erate a list of candidate solutions, and in the post-optimization phase, we choose
a solution x∗ from these candidate solutions generated by the optimization phase.
For the sake of simplicity, we assume throughout this subsection that the norm
‖ · ‖ in R

n is the standard Euclidean norm.

A two phase RSPG (2-RSPG) algorithm

Input:Given initial point x1 ∈ X, number of runs S, total N̄ of calls to the SFO
in each run of the RSPG algorithm, and sample size T in the post-optimization
phase.
Optimization phase:

For s = 1, . . . , S
Call the RSPG algorithm with initial point x1, iteration limit N = ⌊N̄/m⌋
with m given by (46), stepsizes γk = α/(2L) for k = 1, . . . , N , batch sizes
mk = m, and probability mass function PR in (31).
Let x̄s = xRs

, s = 1, . . . , S, be the outputs of this phase.
Post-optimization phase:

Choose a solution x̄∗ from the candidate list {x̄1, . . . , x̄S} such that

‖ḡX (x̄∗)‖ = min
s=1,...,S

‖ḡX (x̄s)‖, ḡX (x̄s) := PX(x̄s, ḠT (x̄s), γRs
), (55)

where ḠT (x) =
1
T

∑T
k=1 G(x, ξk) and PX(x, g, γ) is defined in (10).

Output: x̄∗.

In the 2-RSPG algorithm, the total number of calls of SFO in the optimization
phase and post-optimization phase is bounded by S × N̄ and S × T , respectively.
In the next theorem, we provide certain bounds of S, N̄ and T for finding an
(ǫ, Λ)-solution of problem (1).

We need the following well-known large deviation theorem of vector-valued
martingales to derive the large deviation results of the 2-RSPG algorithm (see [17]
for a general result using possibly non-Euclidean norm).
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Lemma 4 Assume that we are given a polish space with Borel probability measure µ

and a sequence of F0 = {∅, Ω} ⊆ F1 ⊆ F2 ⊆ . . . of σ-sub-algebras of Borel σ-algebra of

Ω. Let ζi ∈ R
n, i = 1, . . . ,∞, be a martingale-difference sequence of Borel functions on

Ω such that ζi is Fi measurable and E[ζi|i− 1] = 0, where E[·|i], i = 1, 2, . . ., denotes
the conditional expectation w.r.t. Fi and E ≡ E[·|0] is the expectation w.r.t. µ.

a) If E[‖ζi‖2] ≤ σ2
i for any i ≥ 1, then E[‖

∑N
i=1 ζi‖2] ≤

∑N
i=1 σ

2
i . As a consequence,

we have

∀N ≥ 1, λ ≥ 0 : Prob

{

‖
N
∑

i=1

ζi‖2 ≥ λ

N
∑

i=1

σ2
i

}

≤ 1

λ
;

b) If E
[

exp
(

‖ζi‖2/σ2
i

)

|i− 1
]

≤ exp(1) almost surely for any i ≥ 1, then

∀N ≥ 1, λ ≥ 0 : Prob







‖
N
∑

i=1

ζi‖ ≥
√
2(1 + λ)

√

√

√

√

N
∑

i=1

σ2
i







≤ exp(−λ2/3).

We are now ready to state the main convergence properties for the 2-RSPG
algorithm.

Theorem 3 Under Assumption A1, the following statements hold for the 2-RSPG
algorithm applied to problem (1).

(a) Let BN̄ be defined in (47). Then, for all λ > 0

Prob

{

‖gX (x̄∗)‖2 ≥ 2

α2

(

4LBN̄ +
3λσ2

T

)}

≤ S

λ
+ 2−S; (56)

(b) Let ǫ > 0 and Λ ∈ (0,1) be given. If the parameters (S, N̄, T ) are set to

S(Λ) := ⌈log2(2/Λ)⌉ , (57)

N̄(ǫ) :=

⌈

max

{

512L2D2
Ψ

α2ǫ
,

[(

D̃ +
D2

Ψ

D̃

)

128
√
6Lσ

α2ǫ

]2

,
3σ2

8L2D̃2

}⌉

,(58)

T (ǫ,Λ) :=

⌈

24S(Λ)σ2

α2Λǫ

⌉

, (59)

then the 2-RSPG algorithm computes an (ǫ, Λ)-solution of the problem (1) after

taking at most

S(Λ) [N̄(ǫ) + T (ǫ,Λ)] (60)

calls of the stochastic first order oracle.

Proof We first show part (a). Let gX (x̄s) = PX(x̄s,∇f(x̄s), γRs
). Then, it follows

from the definition of x̄∗ in (55) that

‖ḡX (x̄∗)‖2 = min
s=1,...,S

‖ḡX (x̄s)‖2 = min
s=1,...,S

‖gX (x̄s) + ḡX (x̄s)− gX (x̄s)‖2

≤ min
s=1,...,S

{

2‖gX (x̄s)‖2 + 2‖ḡX (x̄s)− gX (x̄s)‖2
}

≤ 2 min
s=1,...,S

‖gX (x̄s)‖2 + 2 max
s=1,...,S

‖ḡX (x̄s)− gX (x̄s)‖2,
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which implies that

‖gX (x̄∗)‖2 ≤ 2‖ḡX (x̄∗)‖2 + 2‖gX (x̄∗)− ḡX (x̄∗)‖2

≤ 4 min
s=1,...,S

‖gX (x̄s)‖2 + 4 max
s=1,...,S

‖ḡX (x̄s)− gX (x̄s)‖2 + 2‖gX (x̄∗)− ḡX (x̄∗)‖2

≤ 4 min
s=1,...,S

‖gX (x̄s)‖2 + 6 max
s=1,...,S

‖ḡX (x̄s)− gX (x̄s)‖2. (61)

We now provide certain probabilistic bounds to the two terms in the right hand side
of the above inequality. Firstly, from the fact that x̄s, 1 ≤ s ≤ S, are independent
and (53) (with λ = 2), we have

Prob

{

min
s∈[1,S]

‖gX (x̄s)‖2 ≥ 2LBN̄

α2

}

=
S
∏

s=1

Prob

{

‖gX (x̄s)‖2 ≥ 2LBN̄

α2

}

≤ 2−S.

(62)
Moreover, denoting δs,k = G(x̄s, ξk)−∇f(x̄s), k = 1, . . . , T , by Proposition 1 with
x = x̄s, γ = γRs

, g1 = ḠT (x̄s), g2 = ∇f(x̄s), we have

‖ḡX (x̄s)− gX (x̄s)‖ ≤ 1

α
‖

T
∑

k=1

δs,k/T‖. (63)

From the above inequality, Assumption A1 and Lemma 4.a), for any λ > 0 and
any s = 1, . . . , S, we have

Prob

{

‖ḡX (x̄s)− gX (x̄s)‖2 ≥ λσ2

α2T

}

≤ Prob

{

‖
T
∑

k=1

δs,k‖2 ≥ λTσ2

}

≤ 1

λ
,

which implies

Prob

{

max
s=1,...,S

‖ḡX (x̄s)− gX (x̄s)‖2 ≥ λσ2

α2T

}

≤ S

λ
. (64)

Then, the conclusion (56) follows from (61), (62) and (64).
We now show part (b). With the settings in part (b), it is easy to count the

total number of calls of the SFO in the 2-RSPG algorithm is bounded up by (60).
Hence, we only need to show that the x̄∗ returned by the 2-RSPG algorithm is
indeed an (ǫ, Λ)-solution of the problem (1). With the choice of N̄(ǫ) in (58), we
can see that (50) holds. So, we have from (47) and (58) that

BN̄(ǫ) =
16LD2

Ψ

N̄(ǫ)
+

4
√
6σ

√

N̄(ǫ)

(

D̃+
D2

Ψ

D̃

)

≤ α2ǫ

32L
+

α2ǫ

32L
=

α2ǫ

16L
.

By the above inequality and (59), setting λ = 2S/Λ in (56), we have

8LBN̄(ǫ)

α2
+

6λσ2

α2T (ǫ,Λ)
≤ ǫ

2
+

λΛǫ

4S
= ǫ,

which together with (56), (57) and λ = 2S/Λ imply

Prob
{

‖gX (x̄∗)‖2 ≥ ǫ
}

≤ Λ

2
+ 2−S ≤ Λ.

Hence,x̄∗ is an (ǫ, Λ)-solution of the problem (1).



NONCONVEX STOCHASTIC COMPOSITE OPTIMIZATION 19

Now, it is interesting to compare the complexity bound in (60) with the one
in (54). In view of (57), (58) and (59), the complexity bound in (60) for finding
an (ǫ,Λ)-solution, after discarding a few constant factors, is equivalent to

O
{

1

ǫ
log2

1

Λ
+

σ2

ǫ2
log2

1

Λ
+

σ2

Λǫ
log22

1

Λ

}

. (65)

When the second terms are the dominating terms in both bounds, the above
bound (65) can be considerably smaller than the one in (54) up to a factor of
1/
[

Λ2 log2(1/Λ)
]

.

The following theorem shows that under a certain “light-tail” assumption:
A2: For any xk ∈ X, we have

E[exp{‖G(xk, ξk)−∇f(x)‖2/σ2}] ≤ exp{1}, (66)

the bound (60) in Theorem 3 can be further improved.

Corollary 5 Under Assumptions A1 and A2, the following statements hold for the

2-RSPG algorithm applied to problem (1).

(a) Let BN̄ is defined in (47). Then, for all λ > 0

Prob

{

‖gX (x̄∗)‖2 ≥
[

8LBN̄

α2
+

12(1 + λ)2σ2

Tα2

]}

≤ S exp(−λ2

3
) + 2−S ;

(67)
(b) Let ǫ > 0 and Λ ∈ (0,1) be given. If S and N̄ are set to S(Λ) and N̄(ǫ) as in (57)

and (58), respectively, and the sample size T is set to

T ′(ǫ, Λ) :=
24σ2

α2ǫ

[

1 +

(

3 log2
2S(Λ)

Λ

)
1
2

]2

, (68)

then the 2-RSPG algorithm can compute an (ǫ,Λ)-solution of the problem (1) after

taking at most

S(Λ)
[

N̄(ǫ) + T ′(ǫ, Λ)
]

(69)

calls to the stochastic first-order oracle.

Proof We only give a sketch of the proof for part (a). The proof of part (b) follows
from part (a) and similar arguments for proving (b) part of Theorem 3. Now,
denoting δs,k = G(x̄s, ξk)−∇f(x̄s), k = 1, . . . , T , again by Proposition 1, we have
(63) holds. Then, by Assumption A2 and Lemma 4.b), for any λ > 0 and any
s = 1, . . . , S, we have

Prob

{

‖ḡX (x̄s)− gX (x̄s)‖2 ≥ (1 + λ)2
2σ2

α2T

}

≤ Prob

{

‖
T
∑

k=1

δs,k‖ ≥
√
2T (1 + λ)σ

}

≤ exp(−λ2

3
),

which implies that for any λ > 0

Prob

{

max
s=1,...,S

‖ḡX (x̄s)− gX (x̄s)‖2 ≥ (1 + λ)2
2σ2

α2T

}

≤ S exp(−λ2

3
), (70)

Then, the conclusion (67) follows from (61), (62) and (70).
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In view of (57), (58) and (68), the bound in (69), after discarding a few constant
factors, is equivalent to

O
{

1

ǫ
log2

1

Λ
+

σ2

ǫ2
log2

1

Λ
+

σ2

ǫ
log22

1

Λ

}

. (71)

Clearly, the third term of the above bound is smaller than the third term in (65)
by a factor of 1/Λ.

5 Stochastic zeroth-order methods

In this section, we discuss how to specialize the RSPG algorithm to deal with the
situations where only noisy function values of the problem (1) are available. More
specifically, we assume that we can only access the noisy zeroth-order information
of f by a stochastic zeroth-order oracle (SZO). For any input xk and ξk, the SZO
would output a quantity F (xk, ξk), where xk is the k-th iterate of our algorithm
and ξk is a random variable whose distribution is supported on Ξ ∈ R

d (noting
that Ξ does not depend on xk). Throughout this section, we assume F (xk, ξk) is
an unbiased estimator of f(xk), that is

A3: For any k ≥ 1, we have

E[F (xk, ξk)] = f(xk). (72)

We are going to apply the randomized smoothing techniques developed by [9,27] to
explore the zeroth-order information of f . Hence, throughout this section, we also
assume F (·, ξk) ∈ C1,1

L (Rn) almost surely with respect to ξk ∈ Ξ, which together

with Assumption A3 imply f ∈ C1,1
L (Rn). Also, throughout this section, we assume

that ‖ · ‖ is the standard Euclidean norm.
Suppose v is a random vector in R

n with density function ρ, a smooth approx-
imation of f is defined as

fµ(x) =

∫

f(x+ µv)ρ(v)dv, (73)

where µ > 0 is the smoothing parameter. For different choices of smoothing distri-
bution, the smoothed function fµ would have different properties. In this section,
we only consider the Gaussian smoothing distribution. That is we assume that v

is a n-dimensional standard Gaussian random vector and

fµ(x) =
1

(2π)
n
2

∫

f(x+ µv)e−
1
2
‖v‖2

dv = Ev[f(x+ µv)]. (74)

Nesterov [27] showed that the Gaussian smoothing approximation and fµ have the
following nice properties.

Lemma 5 If f ∈ C1,1
L (Rn), then

a) fµ is also Lipschitz continuously differentiable with gradient Lipschitz constant

Lµ ≤ L and

∇fµ(x) =
1

(2π)
n
2

∫

f(x+ µv)− f(x)

µ
ve−

1
2
‖v‖2

dv. (75)
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b) for any x ∈ R
n, we have

|fµ(x)− f(x)| ≤ µ2

2
Ln, (76)

‖∇fµ(x)−∇f(x)‖ ≤ µ

2
L(n+ 3)

3
2 , (77)

Ev

[

∥

∥

∥

∥

f(x+ µv)− f(x)

µ
v

∥

∥

∥

∥

2
]

≤ 2(n+ 4)‖∇f(x)‖2 + µ2

2
L2(n+ 6)3.(78)

c) fµ is also convex provided f is convex.

In the following, let us define the approximated stochastic gradient of f at xk
as

Gµ(xk, ξk, v) =
F (xk + µv, ξk)− F (xk, ξk)

µ
v, (79)

and defineG(xk, ξk) = ∇xF (xk, ξk). We assume the Assumption 1 holds forG(xk, ξk).
Then, by the Assumption A3 and Lemma 5.a), we directly get

Ev,ξk [Gµ(xk, ξk, v)] = ∇fµ(xk), (80)

where the expectation is taken with respect to v and ξk.
Now based on the RSPG algorithm, we state an algorithm which only uses

zeroth-order information to solve problem (1).

A randomized stochastic projected gradient free (RSPGF) algorithm

Input: Given initial point x1 ∈ X, iteration limit N , the stepsizes {γk} with
γk > 0, k ≥ 1, the batch sizes {mk} with mk > 0, k ≥ 1, and the probability
mass function PR supported on {1, . . . , N}.
Step 0. Let R be a random variable with probability mass function PR.
Step k = 1, . . . , R − 1. Call the SZO mk times to obtain Gµ(xk, ξk,i, vk,i),
i = 1, . . . ,mk, set

Gµ,k =
1

mk

mk
∑

i=1

Gµ(xk, ξk,i, vk,i) (81)

and compute

xk+1 = arg min
u∈X

{

〈Gµ,k, u〉+
1

γk
V (u, xk) + h(u)

}

. (82)

Output: xR.

Compared with RSPG algorithm, we can see at the k-th iteration, the RSPGF
algorithm simply replaces the stochastic gradient Gk by the approximated stochas-
tic gradient Gµ,k. By (80), Gµ,k can be simply viewed as an unbiased stochastic
gradient of the smoothed function fµ. However, to apply the results developed in
the previous section, we still need an estimation of the bound on the variations of
the stochastic gradient Gµ,k. In addition, the role that the smoothing parameter µ
plays and the proper selection of µ in the RSPGF algorithm are still not clear now.
We answer these questions in the following series of theorems and their corollaries.
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Theorem 4 Suppose that the stepsizes {γk} in the RSPGF algorithm are chosen such

that 0 < γk ≤ α/L with γk < α/L for at least one k, and the probability mass function

PR are chosen as (31). If ‖∇f(x)‖ ≤ M for all x ∈ X, then under Assumptions A1

and A3,

(a) for any N ≥ 1, we have

E[‖ḡµ,X,R‖2] ≤
LD2

Ψ + µ2Ln+ (σ̃2/α)
∑N

k=1(γk/mk)
∑N

k=1(αγk − Lγ2
k)

, (83)

where the expectation is taken with respect to R, ξ[N ] and v[N ] := (v1, . . . , vN ), DΨ

is defined in (23),

σ̃2 = 2(n+ 4)[M2 + σ2 + µ2L2(n+ 4)2], (84)

and

ḡµ,X,k = PX(xk, Gµ,k, γk), (85)

with PX defined in(10);

(b) if, in addition, f in problem (1) is convex with an optimal solution x∗, and the

stepsizes {γk} are non-decreasing as (34), we have

E
[

Ψ(xR)− Ψ(x∗)
]

≤ (α− Lγ1)V (x∗, x1) + (σ̃2/2)
∑N

k=1(γ
2
k/mk)

∑N
k=1(αγk − Lγ2

k)
+ µ2Ln,

(86)
where the expectation is taken with respect to R, ξ[N ] and v[N ].

Proof By our assumption that F (·, ξk) ∈ C1,1
L (Rn) almost surely, (78) (applying

f = F (·, ξk)) and Assumption 1 with G(xk, ξk) = ∇xF (xk, ξk), we have

Evk,ξk [‖Gµ(xk, ξk, vk)‖2] = Eξk [Evk [‖Gµ(xk, ξk, vk)‖2]]

≤ 2(n+ 4)[Eξk [‖G(xk, ξ)‖2] +
µ2

2
L2(n+ 6)3

≤ 2(n+ 4)[Eξk [‖∇f(xk)‖2] + σ2] + 2µ2L2(n+ 4)3.

Then, from the above inequality, (80) and ‖∇f(xk)‖ ≤ M , we have

Evk,ξk [‖Gµ(xk, ξk, vk)−∇fµ(xk)‖2] = Evk,ξk [‖Gµ(xk, ξk, vk)‖2]
≤ 2(n+ 4)[M2 + σ2 + µ2L2(n+ 4)2] = σ̃2. (87)

Now let Ψµ(x) = fµ(x) + h(x) and Ψ∗
µ = minx∈X Ψµ(x). We have from (76) that

|(Ψµ(x)− Ψ∗
µ)− (Ψ(x)− Ψ∗)| ≤ µ2Ln. (88)

By Lemma (5).a), we have Lµ ≤ L and therefore fµ ∈ C1,1
L (Rn). With this obser-

vation, noticing (80) and (87), viewing Gµ(xk, ξk, vk) as a stochastic gradient of
fµ, then by part (a) of Theorem 2 we can directly get

E[‖ḡµ,X,R‖2] ≤
LD2

Ψµ
+ (σ̃2/α)

∑N
k=1(γk/mk)

∑N
k=1(αγk − Lγ2

k)
,
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where DΨµ
= [(Ψµ(x1)−Ψ∗

µ)/L]
1/2 and the expectation is taken with respect to R,

ξ[N ] and v[N ]. Then, the conclusion (83) follows the above inequality and (88).
We now show part (b). Since f is convex, by Lemma (5).c), fµ is also convex.

Again by (88), we have

E
[

Ψ(xR)− Ψ(x∗)
]

≤ E
[

Ψµ(xR)− Ψµ(x
∗)
]

+ µ2Ln.

Then, by this inequality and the convexity of fµ, it follows from part (b) of Theo-
rem 2 and similar arguments in showing the part (a) of this theorem, the conclusion
(86) holds.

Using the previous Theorem 4, similar to the Corollary 3, we can give the
following corollary on the RSPGF algorithm with a certain constant stepsize and
batch size at each iteration.

Corollary 6 Suppose that in the RSPGF algorithm the stepsizes γk = α/(2L) for all

k = 1, . . . , N , the batch sizes mk = m for all k = 1, . . . , N , and the probability mass

function PR is set to (31). Then under Assumptions A1 and A3, we have

E[‖ḡµ,X,R‖2] ≤
4L2D2

Ψ + 4µ2L2n

α2N
+

2σ̃2

α2m
(89)

and

E[‖gX,R‖2] ≤
µ2L2(n+ 3)2

2α2
+

16L2D2
Ψ + 16µ2L2n

α2N
+

12σ̃2

α2m
, (90)

where the expectation is taken with respect to R, ξ[N ] and v[N ], and σ̃, ḡµ,X,R and gX,R

are defined in (84), (85) and (21), respectively.

If, in addition, f in the problem (1) is convex with an optimal solution x∗, then

E
[

Ψ(xR)− Ψ(x∗)
]

≤ 2LV (x∗, x1)

Nα
+

σ̃2

2Lm
+ µ2Ln. (91)

Proof (89) immediately follows from (83) with γk = α/(2L) and mk = m for
all k = 1, . . . , N . Now let gµ,X,R = PX(xR,∇fµ(xR), γR), we have from (77) and
Proposition 1 with x = xR, γ = γR, g1 = ∇f(xR) and g2 = ∇fµ(xR) that

E[‖gX,R − gµ,X,R‖2] ≤ µ2L2(n+ 3)2

4α2
. (92)

Similarly, by Proposition 1 with x = xR, γ = γR, g1 = Ḡµ,k and g2 = ∇fµ(xR), we
have

E[‖ḡµ,X,R − gµ,X,R‖2] ≤ σ̃2

α2m
. (93)

Then, it follows from (92), (93) and (89) that

E[‖gX,R‖2] ≤ 2E[‖gX,R − gµ,X,R‖2] + 2E[‖gµ,X,R‖2]

≤ µ2L2(n+ 3)2

2α2
+ 4E[‖gµ,X,R − ḡµ,X,R‖2] + 4E[‖ḡµ,X,R‖2]

≤ µ2L2(n+ 3)2

2α2
+

12σ̃2

α2m
+

16L2D2
Ψ + 16µ2L2n

α2N
.

Moreover, if f is convex, then (91) immediately follows from (86), and the
constant stepsizes γk = α/(2L) for all k = 1, . . . , N .
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Similar to the Corollary 3 for the RSPG algorithm, the above results also
depend on the number of samples m at each iteration. In addition, the above
results depend on the smoothing parameter µ as well. The following corollary,
analogous to the Corollary 4, shows how to choose m and µ appropriately.

Corollary 7 Suppose that all the conditions in Corollary 6 are satisfied. Given a fixed

total number of calls to the SZO N̄ , if the smoothing parameter satisfies

µ ≤ DΨ
√

(n+ 4)N̄
, (94)

and the number of calls to the SZO at each iteration of the RSPGF method is

m =

⌈

min

{

max

{

√

(n+ 4)(M2 + σ2)N̄

LD̃
, n+ 4

}

, N̄

}⌉

, (95)

for some D̃ > 0, then we have (α2/L) E[‖gX,R‖2] ≤ B̄N̄ , where

B̄N̄ :=
(24θ2 + 41)LD2

Ψ (n+ 4)

N̄
+

32
√

(n+ 4)(M2 + σ2)√
N̄

(

D2
Ψ

D̃
+ D̃θ1

)

, (96)

and

θ1 = max

{

1,

√

(n+ 4)(M2 + σ2)

LD̃
√
N̄

}

and θ2 = max

{

1,
n+ 4

N̄

}

. (97)

If, in addition, f in the problem (1) is convex and the smoothing parameter satisfies

µ ≤
√

V (x∗, x1)

α(n+ 4)N̄
, (98)

then E[Ψ(xR)− Ψ(x∗)] ≤ C̄N̄ , where x∗ is an optimal solution and

C̄N̄ :=
(5 + θ2)LV (x∗, x1)(n+ 4)

αN̄
+

√

(n+ 4)(M2 + σ2)

α
√
N̄

(

4V (x∗, x1)

D̃
+ αD̃θ1

)

.

(99)

Proof By the definitions of θ1 and θ2 in (97) and m in (95), we have

m =

⌈

max

{

√

(n+ 4)(M2 + σ2)N̄

LD̃θ1
,
n+ 4

θ2

}⌉

. (100)

Given the total number of calls to the SZO N̄ and the the number m of calls to the
SZO at each iteration, the RSPGF algorithm can perform at most N = ⌊N̄/m⌋
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iterations. Obviously, N ≥ N̄/(2m). With this observation N̄ ≥ m, θ1 ≥ 1 and
θ2 ≥ 1, by (90), (94) and (100), we have

E[‖gX,R‖2]

≤ L2D2
Ψ (n+ 3)

2α2N̄
+

24(n+ 4)(M2 + σ2)

α2m
+

24L2D2
Ψ (n+ 4)2

α2mN̄
+

32L2D2
Ψm

α2N̄

(

1 +
1

N̄

)

≤ L2D2
Ψ (n+ 4)

2α2N̄
+

24θ1LD̃
√

(n+ 4)(M2 + σ2)

α2
√
N̄

+
24θ2L

2D2
Ψ (n+ 4)

α2N̄

+
32L2D2

Ψ

α2N̄

(

√

(n+ 4)(M2 + σ2)N̄

LD̃θ1
+

n+ 4

θ2

)

+
32L2D2

Ψ

α2N̄

≤ L2D2
Ψ (n+ 4)

2α2N̄
+

24θ1LD̃
√

(n+ 4)(M2 + σ2)

α2
√
N̄

+
24θ2L

2D2
Ψ (n+ 4)

α2N̄

+
32LD2

Ψ

√

(n+ 4)(M2 + σ2)

α2D̃
√
N̄

+
32L2D2

Ψ (n+ 4)

α2N̄
+

32L2D2
Ψ

α2N̄
,

which after integrating the terms give (96). The conclusion (99) follows similarly
by (98) and (91).

We now would like to add a few remarks about the above the results in Corol-
lary 7. Firstly, the above complexity bounds are similar to those of the first-order
RSPG method in Corollary 4 in terms of their dependence on the total number
of stochastic oracle N̄ called by the algorithm. However, for the zeroth-order case,
the complexity in Corollary 7 also depends on the size of the gradient M and the
problem dimension n. Secondly, the value of D̃ has not been specified. It can be
easily seen from (96) and (99) that when N̄ is relatively large such that θ1 = 1
and θ2 = 1, i.e.,

N̄ ≥ max

{

(n+ 4)2(M2 + σ2)

L2D̃2
, n+ 4

}

, (101)

the optimal choice of D̃ would be DΨ and 2
√

V (x∗, x1)/α for solving nonconvex
and convex SP problems, respectively. With this selection of D̃, the bounds in (96)
and (99), respectively, reduce to

α2

L
E[‖gX,R‖2] ≤

65LD2
Ψ (n+ 4)

N̄
+

64
√

(n+ 4)(M2 + σ2)√
N̄

(102)

and

E[Ψ(xR)− Ψ(x∗)] ≤ 6LV (x∗, x1)(n+ 4)

αN̄
+

4
√

V (x∗, x1)(n+ 4)(M2 + σ2)√
αN̄

.

(103)
Thirdly, the complexity result in (99) implies that when f is convex, if ǫ suffi-
ciently small, then the number of calls to the SZO to find a solution x̄ such that
E[f(x̄)− f∗] ≤ ǫ can be bounded by O(n/ǫ2), which is better than the complexity
of O(n2/ǫ2) established by Nesterov [27] to find such a solution for general convex
SP problems.
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6 Numerical Results

In this section, we present the numerical results of our computational experiments
for solving two SP problems: a stochastic least square problem with a nonconvex
regularization term and a stochastic nonconvex semi-supervised support vector
machine problem.

Algorithmic schemes. We implement the RSPG algorithm and its two-phase
variant 2-RSPG algorithmdescribed in Section 4, where the prox-function V (x, z) =
‖x − z‖2/2, the stepsizes γk = α/(2L) with α = 1 for all k ≥ 1, and the proba-
bility mass function PR is set to (31). Also, in the optimization phase of the
2-RSPG algorithm, we take S = 5 independent runs of the RSPG algorithm to
compute 5 candidate solutions. Then, we use an i.i.d. sample of size T = N/2 in
the post-optimization phase to estimate the projected gradients at these candi-
date solutions and then choose the best one, x̄∗, according to (55). Finally, the
solution quality at x̄∗ is evaluated by using another i.i.d. sample of size K >> N .
In addition to the above algorithms, we also implement another variant of the
2-RSPG algorithm, namely, 2-RSPG-V algorithm. This algorithm also consists of
two phases similar to the 2-RSPG algorithm. In the optimization phase, instead
of terminating the RSPG algorithm by using a random count R, we terminate
the algorithm by using a fixed number of iterations, say NS. We then randomly
pick up S = 5 solutions from the generated trajectory according to PR defined
in (31). The post-optimization phase of the 2-RSPG-V algorithm is the same as
that of the 2-RSPG algorithm. Note that, in the 2-RSPG-V algorithm, unlike the
2-RSPG algorithm, the S candidate solutions are not independent and hence, we
cannot provide the large-deviation results similar to the 2-RSPG algorithm. We
also implement the RSG, 2-RSG and 2-RSG-V algorithms developed in [15] to
compare with our results.

Estimation of parameters. We use an initial i.i.d. sample of size N0 = 200 to estimate
the problem parameters, namely, L and σ. We also estimate the parameter D̃ =
DΨ by (23). More specifically, since the problems considered in this section have

nonnegative optimal values, i.e., Ψ∗ ≥ 0, we have DΨ ≤ (2Ψ(x1)/L)
1
2 , where x1

denotes the starting point of the algorithms.

Notation in the tables.

– NS denotes the maximum number of calls to the stochastic oracle performed
in the optimization phase of the above algorithms. For example, NS = 1,000
has the following implications.
– For the RSPG algorithm, the number of samples per iteration m is com-

puted according to (46) with N̄ = 1000 and the iteration limit N is set to
⌊1000/m⌋;

– For the 2-RSPG algorithm, since S = 5, we set N̄ = 200. The m and N

are computed as mentioned above. In this case, total number of calls to the
stochastic oracle will be at most 1, 000 (this does not include the samples
used in the post optimization phase);

– For the 2-RSPG-V algorithm, m is computed as mentioned above and we
run the RSPG method for ⌊1000/m⌋ iterations and randomly select S = 5
solutions from the trajectory according to PR defined in (31).

– x̄∗ is the output solution of the above algorithms.
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Table 1 Estimated ‖∇f(x̄∗)‖2 for the least square problem (K = 75, 000)

N̄S RSG 2-RSG 2-RSG-V RSPG 2-RSPG 2-RSPG-V

n = 100, σ̃ = 0.1

1000
mean 0.2509 0.3184 0.0794 0.1564 0.3176 0.0422
var. 4.31e-2 1.68e-2 1.23e-3 4.58e-2 2.54e-2 8.99e-3

5000
mean 0.0828 0.0841 0.0042 0.0113 0.0164 0.0009
var. 6.75e-3 1.03e-3 1.35e-5 4.22e-4 3.37e-4 4.36e-8

25000
mean 0.0056 0.0070 0.0002 0.0006 0.0010 0.0004
var. 1.69e-4 1.08e-4 3.41e-8 2.05e-7 1.43e-7 7.83e-9

n = 100, σ̃ = 1

1000
mean 0.3731 0.3761 0.1230 0.2379 0.3567 0.0364
var. 3.38e-2 1.40e-2 3.28e-3 4.01e-2 1.41e-2 1.24e-3

5000
mean 0.1095 0.1314 0.0135 0.0436 0.0323 0.0075
var. 2.22e-2 3.96e-3 4.67e-5 1.44e-2 8.69e-4 7.97e-5

25000
mean 0.0374 0.0172 0.0078 0.0138 0.0048 0.0046
var. 8.46e-3 1.83e-4 4.54e-4 1.95e-3 8.48e-7 5.60e-5

n = 500, σ̃ = 0.1

1000
mean 0.5479 0.6865 0.4121 0.4212 0.8977 0.2579
var. 3.47e-2 6.17e-3 1.09e-2 5.13e-2 2.64e-3 1.34e-2

5000
mean 0.2481 0.3560 0.0873 0.1030 0.1997 0.0154
var. 4.38e-2 3.45e-3 1.28e-3 2.57e-2 2.21e-3 1.83e-4

25000
mean 0.2153 0.0876 0.0084 0.1093 0.0136 0.0011
var. 6.77e-2 1.13e-3 3.97e-5 4.07e-2 3.24e-5 3.04e-8

n = 500, σ̃ = 1

1000
mean 0.5869 0.7444 0.4828 0.4371 0.7771 0.4190
var. 2.14e-2 4.18e-3 9.40e-3 3.40e-2 5.15e-3 4.13e-2

5000
mean 0.3603 0.4732 0.1699 0.1745 0.2987 0.0411
var. 3.77e-2 8.13e-3 1.22e-3 3.51e-2 1.87e-2 6.21e-4

25000
mean 0.2467 0.1584 0.0342 0.1271 0.0351 0.0189
var. 6.49e-2 1.87e-3 3.72e-4 4.30e-2 2.83e-4 3.89e-5

n = 1000, σ̃ = 0.1

1000
mean 1.853 2.417 1.549 1.855 3.092 1.937
var. 1.73e-1 1.31e-2 1.62e-2 1.88e-1 1.29e-1 2.64e-1

5000
mean 0.9555 1.501 0.5422 0.4944 1.832 0.1368
var. 3.62e-1 6.39e-2 3.73e-2 4.82e-1 2.36e-1 8.78e-3

25000
mean 0.6305 0.4725 0.0839 0.3402 0.1100 0.0071
var. 6.38e-1 2.08e-2 1.19e-2 4.40e-1 4.54e-3 1.97e-4

n = 1000, σ̃ = 1

1000
mean 1.868 2.407 1.560 1.701 3.208 1.662
var. 1.44e-1 1.22e-2 4.37e-2 1.84e-1 1.54e-1 2.75e-1

5000
mean 1.297 1.596 0.6438 0.8032 1.403 0.2408
var. 5.25e-1 5.26e-2 3.04e-2 6.38e-1 1.10e-1 3.26e-2

25000
mean 0.575 0.6309 0.0793 0.2079 0.1806 0.0336
var. 3.43e-1 4.65e-2 1.38e-3 1.17e-1 1.43e-2 3.67e-6

– Mean and Var. represent, respectively, the average and variance of the results
obtained over 20 runs of each algorithm.
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Table 2 Average ratio of true recovered zeros for the penalized least square problem

N̄S RSG 2-RSG 2-RSG-V RSPG 2-RSPG 2-RSPG-V

n = 100, σ̃ = 0.1
1000 0.18 0.14 0.11 0.17 0.13 0.19
5000 0.26 0.11 0.60 0.56 0.19 0.98
25000 0.82 0.56 0.98 0.97 0.95 1.00

n = 100, σ̃ = 1
1000 0.16 0.14 0.09 0.12 0.11 0.09
5000 0.16 0.09 0.21 0.14 0.08 0.15
25000 0.41 0.20 0.51 0.26 0.16 0.24

n = 500, σ̃ = 0.1
1000 0.14 0.17 0.09 0.08 0.27 0.06
5000 0.18 0.08 0.22 0.31 0.06 0.56
25000 0.47 0.21 0.84 0.63 0.55 0.99

n = 500, σ̃ = 1
1000 0.16 0.23 0.10 0.09 0.17 0.12
5000 0.16 0.10 0.17 0.12 0.06 0.16
25000 0.39 0.17 0.60 0.33 0.17 0.45

n = 1000, σ̃ = 0.1
1000 0.1 0.17 0.07 0.05 0.25 0.10
5000 0.10 0.05 0.09 0.10 0.04 0.11
25000 0.31 0.09 0.51 0.55 0.12 0.91

n = 1000, σ̃ = 1
1000 0.12 0.14 0.05 0.09 0.20 0.08
5000 0.11 0.06 0.09 0.08 0.03 0.08
25000 0.20 0.09 0.40 0.28 0.09 0.45

6.1 Nonconvex least square problem

In our first experiment, we consider the following least square problem with a
smoothly clipped absolute deviation penalty term given in [10]:

min
x∈Rn

f(x) := Eu,v[(〈x, u〉 − v)2] +
d
∑

j=1

pλ(|xj |).

Here, the penalty term pλ : R+ → R satisfies pλ(0) = 0 and has derivatives as

p′λ(β) = λ

{

I(β ≤ λ) +
max(0, aλ− β)

(a− 1)λ
I(β > λ)

}

,

where a > 2 and λ > 0 are constant parameter, and I is the indicator function.
As it can be seen, pλ(| · |) is nonconvex and non-differentiable at 0. Therefore,
we replace pλ by its smooth nonconvex approximation qλ : R+ → R, satisfying
qλ(0) = 0 with derivative defined as

q′λ(β) =

{

βI(β ≤ λ) +
max(0, aλ− β)

(a− 1)
I(β > λ)

}

.

In this experiment, we assume that u is a sparse vector, whose components are
standard normal, and v is obtained by v = 〈x̄, u〉 + ξ, where ξ ∼ N(0, σ̄2) is
the random noise independent of u and the coefficient x̄ defines the true linear
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relationship between u and v. Also, we set the parameters to a = 3.7 and λ = 0.01
in the numerical experiments.

We consider three different problem sizes with n = 100,500 and 1, 000, and
two different noise levels with σ̄ = 0.1 and 1. Also, we set the data sparsity to
5%, which means that approximately five percent of u is nonzero for each data
point (u, v). We also use a sparse multivariate standard normal x̄ for generating
data points. Also, for all problem sizes, the initial point is set to x1 = 5 ∗ x̄0 ∈ R

n,
where x̄0 is a multivariate standard normal vector with approximately 10% nonzero
elements. Since this problem is unconstrained, we also implement variants of the
RSG algorithm developed in [15]. Table 1 shows the mean and variance of the
2-norm of the gradient at the solutions returned by 20 runs of the comparing
algorithms. Moreover, we are also interested in recovering sparse solutions. Hence,
we set the component of output solutions to be zero if its absolute value is less
than a threshold 0.02. We call such solutions as the recovered truncated zeros and
compute their ratio with respect to the number of true zeros. Table 2 shows the
average of this ratio over 20 runs of the algorithms. The following observations
can be made from the numerical results.

– Different variants of the RSPG algorithm: Firstly, over 20 runs of the
algorithm, the solutions of the RSPG algorithm has relatively large variance.
Secondly, both 2-RSPG and 2-RSPG-V can significantly reduce the variance of
the RSPG algorithm.Moreover, for a given fixed NS, the solution quality of the
2-RSPG-V algorithm is significantly better than that of the 2-RSPG algorithm.
The reason might be that, for fixed NS, S = 5 times more iterations are being
used in the 2-RSPG-V algorithm to generate new solutions in the trajectory.

– Different variants of the RSG algorithm: The differences among different
variants of the RSG algorithm are similar to those of the corresponding variants
of the RSPG algorithm.

– RSPG algorithm vs. RSG algorithm: In terms of the mean value, the solu-
tions give by RSG and RSPG algorithms are comparable. However, the solution
of the RSPG algorithm usually have less variance than that of the correspond-
ing RSG algorithm. The possible reason is that we use a better approximation
for stochastic gradient by incorporating mini-batch of samples during the ex-
ecution of the RSPG method.

6.2 Semi-supervised support vector machine problem

In this second experiment, we consider a binary classification problem. The train-
ing set is divided to two types of data, which consists of labeled and unlabeled
examples, respectively. The linear semi-supervised support vector machine prob-
lem can be formulated as follows [7]:

min
b∈R, x∈Rn

f(x, b) := λ1Eu1,v

[

max {0, 1− v(〈x, u1〉+ b)}2
]

+λ2Eu2

[

max {0, 1− |〈x, u2〉+ b|}2
]

+ λ3‖x‖22,

where (u1, v) and u2 are labeled and unlabeled examples, respectively. Clearly,
the above problem is nonsmooth, nonconvex, and does not fit the setting of the
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problem (1). Using a smooth approximation of the above problem [7], we can
reformulate it as

min
(x,b)∈Rn+1

f(x, b) := Eu1,u2,v

[

λ1max {0, 1− v(〈x, u1〉+ b)}2 + λ2e
−5{〈x,u2〉+b}2

]

+λ3‖x‖22. (104)

Here, we assume that the feature vectors u1 and u2 are drawn from standard nor-
mal distribution with approximately 5% nonzero elements. Moreover, we assume
that label v ∈ {0, 1} with v = sgn(〈x̄, u′〉+ b) for some x̄ ∈ R

n. The parameters are
also set to λ1 = 1, λ2 = 0.5 and λ3 = 0.5. The choices of problem size and the
noise variance are same as those of the nonconvex penalized least square problem
in the previous subsection. We also want to determine the labels of unlabeled ex-
amples such that the ratio of new positive labels is close to that of the already
labeled examples. It is shown in [7] that if the examples come from a distribution
with zero mean, then, to have balanced new labels, we can consider the following
constraint

|b− 2r + 1| ≤ δ, (105)

where r is the ratio of positive labels in the already labeled examples and δ is
a tolerance setting to 0.1 in our experiment. Therefore, (104) together with the
constraint (105) is a constrained nonconvex smooth problem, which fits the setting
of problem (1). Table 3 shows the mean and variance of the 2-norm of the projected
gradient at the solutions obtained by 20 runs of the RSPG algorithms, and Table 4
gives the corresponding average objective values at the solutions given in Table 3.
Similar to the conclusions in the previous subsection, we again can see 2-RSPG-V
algorithm has the best performance among the variants of the RSPG algorithms
and 2-RSPG algorithms is more stable than the RSPG algorithm.

7 Conclusion

This paper proposes a new stochastic approximation algorithm with its variants
for solving a class of nonconvex stochastic composite optimization problems. This
new randomized stochastic projected gradient (RSPG) algorithm uses mini-batch
of samples at each iteration to handle the constraints. The proposed algorithm is
set up in a way that a more general gradient projection according to the geometry
of the constraint set could be used. The complexity bound of our algorithm is
established in a unified way, including both convex and nonconvex objective func-
tions. Our results show that the RSPG algorithm would automatically maintains
a nearly optimal rate of convergence for solving stochastic convex programming
problems. To reduce the variance of the RSPG algorithm, a two-phase RSPG al-
gorithm is also proposed. It is shown that with a special post-optimization phase,
the variance of the the solutions returned by the RSPG algorithm could be signif-
icantly reduced, especially when a light tail condition holds. Based on this RSPG
algorithm, a stochastic projected gradient free algorithm, which only uses the
stochastic zeroth-order information, has been also proposed and analyzed. Our
preliminary numerical results show that our two-phase RSPG algorithms, the 2-
RSPG and its variant 2-RSPG-V algorithms, could be very effective and stable
for solving the aforementioned nonconvex stochastic composite optimization prob-
lems.
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Table 3 Estimated ‖g
X
(x̄∗)‖2 for the semi-supervised support vector machine problem (K =

75, 000)

N̄S RSPG 2-RSPG 2-RSPG-V
n = 100

1000
mean 1.355 0.2107 0.1277
var. 1.21e+1 9.50e-3 5.45e-3

5000
mean 0.1032 0.1174 0.0899
var. 4.96e-2 4.42e-3 6.28e-3

25000
mean 0.0352 0.0699 0.0239
var. 1.13e-3 3.42e-3 1.73e-5

n = 500

1000
mean 5.976 0.7955 0.1621
var. 1.93e+2 6.07e-1 1.15e-3

5000
mean 0.2237 0.1703 0.0928
var. 2.77e-1 4.39e-3 1.29e-3

25000
mean 0.2174 0.0832 0.0339
var. 2.35e-1 2.41e-4 8.04e-6

n = 1000

1000
mean 27.06 2.417 0.3167
var. 6.00e+3 1.73e+1 1.19e-2

5000
mean 16.24 0.4726 0.1463
var. 2.20e+3 2.85e+1 1.46e-3

25000
mean 0.1007 0.1378 0.0672
var. 2.46e-2 5.63e-5 5.10e-5

Table 4 Average objective values at x̄∗, obtained in Table 3

N̄S RSPG 2-RSPG 2-RSPG-V
n = 100

1000 1.497 0.9331 0.9094
5000 0.9131 0.9078 0.8873
25000 0.8736 0.8862 0.8728

n = 500
1000 3.813 1.364 1.038
5000 1.062 1.043 0.9998
25000 1.062 0.9982 0.9719

n = 1000
1000 14.05 2.100 1.055
5000 8.77 1.128 0.9767
25000 0.9513 0.9719 0.9351
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