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Abstract. In this paper we show how to construct inner and outer convex approximations
of a polytope from an approximate cone factorization of its slack matrix. This provides a
robust generalization of the famous result of Yannakakis that polyhedral lifts of a polytope
are controlled by (exact) nonnegative factorizations of its slack matrix. Our approximations
behave well under polarity and have efficient representations using second order cones. We
establish a direct relationship between the quality of the factorization and the quality of
the approximations, and our results extend to generalized slack matrices that arise from a
polytope contained in a polyhedron.

1. Introduction

A well-known idea in optimization to represent a complicated convex set C ⊂ Rn is to
describe it as the linear image of a simpler convex set in a higher dimensional space, called
a lift or extended formulation of C . The standard way to express such a lift is as an affine
slice of some closed convex cone K, called a K-lift of C, and the usual examples of K are
nonnegative orthants Rm

+ and the cones of real symmetric positive semidefinite matrices Sm+ .
More precisely, C has a K-lift, where K ⊂ Rm, if there exists an affine subspace L ⊂ Rm

and a linear map π : Rm → Rn such that C = π(K ∩ L).
Given a nonnegative matrix M ∈ Rp×q

+ and a closed convex cone K ⊂ Rm with dual
cone K∗ ⊂ (Rm)∗, a K-factorization of M is a collection of elements a1, . . . , ap ∈ K∗ and
b1, . . . , bq ∈ K such that Mij = 〈ai, bj〉 for all i, j. In particular, a Rm

+ -factorization of M , also
called a nonnegative factorization of M of size m, is typically expressed as M = ATB where
A has columns a1, . . . , ap ∈ (Rm)∗+ and B has columns b1, . . . , bq ∈ Rm

+ . In [20], Yannakakis
laid the foundations of polyhedral lifts of polytopes by showing the following.

Theorem 1.1. [20] A polytope P ⊂ Rn has a Rm
+ -lift if and only if the slack matrix of P

has a Rm
+ -factorization.

This theorem was extended in [8] from Rm
+ -lifts of polytopes to K-lifts of convex sets

C ⊂ Rn, where K is any closed convex cone, via K-factorizations of the slack operator of C.
The above results rely on exact cone factorizations of the slack matrix or operator of

the given convex set, and do not offer any suggestions for constructing lifts of the set in
the absence of exact factorizations. In many cases, one only has access to approximate
factorizations of the slack matrix, typically via numerical algorithms. In this paper we show
how to take an approximate K-factorization of the slack matrix of a polytope and construct
from it an inner and outer convex approximation of the polytope. Our approximations behave
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well under polarity and admit efficient representations via second order cones. Further, we
show that the quality of our approximations can be bounded by the error in the corresponding
approximate factorization of the slack matrix.

Let P := {x ∈ Rn : HTx ≤ 1} be a full-dimensional polytope in Rn with the origin
in its interior, and vertices p1, . . . , pv. We may assume without loss of generality that each
inequality 〈hi, x〉 ≤ 1 in HTx ≤ 1 defines a facet of P . If H has size n × f , then the slack
matrix of P is the f × v nonnegative matrix S whose (i, j)-entry is Sij = 1 − 〈hi, pj〉, the
slack of the jth vertex in the ith inequality of P . Given an Rm

+ -factorization of S, i.e., two
nonnegative matrices A and B such that S = ATB, an Rm

+ -lift of P is obtained as

P =
{
x ∈ Rn : ∃y ∈ Rm

+ s.t. HTx+ ATy = 1
}
.

Notice that this lift is highly non-robust, and small perturbations of A make the right hand
side empty, since the linear system HTx + ATy = 1 is in general highly overdetermined.
The same sensitivity holds for all K-factorizations and lifts. Hence, it becomes important
to have a more robust, yet still efficient, way of expressing P (at least approximately) from
approximate K-factorizations of S. Also, the quality of the approximations of P and their
lifts must reflect the quality of the factorization, and specialize to the Yannakakis setting
when the factorization is exact. The results in this paper carry out this program and contain
several examples, special cases, and connections to the recent literature.

1.1. Organization of the paper. In Section 2 we establish how an approximate K-
factorization of the slack matrix of a polytope P ⊂ Rn yields a pair of inner and outer
convex approximations of P which we denote as InnP (A) and OutP (B) where A and B are
the two “factors” in the approximate K-factorization. These convex sets arise naturally from
two simple inner and outer second order cone approximations of the nonnegative orthant.
While the outer approximation is always closed, the inner approximation maybe open if K
is an arbitrary cone. However, we show that if the polar of K is “nice” [13], then the inner
approximation will be closed. All cones of interest to us in this paper such as nonnegative
orthants, positive semidefinite cones, and second order cones are nice. Therefore, we will
assume that our approximations are closed after a discussion of their closedness.

We prove that our approximations behave well under polarity, in the sense that

OutP ◦(A) = (InnP (A))◦ and InnP ◦(B) = (OutP (B))◦

where P ◦ is the polar polytope of P . Given P ⊂ Rn and K ⊂ Rm, our approximations
admit efficient representations via slices and projections of K × SOCn+m+2 where SOCk is
a second order cone of dimension k. We show that an ε-error in the K-factorization makes

1
1+ε

P ⊆ InnP (A) and OutP (B) ⊆ (1 + ε)P , thus establishing a simple link between the error
in the factorization and the gap between P and its approximations. In the presence of an
exact K-factorization of the slack matrix, our results specialize to the Yannakakis setting.

In Section 3 we discuss two connections between our approximations and well-known con-
structions in the literature. In the first part we show that our inner approximation, InnP (A),
always contains the Dikin ellipsoid used in interior point methods. Next we examine the clos-
est rank one approximation of the slack matrix obtained via a singular value decomposition
and the approximations of the polytope produced by it.

In Section 4 we extend our results to the case of generalized slack matrices that arise
from a polytope contained in a polyhedron. We also show how an approximation of P with
a K-lift produces an approximate K-factorization of the slack matrix of P . It was shown
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in [5] that the max clique problem does not admit polyhedral approximations with small
polyhedral lifts. We show that this negative result continues to hold even for the larger class
of convex approximations considered in this paper.

2. From approximate factorizations to approximate lifts

In this section we show how to construct inner and outer approximations of a polytope P
from approximateK-factorizations of the slack matrix of P , and establish the basic properties
of these approximations.

2.1. K-factorizations and linear maps. Let P = {x ∈ Rn : HTx ≤ 1} be a full-
dimensional polytope with the origin in its interior. The vertices of the polytope are
p1, . . . , pv, and each inequality 〈hi, x〉 ≤ 1 for i = 1, . . . , f in HTx ≤ 1 defines a facet of P .
The slack matrix S of P is the f×v matrix with entries Sij = 1−〈hi, pj〉. In matrix form, let-
ting H = [h1 . . . hf ] and V = [p1 . . . pv], we have the expression S = 1f×v−HTV . We assume
K ⊂ Rm is a closed convex cone, with dual cone K∗ = {y ∈ (Rm)∗ : 〈y, x〉 ≥ 0 ∀x ∈ K}.

Definition 2.1. ([8]) A K-factorization of the slack matrix S of the polytope P is given
by a1, . . . , af ∈ K∗, b1, . . . , bv ∈ K such that 1 − 〈hi, pj〉 = 〈ai, bj〉 for i = 1, . . . , f and
j = 1, . . . , v. In matrix form, this is the factorization

S = 1f×v −HTV = ATB

where A = [a1 . . . af ] and B = [b1 . . . bv].

It is convenient to interpret a K-factorization as a composition of linear maps as follows.
Consider B as a linear map from Rv → Rm, verifying B(Rv

+) ⊆ K. Similarly, think of A as a
linear map from (Rf )∗ → (Rm)∗ verifying A((Rf )∗+) ⊆ K∗. Then, for the adjoint operators,

B∗(K∗) ⊆ (Rv)∗+ and A∗(K) ⊆ Rf
+. Furthermore, we can think of the slack matrix S as an

affine map from Rv to Rf , and the matrix factorization in Definition 2.1 suggests to define
the slack operator, S : Rv → Rf , as S(x) = (1f×v − H∗ ◦ V )(x), where V : Rv → Rn and
H : (Rf )∗ → (Rn)∗.

K

⊆

Rm

A∗

""

(
1
π

)

��

Rv

B

<<

[
1
∗
v

V

] // R⊕ Rn

[1f −H∗]
// Rf

We define a nonnegative K-map from Rv → Rm (where K ⊆ Rm) to be any linear map F
such that F (Rv

+) ⊆ K. In other words, a nonnegative K-map from Rv → Rm is the linear
map induced by an assignment of an element bi ∈ K to each unit vector ei ∈ Rv

+. In this
language, a K-factorization of S corresponds to a nonnegative K∗-map A : (Rf )∗ → (Rm)∗

and a nonnegative K-map B : Rv → Rm such that S(x) = (A∗ ◦ B)(x) for all x ∈ Rv. As
a consequence, we have the correspondence ai := A(e∗i ) for i = 1, . . . , f and bj := B(ej) for
j = 1, . . . , v.



4 JOÃO GOUVEIA, PABLO A. PARRILO, AND REKHA R. THOMAS

2.2. Approximations of the nonnegative orthant. In this section we introduce two
canonical second order cone approximations to the nonnegative orthant, which will play a
crucial role in our developments. In what follows, ‖ · ‖ will always denote the standard

Euclidean norm in Rn, i.e., ‖x‖ = (
∑n

i=1 x
2
i )

1
2 .

Definition 2.2. Let Onin, Onout be the cones

Onin := {x ∈ Rn :
√
n− 1 · ‖x‖ ≤ 1

Tx}
Onout := {x ∈ Rn : ‖x‖ ≤ 1

Tx}.
If the dimension n is unimportant or obvious from the context, we may drop the superscript
and just refer to them as Oin and Oout.

As the following lemma shows, the cones Oin and Oout provide inner and outer approxi-
mations of the nonnegative orthant, which are dual to each other and can be described using
second-order cone programming ([1, 10]).

Lemma 2.3. The cones Oin and Oout are proper cones (i.e., convex, closed, pointed and
solid) in Rn that satisfy

Oin ⊆ Rn
+ ⊆ Oout,

and furthermore, O∗in = Oout, and O∗out = Oin.

The cones Oin and Oout are in fact the “best” second-order cone approximations of the
nonnegative orthant, in the sense that they are the largest/smallest permutation-invariant
cones with these containment properties; see also Remark 2.5. Lemma 2.3 is a direct conse-
quence of the following more general result about (scaled) second-order cones:

Lemma 2.4. Given ω ∈ Rn with ‖ω‖ = 1 and 0 < a < 1, consider the set

Ka := {x ∈ Rn : a‖x‖ ≤ ωTx}.
Then, Ka is a proper cone, and K∗a = Kb, where b satisfies a2 + b2 = 1, b > 0.

Proof: The set Ka is clearly invariant under nonnegative scalings, so it is a cone. Closedness
and convexity ofKa follow directly from the fact that (for a ≥ 0) the function x 7→ a‖x‖−ωTx
is convex. The vector ω is an interior point (since a‖ω‖− ωTω = a− 1 < 0), and thus Ka is
solid. For pointedness, notice that if both x and −x are in Ka, then adding the corresponding
inequalities we obtain 2a‖x‖ ≤ 0, and thus (since a > 0) it follows that x = 0.

The duality statement K∗a = Kb is perhaps geometrically obvious, since Ka and Kb are
spherical cones with “center” ω and half-angles θa and θb, respectively, with cos θa = a,
cos θb = b, and θa + θb = π/2. For completeness, however, a proof follows. We first prove
that Kb ⊆ K∗a . Consider x ∈ Ka and y ∈ Kb, which we take to have unit norm without loss
of generality. Let α, β, γ be the angles between (x, ω), (y, ω) and (x, y), respectively. The
triangle inequality in spherical geometry gives γ ≤ α + β. Then,

cos γ ≥ cos(α + β) = cosα cos β − sinα sin β

or equivalently

xTy ≥ (ωTx)(ωTy)−
√

1− (ωTx)2
√

1− (ωTy)2 ≥ ab−
√

1− a2
√

1− b2 = 0.

To prove the other direction (K∗a ⊆ Kb) we use its contrapositive, and show that if y 6∈ Kb,
then y 6∈ K∗a . Concretely, given a y (of unit norm) such that b‖y‖ > ωTy, we will construct
an x ∈ Ka such that yTx < 0 (and thus, y 6∈ K∗a). For this, define x := aω − bω̂, where
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ω̂ := (y−(ωTy)ω)/
√

1− (ωTy)2 (notice that ‖ω̂‖ = 1 and ωT ω̂ = 0). It can be easily verified
that ωTx = a and ‖x‖2 = a2 + b2 = 1, and thus x ∈ Ka. However, we have

yTx = a(ωTy)− b
√

1− (ωTy)2 < ab− b
√

1− b2 = 0,

which proves that y 6∈ K∗a . �

Proof: [of Lemma 2.3] Choosing ω = 1/
√
n, a =

√
(n− 1)/n and b =

√
1/n in Lemma 2.4,

we have Oin = Ka and Oout = Kb, so the duality statement follows. Since x =
∑

i xiei, with
xi ≥ 0, we have

‖x‖ ≤
∑
i

xi‖ei‖ =
∑
i

xi = 1
Tx,

and thus Rn
+ ⊆ Oout. Dualizing this expression, and using self-duality of the nonnegative

orthant, we obtain the remaining containment Oin = O∗out ⊆ (Rn
+)∗ = Rn

+. �

Remark 2.5. Notice that (1Tx)2 − ‖x‖2 = 2σ2(x), where σ2(x) is the second elementary
symmetric function in the variables x1, . . . , xn. Thus, the containment relations in Lemma 2.3
also follow directly from the fact that the cone Oout is the (n−2) derivative cone (or Renegar
derivative) of the nonnegative orthant; see e.g. [15] for background and definitions and [17]
for their semidefinite representability.

Remark 2.6. The following alternative description of Oin is often convenient:

(1) Oin = {x ∈ Rn : ∃t ∈ R s.t. ‖t1− x‖ ≤ t}.
The equivalence is easy to see, since the condition above requires the existence of t ≥ 0
such that t2(n − 1) − 2t1Tx + ‖x‖2 ≤ 0. Eliminating the variable t immediately yields√
n− 1 · ‖x‖ ≤ 1

Tx. The containment Oin ⊆ Rn
+ is now obvious from this representation,

since t− xi ≤ ‖t1− x‖ ≤ t, and thus xi ≥ 0.

2.3. From orthants to polytopes. The cones Oin and Oout provide “simple” approxima-
tions to the nonnegative orthant. As we will see next, we can leverage these to produce
inner/outer approximations of a polytope from any approximate factorizations of its slack
matrix. The constructions below will use arbitrary nonnegative K∗ and K-maps A and B
(of suitable dimensions) to produce approximations of the polytope P (though of course, for
these approximations to be useful, further conditions will be required).

Definition 2.7. Given a polytope P as before, a nonnegative K∗-map A : (Rf )∗ → (Rm)∗

and a nonnegative K-map B : Rv → Rm , we define the following two sets:

InnP (A) :=
{
x ∈ Rn : ∃y ∈ K, s.t. 1−H∗(x)− A∗(y) ∈ Ofin

}
,

OutP (B) :=
{
V (z) : z ∈ Ovout, 1

T z ≤ 1, B(z) ∈ K
}
.

By construction, these sets are convex, and the first observation is that the notation makes
sense as the sets indeed define an inner and an outer approximation of P .

Proposition 2.8. Let P be a polytope as before and A and B be nonnegative K∗ and K-maps
respectively. Then InnP (A) ⊆ P ⊆ OutP (B).

Proof: If x ∈ InnP (A), there exists y ∈ K such that 1−H∗(x)−A∗(y) ∈ Ofin ⊆ Rf
+, which

implies H∗(x) +A∗(y) ≤ 1. Since A∗(y) ≥ 0 for y ∈ K, we have H∗(x) ≤ 1 and thus x ∈ P .
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For the second inclusion, by the convexity of OutP (B) it is enough to show that the vertices
of P belong to this set. Any vertex p of P can be written as p = V (ei) for some canonical
basis vector ei. Furthermore, B(ei) ∈ K since B is a nonnegative K-map, ei ∈ Rv

+ ⊆ Ovout,
1
T ei ≤ 1, and so p ∈ OutP (B) as intended. �

If A and B came from a true K-factorization of S, then P has a K-lift and S = A∗ ◦ B.
Then, the subset of InnP (A) given by {x ∈ Rn : ∃y ∈ K s.t. H∗(x) + A∗(y) = 1} contains
P , since it contains every vertex pi = V (ei) of P . This can be seen by taking y = B(ei) ∈
K and checking that 1 − H∗(pi) = (1f×v − H∗ ◦ V )(ei) = (A∗ ◦ B)(ei) = A∗(y). From
Proposition 2.8 it then follows that InnP (A) = P . The definition of OutP (B) can be similarly
motivated. An alternative derivation is through polarity, as we will see in Theorem 2.17.

Remark 2.9. Since the origin is in P , the set OutP (B) can also be defined with the inequality
1
T z ≤ 1 replaced by the corresponding equation:

OutP (B) =
{
V (z) : z ∈ Ovout, 1

T z = 1, B(z) ∈ K
}
.

To see this, suppose q := V (z) such that z ∈ Ovout, 1T z ≤ 1 and B(z) ∈ K. Then there
exists s ≥ 0 such that 1T z + s = 1. Since 0 ∈ P , there exists 0 ≤ λi with

∑
λi = 1 such

that 0 =
∑
λipi where pi are the vertices of P . Let z̃ := sλ+ z ∈ Rv where λ = (λi). Then

z̃ ∈ Ovout since s ≥ 0, λ ∈ Rv
+ ⊆ Ovout and z ∈ Ovout. Further, 1T z̃ = s1Tλ + 1

T z = 1. We
also have that B(z̃) = B(sλ + z) = sB(λ) + B(z) ∈ K since each component is in K (note
that B(λ) ∈ K since λ ∈ Rv

+). Therefore, we can write q = V (z̃) with z̃ ∈ Ovout, 1T z̃ = 1
and B(z̃) ∈ K which proves our claim. This alternate formulation of OutP (B) will be useful
in Section 4. However, Definition 2.7 is more natural for the polarity results in Section 2.5.

Example 2.10. Let P be the n-dimensional simplex given by the inequalities:

P = {x ∈ Rn : 1 + x1 ≥ 0, . . . , 1 + xn ≥ 0, 1−
∑

ixi ≥ 0}
with vertices (n,−1, · · · ,−1), (−1, n,−1, . . . ,−1), . . . , (−1, . . . ,−1, n), (−1, . . . ,−1). The
slack matrix of this polytope is the (n + 1) × (n + 1) diagonal matrix with all diagonal
entries equal to n+ 1. Choosing A to be the zero map, for any cone K we have

InnP (0) =

{
x ∈ Rn : n

(∑
i

(1 + xi)
2 + (1−

∑
i

xi)
2

)
≤ (n+ 1)2

}

=

x ∈ Rn :
∑
i

x2
i +

(∑
i

xi

)2

≤ (n+ 1)

n

 .

For the case of n = 2 we have:

InnP (0) =

{
(x1, x2) : x2

1 + x2
2 + (x1 + x2)2 ≤ 3

2

}
=
{

(x1, x2) : 3(x1 + x2)2 + (x1 − x2)2 ≤ 3
}
.

For the outer approximation, if we choose B = 0 then we obtain the body

OutP (0) =

{(
−

n+1∑
i=1

zi + (n+ 1)zj, j = 1, . . . , n

)
, ‖z‖ ≤

n+1∑
i=1

zi ≤ 1

}
.

For n = 2, OutP (0) = {(2z1 − z2 − z3,−z1 + 2z2 − z3) : ‖z‖ ≤ z1 + z2 + z3 ≤ 1}, and
eliminating variables we get

OutP (0) =
{

(x1, x2) : 3(x1 + x2)2 + (x1 − x2)2 ≤ 12
}
.
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Figure 1. InnP (0) and OutP (0) for a triangle centered at the origin.

Figure 2. InnQ(0) and OutQ(0) for a triangle not centered at the origin.

The simplex and its approximations can be seen in Figure 1.
Note that the bodies InnP (0) and OutP (0) do not depend on the choice of a cone K and

are hence canonical convex sets associated to the given representation of the polytope P .
However, while OutP (0) is invariant under translations of P (provided the origin remains
in the interior), InnP (0) is sensitive to translation, i.e., to the position of the origin in the
polytope P . To illustrate this, we translate the simplex in the above example by adding
(1

2
, 1

2
, . . . , 1

2
) to it and denote the resulting simplex by Q. Then

Q =

{
x ∈ Rn : 1 + 2x1 ≥ 0, . . . , 1 + 2xn ≥ 0, 1−

∑ 2

n+ 2
xi ≥ 0

}
and its vertices are (n+ 1

2
,−1

2
,−1

2
, . . . ,−1

2
), . . . , (−1

2
,−1

2
, . . . ,−1

2
, n+ 1

2
), (−1

2
,−1

2
, . . . ,−1

2
).

For n = 2, plugging into the formula for the inner approximation we get

InnQ(0) = {(x, y) : (3(x+ y)− 2)2 + 16(x− y)2 ≤ 16},
while doing it for the outer approximation yields

OutQ(0) = {(x, y) : 3(x+ y − 1)2 + (x− y)2 ≤ 12}.
So we can see that while OutQ(0) is simply a translation of the previous one, InnQ(0) has
changed considerably as can be seen in Figure 2.

2.4. Closedness of InnP (A). It is easy to see that OutP (B) is closed and bounded. Indeed,
since 1 lies in the interior of Ovin which is the polar of Ovout, for every z ∈ Ovout, 1T z > 0.
Therefore, there is no z ∈ Ovout such that 1

T (λz) = λ(1T z) ≤ 1 for all λ > 0 and so,
{z ∈ Ovout : 1

T z ≤ 1} is bounded. It is closed since Ovout is closed. Further, {z ∈ Ovout :
1
T z ≤ 1, B(z) ∈ K} is also compact since B−1(K) ⊂ Rv is closed as B is a linear map
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Figure 3. Affine slice of O3
in + A∗(K), and the corresponding projection InnP (A).

and K is closed. Therefore, OutP (B) is compact since it is the linear image of a compact
set. The set InnP (A) is bounded since it is contained in the polytope P . We will also see in
Proposition 2.20 that it has an interior. However, InnP (A) may not be closed.

Example 2.11. Consider the three dimensional cone

K =

(a, b, t) ∈ R3 :

 a+ b 0 2(a− b)
0 t 2(a+ b)− t

2(a− b) 2(a+ b)− t t

 � 0

 ,

and take A∗ to be the map sending (a, b, t) to (a, b, 0). Then,

A∗(K) = {(x, y, 0) : x > 0, y > 0} ∪ {(0, 0, 0)}.
For any triangle P ⊂ R2 given by 1−H∗(x) ≥ 0 we then have that

InnP (A) =
{
x ∈ R2 : 1−H∗(x) ∈ O3

in + A∗(K)
}
.

SinceO3
in is a second order cone that is strictly contained in R3

+ andA∗(K) has the description
given above, the cone O3

in + A∗(K) is not closed. The set InnP (A) is an affine slice of this
non-closed cone and therefore, may not be closed. Taking, for example, the triangle

P =

(x, y) ∈ R2 :

 1− x
1− y

1 + x+ y

 ≥ 0

 ,

InnP (A) =
{

(x, y) ∈ R2 : (1− x, 1− y, 1 + x+ y) ∈ O3
in + A∗(K)

}
,

which is not closed, as can be seen in Figure 3. Notice that in this example, A is a nonnegative
K∗-map, but A∗(K) is not closed.

Remark 2.12. If A∗(K) is closed, then Ofin + A∗(K) will be closed by [16, Corollary 9.12]

since both cones are closed, and contained in Rf
+, which means that there is no direction

of recession of one cone whose opposite is a direction of recession of the other cone. If
Ofin +A∗(K) is closed then InnP (A) will be closed since it is an affine slice of Ofin +A∗(K).

We now discuss results from [13] and [14] that give conditions under which A∗(K) is closed.

Definition 2.13. [13, Definition 1.1], [3] A closed convex cone C is nice if C∗+F⊥ is closed
for all faces F of C.
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Nonnegative orthants, positive semidefinite cones, and second order cones are all nice.
Given a convex set C, let ri C denote the relative interior of C. For x ∈ C, define

dir(x,C) = {y : x+ εy ∈ C for some ε > 0}
and cl(dir(x,C)) denote the closure of dir(x,C). For example, if C ⊂ Rm is a full-dimensional
closed convex cone and x is in the interior of C, then dir(x,C) = Rm. If x ∈ ri F for a face
F of C, then dir(x,C) contains the linear span of F and hence, cl(dir(x,C))\dir(x,C) does
not contain the linear span of F .

Theorem 2.14. [14, Theorem 1] Let M be a linear map, C a nice cone and x ∈ ri (C ∩
range(M)). Then M∗C∗ is closed if and only if range(M) ∩ (cl(dir(x,C))\dir(x,C)) = ∅.
Corollary 2.15. If K∗ is a nice cone and A is a nonnegative K∗-map, then both A∗(K) and
InnP (A) are closed.

Proof: Since A is a nonnegative K∗-map, A sends e∗i ∈ (Rf )∗ to ai ∈ K∗. Therefore,
range(A) is contained in the linear span of a face of K∗. Let F be a minimal such face.
If x ∈ ri (K∗ ∩ range(A)), then x lies in ri F which means that cl(dir(x,K∗))\dir(x,K∗)
does not contain the linear span of F and hence does not contain range(A). This implies
that range(A) ∩ (cl(dir(x,K∗))\dir(x,K∗)) = ∅ and A∗(K) is closed by Theorem 2.14. By
Remark 2.12, it follows that InnP (A) is closed. �

Remark 2.16. By Corollary 2.15, InnP (A) is closed when K is a nonnegative orthant, psd
cone or a second order cone. Since these are precisely the cones that are of interest to us
in this paper, we will assume that InnP (A) is closed in the rest of this paper. While this
assumption will be convenient in the proofs of several forthcoming results, we note that the
results would still be true if we were to replace InnP (A) by its closure everywhere.

2.5. Polarity. We now show that our approximations behave nicely under polarity. Recall
that the polar of the polytope P ⊂ Rn is the polytope P ◦ = {y ∈ (Rn)∗ : 〈y, x〉 ≤ 1, ∀ x ∈
P}. The face lattices of P and P ◦ are anti-isomorphic. In particular, if P = {x ∈ Rn :
HTx ≤ 1} with vertices p1, . . . , pv as before, then the facet inequalities of P ◦ are 〈y, pi〉 ≤ 1
for all i = 1, . . . , v and the vertices are h1, . . . , hf . Therefore, given a nonnegative K∗-map
A : (Rf )∗ → (Rm)∗ and a nonnegative K-map B : Rv → Rm we can use them, as above, to
define approximations for P ◦, InnP ◦(B) and OutP ◦(A), since facets and vertices of P and
P ◦ exchange roles. By applying polarity again, we potentially get new (different) outer and
inner approximations of P via Proposition 2.8. We now prove that in fact, we recover the
same approximations, and so in a sense, the approximations are dual to each other.

As noted in Remark 2.16, we are assuming that InnP (A) is closed.

Theorem 2.17. Let P be a polytope, A a nonnegative K∗-map and B a nonnegative K-map
as before. Then,

OutP ◦(A) = (InnP (A))◦,

and equivalently,
InnP ◦(B) = (OutP (B))◦.

Proof: Note that the two equalities are equivalent as one can be obtained from the other
by polarity. Therefore, we will just prove the first statement. For notational convenience,
we identify Rn and its dual. By definition,

(InnP (A))◦ = {z ∈ Rn : zTx ≤ 1 ∀x ∈ InnP (A)}.
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Consider then the problem

max {zTx : x ∈ InnP (A)} = max {zTx : 1−H∗(x)− A∗(y) ∈ Ofin, y ∈ K}.
This equals the problem

maxx,y∈K minp∈(Of
in)∗{z

Tx+ pT (1−H∗(x)− A∗(y))}.

Strong duality [4] holds since the original problem max {zTx : x ∈ InnP (A)} is a convex
optimization problem and InnP (A) has an interior as we will see in Proposition 2.20. This
allows us to switch the order of min and max, to obtain

minp∈(Of
in)∗ maxx,y∈K{1Tp+ xT (z −H(p))− A(p)Ty}.

For this max to be bounded above, we need z = H(p) since x is unrestricted, and A(p) ∈ K∗
since y ∈ K. Therefore, using (Ofin)∗ = Ofout, we are left with

minp{1Tp : p ∈ Ofout, z = H(p), A(p) ∈ K∗}.
Looking back at the definition of (InnP (A))◦, we get

(InnP (A))◦ = {H(p) : p ∈ Ofout, 1Tp ≤ 1, A(p) ∈ K∗}
which is precisely OutP ◦(A). �

2.6. Efficient representation. There would be no point in defining approximations of
P if they could not be described in a computationally efficient manner. Remarkably, the
orthogonal invariance of the 2-norm constraints in the definition of InnP (·) and OutP (·) will
allow us to compactly represent the approximations via second order cones (SOC), with a
problem size that depends only on the conic rank m (the affine dimension of K), and not
on the number of vertices/facets of P . This feature is specific to our approximation and is
of key importance, since the dimensions of the codomain of A∗ and the domain of B can be
exponentially large.

We refer to any set defined by a k × k positive semidefinite matrix Q � 0 and a vector
a ∈ Rk of the form

{z ∈ Rk : ‖Q
1
2 z‖ ≤ aT z}

as a k-second order cone or SOCk. Here Q
1
2 refers to a k × k matrix that is a square

root of Q � 0, i.e., Q = (Q
1
2 )TQ

1
2 . Suppose M ∈ Rp×k is a matrix with p � k. Then

‖Mx‖2 = xTMTMx = xTQx = ‖Q 1
2x‖2 where Q = MTM . Therefore, the expression ‖Mx‖

(which corresponds to a 2-norm condition on Rp) is equivalent to a 2-norm condition on Rk

(and k � p). Notice that such a property is not true, for instance, for any `q norm for q 6= 2.
We use this key orthogonal invariance property of 2-norms to represent our approximations

efficiently via second-order cones. Recall from the introduction that a convex set C ⊂ Rn

has a K-lift, where K ⊂ Rm is a closed convex cone, if there is some affine subspace L ⊂ Rm

and a linear map π : Rm → Rn such that C = π(K ∩ L). A set of the form K ′ = {z ∈
Rk : ‖Q 1

2 z‖2 ≤ a0 + aT z} where the right-hand side is affine can be gotten by slicing its
homogenized second order cone{

(z0, z) ∈ Rk+1 :

∥∥∥∥( 0 0

0 Q
1
2

)(
z0

z

)∥∥∥∥ ≤ a0z0 + aT z

}
with the affine hyperplane {(z0, z) ∈ R1+k : z0 = 1} and projecting onto the z variables. In
other words, K ′ has a SOCk+1-lift.
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Theorem 2.18. Let P ⊆ Rn be a polytope, K ⊆ Rm a closed convex cone and A and B
nonnegative K∗ and K-maps respectively. Then the convex sets InnP (A) and OutP (B) have
K × SOC(n+m+2)-lifts.

Proof: Set M to be the f × (n + m + 1) concatenated matrix [H∗ A∗ −1]. Then, using
Definition 2.7, the characterization in Remark 2.6 and Q := MTM , we have

InnP (A) =
{
x ∈ Rn : ∃y ∈ K, ξ ∈ R s.t.

∥∥∥M (
xT yT ξ

)T∥∥∥ ≤ 1− ξ
}

=
{
x ∈ Rn : ∃y ∈ K, ξ ∈ R s.t. ‖Q 1

2

(
xT yT ξ

)T ‖ ≤ 1− ξ
}
.

From the discussion above, it follows that InnP (A) is the projection onto the x variables
of points (z;x0, x, y, ξ) ∈ K × SOCn+m+2 such that z = y and x0 = 1 and so InnP (A) has a
K × SOCn+m+2-lift.

The statement for OutP (B) follows from Theorem 2.17 and the fact that if a convex set
C ⊂ Rn with the origin in its interior has a K-lift, then its polar has a K∗-lift [8]. We also
use the fact that the dual of a SOCk is another SOCk cone. �

Note that the lifting dimension is independent of f , the number of facets of P , which
could be very large compared to n. A slightly modified argument can be used to improve
this result by 1, and show that a K × SOC(n+m+1)-lift always exists.

2.7. Approximation quality. The final question we will address in this section is how good
an approximation InnP (A) and OutP (B) are of the polytope P . We assume that A∗(K) is

closed which implies (by Remark 2.12) that both Ofin + A∗(K) and InnP (A) are closed.
One would like to prove that if we start with a good approximate K-factorization of the

slack matrix S of P , we would get good approximate lifts of P from our definitions. This is
indeed the case as we will show. Recall that our approximations InnP (A) and OutP (B) each
depend on only one of the factors A or B. For this reason, ideally, the goodness of these
approximations should be quantified using only the relevant factor. Our next result presents
a bound in this spirit.

Definition 2.19. For x ∈ Rf , let µ(x) := min{t ≥ 0 : x+ t1 ∈ Ofin + A∗(K)}.

Note that µ(x) is well defined since Ofin + A∗(K) is closed and 1 lies in the interior of

Ofin + A∗(K). Also, µ(x) = 0 for all x ∈ Ofin + A∗(K).

Proposition 2.20. For ε = maxi(µ(S(ei)), P
1+ε
⊆ InnP (A).

Proof: It suffices to show that p
1+ε
∈ InnP (A) where p = V (ei) is a vertex of P . By the

definition of ε, we have that ε1 + S(ei) ∈ Ofin + A∗(K) and hence, ε1 + 1 − H∗V (ei) ∈
Ofin + A∗(K). Therefore, 1−H∗( p

1+ε
) ∈ Ofin + A∗(K) and hence, p

1+ε
∈ InnP (A). �

From this proposition one sees that the approximation factor improves as A∗(K) gets big-
ger. While geometrically appealing, this bound is not very convenient from a computational
viewpoint. Therefore, we now write down a simple, but potentially weaker, result based on
an alternative error measure ξ(·) defined as follows.

Definition 2.21. For x ∈ Rf , define ξ(x) := min {t ≥ 0 : x+ t1 ∈ Ofin}.
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Again, ξ(·) is well-defined since Ofin is closed and 1 is in its interior. Also, µ(x) ≤ ξ(x) for

all x ∈ Rf . Setting t = ‖x‖ in Remark 2.6, we see that for any x ∈ Rf , x + ‖x‖ · 1 ∈ Ofin
which implies that ξ(x) ≤ ‖x‖. We also remark that ξ(x) can be computed easily as follows.

Remark 2.22. For 0 6= x ∈ Rf , f ≥ 2,

ξ(x) = max

{
0, ‖x‖ · α

(
1
Tx√
f‖x‖

)}
,

where α(s) := (
√

(f − 1)(1− s2)− s)/
√
f , and ξ(0) = 0.

Using ξ(·) we will now provide a more convenient version of Proposition 2.20 based only
on the factorization error.

Lemma 2.23. Let A : (Rf )∗ → (Rm)∗ be a nonnegative K∗-map and B : Rv → Rm be a
nonnegative K-map. Let ∆ = S − A∗ ◦B. Then, 1

1+ε
P ⊆ InnP (A), for ε = maxi ξ(∆(ei)).

Proof: Note that µ(S(ei)) = min{t ≥ 0 : ∃ u ∈ A∗(K) s.t. S(ei) − u + t1 ∈ Ofin}. Since
B(ei) ∈ K, we have that A∗(B(ei)) ∈ A∗(K). Therefore,

µ(S(ei)) ≤ min{t ≥ 0 : S(ei)− A∗(B(ei))︸ ︷︷ ︸
∆(ei)

+t1 ∈ Oin} = ξ(∆(ei)).

�

We immediately get our main result establishing the connection between the quality of
the factorization and the quality of the approximations. For simplicity, we state it using the
simplified upper bound ξ(x) ≤ ‖x‖.

Proposition 2.24. Let A : (Rf )∗ → (Rm)∗ be a nonnegative K∗-map and B : Rv → Rm be
a nonnegative K-map. Let ∆ := S − A∗ ◦B be the factorization error. Then,

(1) 1
1+ε

P ⊆ InnP (A), for ε = ‖∆‖1,2;
(2) OutP (B) ⊆ (1 + ε)P , for ε = ‖∆‖2,∞,

where ‖∆‖1,2 = maxi‖∆(ei)‖ is the induced `1, `2 norm and ‖∆‖2,∞ = maxi‖∆∗(e∗i )‖ is the
induced `2, `∞ norm of the factorization error.

Proof: By Theorem 2.17, the two statements are equivalent. The proof now follows from
Lemma 2.23. �

This means that if we start with A and B forming a K-factorization of a nonnegative
S ′ which is close to the true slack matrix S, we get a (1 + ‖S − S ′‖1,2)-approximate inner
approximation of P , as well as a (1 + ‖S − S ′‖2,∞)-approximate outer approximation of P .
Thus, good approximate factorizations of S do indeed lead to good approximate lifts of P .

Example 2.25. Consider the square given by the inequalities 1± x ≥ 0 and 1± y ≥ 0 with
vertices (±1,±1). By suitably ordering facets and vertices, this square has slack matrix

S =


2 2 0 0
0 2 2 0
0 0 2 2
2 0 0 2

 .
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Figure 4. InnP (A), P and OutP (B), as well as all the guaranteed approximations.

Let A : (R4)∗ → (R2)∗ and B : R4 → R2 be the nonnegative maps given by the matrices

A =

(
4/3 4/3 0 0
0 0 4/3 4/3

)
and B =

(
1 1 1 0
1 0 1 1

)
.

Then A and B are nonnegative R2
+ = (R2

+)∗ maps and

ATB =


4/3 4/3 4/3 0
4/3 4/3 4/3 0
4/3 0 4/3 4/3
4/3 0 4/3 4/3

 .

It is easy to check that ‖S −ATB‖1,2 = 2
3

√
10 while ‖S −ATB‖2,∞ = 2

√
2
3
. So by Proposi-

tion 2.24 this implies that

1

1 + 2
3

√
10
P ⊆ InnP (A) ⊆ P ⊆ OutP (B) ⊆ (1 + 2

√
2
3
)P.

If we use instead Lemma 2.23, we can get the slightly better quality bounds

1
4
3

+
√

3
P ⊆ InnP (A) ⊆ P ⊆ OutP (B) ⊆ (1 +

√
2)P.

Finally, if we use directly Proposition 2.20, it is possible in this case to compute explicitly
the true bounds

1√
3
P ⊆ InnP (A) ⊆ P ⊆ OutP (B) ⊆

√
3P.

In Figure 4 we can see the relative quality of all these bounds.

3. Special Cases

In this section we relate our inner approximation to Dikin’s ellipsoid, a well known inner
approximation to a polytope that arises in the context of interior point methods. We also
compute InnP (A) and OutP (B) from a nonnegative factorization of the closest rank one
approximation of the slack matrix of P . As we will see, these are the two simplest possible
approximations of a polytope, and correspond to specific choices for the factors A and B.
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3.1. Dikin’s ellipsoid. Recall that InnP (0) is an ellipsoidal inner approximation of P that
is intrinsic to P and does not depend on any approximate factorization of the slack matrix
of P through any cone. A commonly used inner approximation of a polytope is Dikin’s
ellipsoid defined as follows. Let P = {x ∈ Rn : HTx ≤ 1} be a polytope as before and let
h1, . . . , hf be the columns of H. Define

ΓP (x) :=

f∑
i=1

hih
T
i

(1− 〈hi, x〉)2
,

which is the Hessian of the standard logarithmic barrier function ψ(x) := −
∑f

i=1 log(1 −
〈hi, x〉) associated to P . If x0 is in the interior of P , then the Dikin ellipsoid centered at x0

and of radius r, is the set

Dr
x0

:= {x ∈ Rn : (x− x0)TΓP (x0)(x− x0) ≤ r2}.
It can be checked that D1

x0
⊆ P (see Theorem 2.1.1 in [11]). Further, since Dikin’s ellipsoid

is invariant under translations, we may assume that x0 = 0, and then

D1
0 =

{
x ∈ Rn : xT

(
f∑
i=1

hih
T
i

)
x ≤ 1

}
=
{
x ∈ Rn : ‖HTx‖ ≤ 1

}
.

Recall that

InnP (0) =
{
x ∈ Rn : 1−HTx ∈ Ofin

}
=
{
x ∈ Rn : ∃t ∈ R s.t. ‖(t− 1)1 +HTx‖ ≤ t

}
,

where we used the characterization of Ofin given in Remark 2.6. Choosing t = 1, we see that
D1

0 ⊆ InnP (0) ⊆ P . This inclusion is implicit in the work of Sturm and Zhang [19].check
If the origin is also the analytic center of P (i.e., the minimizer of ψ(x)), then we have

that P ⊆
√
f(f − 1)D1

0 where f is the number of inequalities in the description of P ; see
[18] and [4, Section 8.5.3]. Also, in this situation, the first order optimality condition on

ψ(x) gives that
∑f

i=1 hi = 0, and as a consequence, f =
∑f

i=1(1−〈hi, p〉) for all vertices p of
P . In other words, every column of the slack matrix sums to f . This implies an analogous
(slightly stronger) containment result for InnP (0).

Corollary 3.1. If the origin is the analytic center of the polytope P , then

InnP (0) ⊆ P ⊆ (f − 1) InnP (0),

furthermore, if P is centrally symmetric

InnP (0) ⊆ P ⊆
√
f − 1 InnP (0).

Proof: This follows from Lemma 2.23 and Remark 2.22, by using the fact that if S is
the slack matrix of P then ‖S(ei)‖ ≤ 1

TS(ei) = f . In this case, for w = S(ei), we have
1
Tw√
f‖w‖ ≥

1√
f

and thus, since α(s) is decreasing for s ≥ − 1√
f
, we get ξ(w) = ‖w‖α( 1

Tw√
f‖w‖) ≤

‖w‖α( 1√
f
) ≤ f · f−2

f
= f − 2, from where the first result follows.

For the second result, note that if P is centrally symmetric, for every facet inequality
1− 〈hj, x〉 ≥ 0 we have also the facet inequality 1 + 〈hj, x〉 ≥ 0, which implies

‖S(ei)‖ =

√√√√1

2

f∑
j=1

[(1− 〈hj, pi〉)2 + (1 + 〈hj, pi〉)2] =
√
f + ‖HTpi‖2.



APPROXIMATE CONE FACTORIZATIONS AND LIFTS OF POLYTOPES 15

Using this fact together with 1
TS(ei) = f , we get that ξ(S(ei)) =

√
f−1
f
‖HTpi‖ − 1. Since

1 − HTpi and 1 + HTpi are both nonnegative, all entries in HTpi are smaller than one in
absolute value. Hence, ‖HTpi‖ ≤

√
f , concluding the proof. �

Remark 3.2. It was shown by Sonnevend [18] that when x0 is the analytic center of P ,√
f/(f − 1)D1

x0
⊆ P . By affine invariance of the result, we may assume that x0 = 0, and in

combination with the previously mentioned result from [18], we get√
f/(f − 1)D1

0 ⊆ P ⊆
√
f(f − 1)D1

0.

This implies that the Sonnevend ellipsoid,
√
f/(f − 1)D1

0, a slightly dialated version of the
Dikin ellipsoid D1

0, is also contained in P . Since D1
0 = {x ∈ Rn : ‖HTx‖ ≤ 1}, we get that√

f/(f − 1)D1
0 = {x ∈ Rn : ‖HTx‖ ≤

√
f/(f − 1)}. On the other hand,

InnP (0) = {x ∈ Rn : 1−HTx ∈ Ofin}
= {x ∈ Rn :

√
f − 1‖1−HTx‖ ≤ 1

T (1−HTx)}
= {x ∈ Rn : (f − 1)‖HTx‖2 ≤ f − 2(

∑
hi)

Tx+ ((
∑
hi)

Tx)2}.
.

When the origin is the analytic center of P ,
∑
hi = 0, and InnP (0) =

√
f/(f − 1)D1

0, which

makes the containment
√
f/f − 1D1

0 ⊆ P at most as strong as InnP (0) ⊆ P . The con-
tainment InnP (0) ⊆ P holds whenever the origin is in P while the Sonnevend containments
require the origin to be the analytic center of P .

3.2. Singular value decomposition. Let P be a polytope as before and suppose S =
UΣV T is a singular value decomposition of the slack matrix S of P with U and V orthogonal
matrices and Σ a diagonal matrix with the singular values of S on the diagonal. By the
Perron-Frobenius theorem, the leading singular vectors of a nonnegative matrix can be chosen
to be nonnegative. Therefore, if σ is the largest singular value of S, and u is the first column
of U and v is the first column of V then A =

√
σuT and B =

√
σvT are two nonnegative

matrices. By the Eckart-Young theorem, the matrix ATB = σuvT is the closest rank one
matrix (in Frobenius norm) to S. We can also view ATB as an approximate R+-factorization

of S and thus look at the approximations InnP (A) =: Innsing
P and OutP (B) =: Outsing

P and
hope that in some cases they may offer good compact approximations to P . Naturally,
these are not as practical as InnP (0) and OutP (0) since to compute them we need to have
access to a complete slack matrix of P and its leading singular vectors. We illustrate these
approximations on an example.

Example 3.3. Consider the quadrilateral with vertices (1, 0), (0, 2), (−1, 0) and (0,−1/2).
This polygon has slack matrix

S =


0 5 2 0
0 0 2 5/4
2 0 0 5/4
2 5 0 0

 ,
and by computing a singular value decomposition and proceeding as outlined above, we
obtain the 1× 4 matrices

A = [1.9130, 0.1621, 0.1621, 1.9130] and B = [0.5630, 2.5951, 0.5630, 0.0550],



16 JOÃO GOUVEIA, PABLO A. PARRILO, AND REKHA R. THOMAS

Figure 5. InnP (0) ⊆ Innsing
P ⊆ P ⊆ Outsing

P ⊆ OutP (0).

verifying

S ′ = ATB =


1.0770 4.9644 1.0770 0.1051
0.0912 0.4206 0.0912 0.0089
0.0912 0.4206 0.0912 0.0089
1.0770 4.9644 1.0770 0.1051

 .
Computing Innsing

P and Outsing
P we get the inclusions illustrated in Figure 5. Notice how these

rank one approximations from leading singular vectors use the extra information to improve
on the trivial approximations InnP (0) and OutP (0). Notice also that since

Outsing
P = OutP (B) = {V (z) : z ∈ R4, ‖z‖ ≤ 1

T z ≤ 1, Bz ≥ 0},

and Bz ≥ 0 is a single linear inequality, Outsing
P is obtained from OutP (0) by imposing a new

linear inequality. By polarity, Innsing
P is the convex hull of InnP (0) with a new point.

4. Nested polyhedra and Generalized Slack Matrices

In this section, we consider approximate factorizations of generalized slack matrices and
what they imply in terms of approximations to a pair of nested polyhedra. The results here
can be seen as generalizations of results in Section 2.

Let P ⊂ Rn be a polytope with vertices p1, . . . , pv and the origin in its interior, and Q ⊂ Rn

be a polyhedron with facet inequalities 〈hj, x〉 ≤ 1, for j = 1, . . . , f , such that P ⊆ Q. The
slack matrix of the pair P,Q is the f × v matrix SP,Q whose (i, j)-entry is 1−〈hi, pj〉. In the
language of operators from Section 2, SP,Q can be thought of as an operator from Rv → Rf

defined as SP,Q(x) = (1f×v −H∗Q ◦ VP )(x) where VP is the vertex operator of P and HQ is
the facet operator of Q. Every nonnegative matrix can be interpreted as such a generalized
slack matrix after a suitable rescaling of its rows and columns, possibly with some extra rows
and columns representing redundant points in P and redundant inequalities for Q.

4.1. Generalized slack matrices and lifts. Yannakakis’ theorem about Rm
+ -lifts of poly-

topes can be extended to show that SP,Q has a K-factorization (where K ⊂ Rm is a closed
convex cone), if and only if there exists a convex set C with a K-lift such that P ⊆ C ⊆ Q.
(For a proof in the case of K = Rm

+ , see [5, Theorem 1], and for K = Sm+ see [9]. Related
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formulations in the polyhedral situation also appear in [7, 12].) For an arbitrary cone K,
there is a requirement that the K-lift of C contains an interior point of K [8, Theorem 1],
but this is not needed for nonnegative orthants or psd cones, and we ignore this subtlety
here.

Two natural convex sets with K-lifts that are nested between P and Q can be obtained
as follows. For a nonnegative K∗-map A : (Rf )∗ → (Rm)∗ and a nonnegative K-map
B : Rv → Rm, define the sets:

CA :=
{
x ∈ Rn : ∃ y ∈ K s.t. 1−H∗Q(x)− A∗(y) = 0

}
,

CB := {VP (z) : 1T z = 1, B(z) ∈ K}.

The sets CA and CB have K-lifts since they are obtained by imposing affine conditions
on the cone K. From the definitions and Remark 2.9, it immediately follows that these
containments hold:

P ⊆ OutP (B) ⊆ CB and CA ⊆ InnQ(A) ⊆ Q.

As discussed in the introduction, the set CA could potentially be empty for an arbitrary
choice of A. On the other hand, since P ⊆ CB, CB is never empty. Thus in general, it is not
true that CB is contained in CA. However, in the presence of an exact factorization we get
the following chain of containments.

Proposition 4.1. When SP,Q = A∗ ◦B, we get P ⊆ OutP (B) ⊆ CB ⊆ CA ⊆ InnQ(A) ⊆ Q.

Proof: We only need to show that CB ⊆ CA. Let VP (z) ∈ CB, with 1
T
v z = 1 and B(z) ∈ K.

Then choosing y = B(z), we have that 1f −H∗Q(VP (z))−A∗(B(z)) = 1f1v
T z−H∗Q(VP (z))−

A∗(B(z)) = SP,Q(z) − A∗(B(z)) = 0 since SP,Q = A∗ ◦ B. Therefore, CB ⊆ CA proving the
result. �

Example 4.2. To illustrate these inclusions, consider the quadrilateral P with vertices
(1/2, 0), (0, 1), (−1/2, 0), (0,−1), and the quadrilateral Q defined by the inequalities 1−x ≥
0, 1− x/2− y/2 ≥ 0, 1 + x ≥ 0 and 1 + x/2 + y/2 ≥ 0. We have P ⊆ Q, and

SP,Q =
1

4


2 4 6 4
3 2 5 6
6 4 2 4
5 6 3 2

 .

For K = R3
+ we can find an exact factorization for this matrix, such as the one given by

SP,Q = ATB =


0 2 1
0 1 3

2
2 0 1
2 1 1

2


 1

2
1
2

0 0
0 1

2
1
2

0
1
2

0 1
2

1

 .

In this example,

CA = CB = {(x1, x2) : 1− x2 ≥ 0, 1 + 2x1 + x2 ≥ 0, 1− 2x1 + x2 ≥ 0} .

By computing InnQ(A) and OutP (B) we can see as in Figure 6 that

P ( OutP (B) ( CB = CA ( InnQ(A) ( Q.
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Figure 6. P ( OutP (B) ( CB = CA ( InnQ(A) ( Q.

Figure 7. P ( OutP (B) ( CB ( CA ( InnQ(A) ( Q.

Note that if instead we pick the factorization

SP,Q = ATB =


0 2 1 1
0 1 3

2
0

2 0 1 1
2 1 1

2
2




1
2

1
2

0 0
0 1

2
1
2

0
1
2

0 1
2

1
0 0 0 0

 ,

then CA ( CB and we get the inclusions in Figure 7.

4.2. Approximate Factorizations of SP,Q. We now consider approximate factorizations
of the generalized slack matrix SP,Q and provide three results about this situation. First,
we generalize Proposition 2.24 to show that the quality of the approximations to P and Q
is directly linked to the factorization error. Next we show how approximations to a pair of
nested polytopes yield approximate K-factorizations of SP,Q. We close with an observation
on the recent inapproximability results in [5] in the context of this paper.

When we only have an approximate factorization of SP,Q, we obtain a strict generalization
of Proposition 2.24, via the same proof.
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Proposition 4.3. Let A : (Rf )∗ → (Rm)∗ a nonnegative K∗-map and B : Rv → Rm be a
nonnegative K-map. Let ∆ := SP,Q − A∗ ◦B be the factorization error. Then,

(1) 1
1+ε

P ⊆ InnQ(A) ⊆ Q, for ε = ‖∆‖1,2.
(2) P ⊆ OutP (B) ⊆ (1 + ε)Q, for ε = ‖∆‖2,∞.

So far we discussed how an approximate factorization of the slack matrix can be used to
yield approximations of a polytope or a pair of nested polyhedra. It is also possible to go in
the opposite direction in the sense that approximations to a pair of nested polyhedra P ⊆ Q
yield approximate factorizations of the slack matrix SP,Q as we now show.

Proposition 4.4. Let P ⊆ Q be a pair of polyhedra as before and SP,Q be its slack matrix.
Suppose there exists a convex set C with a K-lift such that αP ⊆ C ⊆ βQ for some 0 <
α ≤ 1 and β ≥ 1. Then there exists a K-factorizable nonnegative matrix S ′ such that
|(S ′ − SP,Q)ij| ≤ β

α
− 1.

Proof: Assume that the facet inequalities of Q are of the form 〈hj, x〉 ≤ 1. Since C has a
K-lift, it follows from [8] that we can assign an element bx ∈ K to each point x in C, and an
element ay ∈ K∗ to every valid inequality y0−〈y, x〉 ≥ 0 for C, such that 〈ay, bx〉 = y0−〈y, x〉.

If α = β = 1, then P ⊆ C ⊆ Q, and since C has a K-lift, SP,Q has a K-factorization

and S ′ = SP,Q gives the result. So we may assume that β
α
> 1 and define η > 0 such that

(1 + η)α = β. If 1 − 〈h, x〉 ≥ 0 defines a facet of Q, then 1 + η − 1
α
〈h, x〉 ≥ 0 is a valid

inequality for (1 + η)αQ = βQ, and is therefore a valid inequality for C. Hence, we can pick
a1, . . . , af in K∗, one for each such inequality as mentioned above. Similarly, if v is a vertex
of P , then αv belongs to C and we can pick b1, . . . , bv in K, one for each αv. Then,

〈ai, bj〉 = 1 + η − 1

α
〈hi, αvj〉 = η + (SP,Q)ij.

The matrix S ′ defined by S ′ij := 〈ai, bj〉 yields the result. �

Note that Proposition 4.4 is not a true converse of Proposition 4.3. Proposition 4.3 says
that approximate K-factorizations of the slack matrix give approximate K × SOC-lifts of
the polytope or pair of polytopes, while Proposition 4.4 says that an approximation of a
polytope with a K-lift gives an approximate K-factorization of its slack matrix. We have
not ruled out the existence of a polytope with no good K-liftable approximations but whose
slack matrix has a good approximate K-factorization.

A recent result on the inapproximability of a polytope by polytopes with small lifts, come
from the max clique problem, as seen in [5] (and strengthened in [6]). In [5], the authors
prove that for P (n) = COR(n) = conv{bbT | b ∈ {0, 1}n} and

Q(n) = {x ∈ Rn×n |
〈
2diag(a)− aaT , x

〉
≤ 1, a ∈ {0, 1}n},

and for any ρ > 1, if P (n) ⊆ C(n) ⊆ ρQ(n) then any Rm
+ -lift of C(n) has m = 2Ω(n).

Therefore, one cannot approximate P (n) within a factor of ρ by any polytope with a small
linear lift. This in turn says that the max clique problem on a graph with n vertices cannot
be approximated well by polytopes with small polyhedral lifts. In fact they also prove that
even if ρ = O(nβ), for some β ≤ 1/2, the size of m grows exponentially.

The above result was proven in [5] by showing that the nonnegative rank of the slack
matrix SP (n),ρQ(n), denoted as rank+(SP (n),ρQ(n)), has order 2Ω(n). The matrix SP (n),ρQ(n) is a
very particular perturbation of SP (n),Q(n). It is not hard to see that the proof of Theorem 5
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in [5] in fact shows that all nonnegative matrices in a small neighborhood of SP (n),Q(n) have
high nonnegative rank.

Proposition 4.5. Let P (n) and Q(n) be as above, and 0 < η < 1/2. For any nonnegative
matrix S ′(n) such that ‖SP (n),Q(n) − S ′(n)‖∞ ≤ η, rank+(S ′(n)) = 2Ω(n).

Since ‖SP (n),Q(n)−SP (n),ρQ(n)‖∞ = ρ− 1, Proposition 4.5 implies a version of the first part
of the result in [5], i.e., that the nonnegative rank of SP (n),ρQ(n) is exponential in n (if only
for 1 < ρ < 3/2). Further, Proposition 4.5 also says that even if we allowed approximations
of P (n) in the sense of Proposition 4.3 (i,e., approximations with a Rm

+ × SOC-lift that do
not truly nest between P (n) and Q(n)), m would not be small. Therefore, the result in [5]
on the outer inapproximability of P (n) by small polyhedra is robust in a very strong sense.

Acknowledgements: We thank Anirudha Majumdar for the reference to [19], and Cyn-
thia Vinzant for helpful discussions about cone closures.
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