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Abstract

This paper is devoted to the design of an efficient and convergent semi-proximal alternat-
ing direction method of multipliers (ADMM) for finding a solution of low to medium accuracy
to convex quadratic conic programming and related problems. For this class of problems, the
convergent two block semi-proximal ADMM can be employed to solve their primal form in a
straightforward way. However, it is known that it is more efficient to apply the directly ex-
tended multi-block semi-proximal ADMM, though its convergence is not guaranteed, to the
dual form of these problems. Naturally, one may ask the following question: can one con-
struct a convergent multi-block semi-proximal ADMM that is more efficient than the directly
extended semi-proximal ADMM? Indeed, for linear conic programming with 4-block constraints
this has been shown to be achievable in a recent paper by Sun, Toh and Yang [arXiv preprint
arXiv:1404.5378, (2014)]. Inspired by the aforementioned work and with the convex quadratic
conic programming in mind, we propose a Schur complement based convergent semi-proximal
ADMM for solving convex programming problems, with a coupling linear equality constraint,
whose objective function is the sum of two proper closed convex functions plus an arbitrary
number of convex quadratic or linear functions. Our convergent semi-proximal ADMM is partic-
ularly suitable for solving convex quadratic semidefinite programming (QSDP) with constraints
consisting of linear equalities, a positive semidefinite cone and a simple convex polyhedral set.
The efficiency of our proposed algorithm is demonstrated by numerical experiments on various
examples including QSDP.

Keywords: Convex quadratic conic programming, multiple-block ADMM, semi-proximal
ADMM, convergence, QSDP.

1 Introduction

In this paper, we aim to design an efficient yet simple first order convergent method for solving
convex quadratic conic programming. An important special case is the following convex quadratic
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semidefinite programming (QSDP)

min 1
2〈X, QX〉+ 〈C, X〉

s.t. AEX = bE , AIX ≥ bI , X ∈ Sn+ ∩ K ,
(1)

where Sn+ is the cone of n× n symmetric and positive semi-definite matrices in the space of n× n
symmetric matrices Sn endowed with the standard trace inner product 〈·, ·〉 and the Frobenius
norm ‖ · ‖, Q is a self-adjoint positive semidefinite linear operator from Sn to Sn, AE : Sn → <mE
and AI : Sn → <mI are two linear maps, C ∈ Sn, bE ∈ <mE and bI ∈ <mI are given data, K is a
nonempty simple closed convex set, e.g., K = {W ∈ Sn : L ≤W ≤ U} with L,U ∈ Sn being given
matrices. By introducing a slack variable W ∈ Sn, we can equivalently recast (1) as

min 1
2〈X, QX〉+ 〈C, X〉+ δK(W )

s.t. AEX = bE , AIX ≥ bI , X = W, X ∈ Sn+ ,
(2)

where δK(·) is the indicator function of K, i.e., δK(X) = 0 if X ∈ K and δK(X) =∞ if X /∈ K. The
dual of problem (2) is given by

max −δ∗K(−Z) + 〈bI , yI〉 − 1
2〈X, QX〉+ 〈bE , yE〉

s.t. Z +A∗IyI −QX + S +A∗EyE = C, yI ≥ 0, S ∈ Sn+ ,
(3)

where for any Z ∈ Sn, δ∗K(−Z) is given by

δ∗K(−Z) = − inf
W∈K
〈Z, W 〉 = sup

W∈K
〈−Z, W 〉. (4)

It is evident that the dual problem (3) is in the form of the following convex optimization
model:

min f(u) +
∑p

i=1 θi(yi) + g(v) +
∑q

j=1 ϕj(zj)

s.t. F∗u+
∑p

i=1A∗i yi + G∗v +
∑q

j=1 B∗j zj = c,
(5)

where p and q are given nonnegative integers, f : U → (−∞,+∞], g : V → (−∞,+∞], θi : Yi →
(−∞,+∞], i = 1, . . . , p, and ϕj : Zj → (−∞,+∞], j = 1, . . . , q are closed proper convex functions,
F : X → U , G : X → V, Ai : X → Yi, i = 1, . . . , p and Bj : X → Zj , j = 1, . . . , q are linear maps,
U ,V,Y1, . . . ,Yp,Z1, . . . ,Zq and X are all real finite dimensional Euclidean spaces each equipped
with an inner product 〈·, ·〉 and its induced norm ‖ · ‖.

In this paper, we make the following blanket assumption.

Assumption 1.1 For i = 1, . . . , p and j = 1, . . . , q, each θi(·) and ϕj(·) are convex quadratic
functions.

Note that, in general, problem (3) does not satisfy Assumption 1.1 unless yI is vacuous from
the model or K ≡ Sn. However, one can always reformulate problem (3) equivalently as

min (δ∗K(−Z) + δ<mI+
(u))− 〈bI , yI〉+ 1

2〈X, QX〉+ δSn+(S)− 〈bE , yE〉
s.t. Z +A∗IyI −QX + S +A∗EyE = C,

D∗u−D∗yI = 0,

(6)
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where D : <mI → <mI is any given nonsingular linear operator and δ<mI+
(·) is the indicator function

over <mI+ . Now, one can see that problem (6) satisfies Assumption 1.1.
There are many other important cases that take the form of model (5) satisfying Assumption

1.1. One prominent example comes from the matrix completion with fixed basis coefficients [15,
14, 20]. Indeed the nuclear semi-norm penalized least squares model in [14] can be written as

min
X∈<m×n

1
2‖AFX − d‖

2 + ρ(‖X‖∗ − 〈C, X〉)

s.t. AEX = bE , X ∈ K := {X | ‖RΩX‖∞ ≤ α},
(7)

where ‖X‖∗ is the nuclear norm of X defined as the sum of all its singular values, ‖ · ‖∞ is the
elementwise l∞ norm defined by ‖X‖∞ := maxi=1,...,m{maxj=1,...,n |Xij |}, AF : <m×n → <nF
and AE : <m×n → <nE are two linear maps, ρ and α are two given positive parameters, d ∈ <nF ,
C ∈ <m×n and bE ∈ <nE are given data, Ω ⊆ {1, . . . ,m}×{1, . . . , n} is the set of the indices relative
to which the basis coefficients are not fixed, RΩ : <m×n → <|Ω| is the linear map such that RΩX :=
(Xij)ij∈Ω. Note that when there are no fixed basis coefficients (i.e., Ω = {1, . . . ,m}×{1, . . . , n} and
AE are vacuous), the above problem reduces to the model considered by Negahban and Wainwright
in [16] and Klopp in [12]. By introducing slack variables η, R and W , we can reformulate problem
(7) as

min 1
2‖η‖

2 + ρ
(
‖R‖∗ − 〈C, X〉

)
+ δK(W )

s.t. AFX − d = η, AEx = bE , X = R, X = W.
(8)

The dual of problem (8) takes the form of

max −δ∗K(−Z)− 1
2‖ξ‖

2 + 〈d, ξ〉+ 〈bE , yE〉
s.t. Z +A∗F ξ + S +A∗EyE = −ρC, ‖S‖2 ≤ ρ,

(9)

where ‖S‖2 is the operator norm of S, which is defined to be its largest singular value.
Another compelling example is the so called robust PCA (principle component analysis) con-

sidered in [19]:

min ‖A‖∗ + λ1‖E‖1 +
λ2

2
‖Z‖2F

s.t. A+ E + Z = W, A,E,Z ∈ <m×n ,
(10)

where W ∈ <m×n is the observed data matrix, ‖ · ‖1 is the elementwise l1 norm given by ‖E‖1 :=∑m
i=1

∑n
j=1 |Eij |, ‖ · ‖F is the Frobenius norm, λ1 and λ2 are two positive parameters. There are

many different variants to the robust PCA model. For example, one may consider the following
model where the observed data matrix W is incomplete:

min ‖A‖∗ + λ1‖E‖1 +
λ2

2
‖PΩ(Z)‖2F

s.t. PΩ(A+ E + Z) = PΩ(W ), A,E, Z ∈ <m×n ,
(11)

i.e. one assumes that only a subset Ω ⊆ {1, . . . ,m}×{1, . . . , n} of the entries of W can be observed.
Here PΩ : <m×n → <m×n is the orthogonal projection operator defined by

PΩ(X) =

{
Xij if (i, j) ∈ Ω,

0 otherwise.
(12)
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Again, problem (11) satisfies Assumption 1.1. In [18], Tao and Yuan tested one of the equivalent
forms of problem (11). In the numerical section, we will see other interesting examples.

For notational convenience, let Y := Y1 × Y2×, . . . ,Yp, Z := Z1 × Z2×, . . . ,Zq. We write
y ≡ (y1, y2, . . . , yp) ∈ Y and z ≡ (z1, z2, . . . , zq) ∈ Z. Define the linear map A : X → Y such that
its adjoint is given by

A∗y =

p∑
i=1

A∗i yi ∀y ∈ Y.

Similarly, we define the linear map B : X → Z such that its adjoint is given by

B∗z =

q∑
j=1

B∗j zj ∀z ∈ Z.

Additionally, let θ(y) :=
∑p

i=1 θi(yi), y ∈ Y and ϕ(z) :=
∑q

j=1 ϕj(zj), z ∈ Z. Now we can rewrite
(5) in the following compact form:

min f(u) + θ(y) + g(v) + ϕ(z)

s.t. F∗u+A∗y + G∗v + B∗z = c.
(13)

Problem (5) can be view as a special case of the following block-separable convex optimization
problem:

min
{∑n

i=1
φi(wi) |

∑n

i=1
H∗iwi = c

}
, (14)

where for each i ∈ {1, . . . , n}, Wi is a finite dimensional real Euclidean space equipped with an
inner product 〈·, ·〉 and its induced norm ‖ · ‖, φi : Wi → (−∞,+∞] is a closed proper convex
function, Hi : X → Wi is a linear map and c ∈ X is given. Note that when we rewrite problem (5)
in terms of (14), the quadratic structure in (5) is hidden in the sense that each φi will be treated
equally. However, this special quadratic structure will be thoroughly exploited in our search for an
efficient yet simple ADMM-type method with guaranteed convergence.

Let σ > 0 be a given parameter. The augmented Lagrangian function for (14) is defined by

Lσ(w1, . . . , wn;x) :=
∑n

i=1
φi(wi) + 〈x,

∑n

i=1
H∗iwi − c〉+

σ

2
‖
∑n

i=1
H∗iwi − c‖2

for wi ∈ Wi, i = 1, . . . , n and x ∈ X . Choose any initial points w0
i ∈ dom(φi), i = 1, . . . , q and

x0 ∈ X . The classical augmented Lagrangian method consists of the following iterations:

(wk+1
1 , . . . , wk+1

n ) = argmin Lσ(w1, . . . , wn;xk), (15)

xk+1 = xk + τσ
(∑n

i=1
H∗iwk+1

i − c
)
, (16)

where τ ∈ (0, 2) guarantees the convergence. Due to the non-separability of the quadratic penalty
term in Lσ, it is generally a challenging task to solve the joint minimization problem (15) exactly
or approximately with high accuracy. To overcome this difficulty, one may consider the following
n-block alternating direction methods of multipliers (ADMM):
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wk+1
1 = argmin Lσ(w1, w

k
2 . . . , w

k
n;xk),

...

wk+1
i = argmin Lσ(wk+1

1 , . . . , wk+1
i−1 , wi, w

k
i+1, . . . , w

k
n;xk),

... (17)

wk+1
n = argmin Lσ(wk+1

1 , . . . , wk+1
n−1, wn;xk),

xk+1 = xk + τσ
(∑n

i=1
H∗iwk+1

i − c
)
.

The above n-block ADMM is an direct extension of the ADMM for solving the following 2-block
convex optimization problem

min {φ1(w1) + φ2(w2) | H∗1w1 +H∗2w2 = c} . (18)

The convergence of 2-block ADMM has already been extensively studied in [8, 6, 7, 4, 5, 2] and
references therein. However, the convergence of the n-block ADMM has been ambiguous for a long
time. Fortunately this ambiguity has been addressed very recently in [1] where Chen, He, Ye, and
Yuan showed that the direct extension of the ADMM to the case of a 3-block convex optimization
problem is not necessarily convergent. On the other hand, the n-block ADMM with τ ≥ 1 often
works very well in practice and this fact poses a big challenge if one attempts to develop new ADMM-
type algorithms which have convergence guarantee but with competitive numerical efficiency and
iteration simplicity as the n-block ADMM.

Recently, there is exciting progress in this active research area. Sun, Toh and Yang [17]
proposed a convergent semi-proximal ADMM (PADMM3c) for convex programming problems of
three separable blocks in the objective function with the third part being linear. One distinctive
feature of algorithm PADMM3c is that it requires only an inexpensive extra step, compared to the
3-block ADMM, but yields a convergent and faster algorithm. Extensive numerical tests on the
doubly non-negative SDP problems with equality and/or inequality constraints demonstrate that
PADMM3c can have superior numerical efficiency over the directly extended ADMM. This opens up
the possibility of designing an efficient and convergent ADMM type method for solving multi-block
convex optimization problems. Inspired by the aforementioned work, in this paper we shall propose
a Schur complement based semi-proximal ADMM (SCB-SPADMM) to efficiently solve the convex
quadratic conic programming problems to medium accuracy. The development of our algorithm
is based on the simple yet elegant idea of the Schur complement and the convenient convergence
results of the semi-proximal ADMM given in the appendix of [3]. Our primary motivation for
designing the proposed SCB-SPADMM is to generate a good initial point quickly to warm-start
locally fast convergent method such as the semismooth Newton-CG method used in [22, 21] for
solving linear SDP though the method proposed here is definitely of its own interest.

The remaining parts of this paper are organized as follows. In the next section, we present
a Schur complement based semi-proximal augmented Lagrangian method (SCB-SPALM) to solve
a 2-block convex optimization problem where the second function g is quadratic and then show
the relation between our SCB-SPALM and the generic 2-block semi-proximal ADMM (SPADMM).
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In section 3, we propose our main algorithm SCB-SPADMM for solving the general convex model
(5). Our main convergence results are presented in this section. Section 4 is devoted to the
implementation and numerical experiments of using our SCB-SPADMM to solve convex quadratic
conic programming problems and the various extensions. We conclude our paper in the final section.

Notation. Define the spectral (or operator) norm of a given linear operator T by ‖T ‖ :=
sup‖w‖=1 ‖T w‖. For any w ∈ U , we let

Proxf (w) := argminu f(u) +
1

2
‖u− w‖2.

2 A Schur complement based semi-proximal augmented Lagrangian
method

Before we introduce our approach for the multi-block case, we need to consider the convex opti-
mization problem with the following 2-block separable structure

min f(u) + g(v)

s.t. F∗u+ G∗v = c,
(19)

where f : U → (−∞,+∞] and g : V → (−∞,+∞] are closed proper convex functions, F : X → U
and G : X → V are given linear maps. The dual of problem (19) is given by

min {〈c, x〉+ f∗(s) + g∗(t) | Fx+ s = 0, Gx+ t = 0} . (20)

Let σ > 0 be given. The augmented Lagrangian function associated with (19) is given as follows:

Lσ(u, v;x) = f(u) + g(v) + 〈x, F∗u+ G∗v − c〉+
σ

2
‖F∗u+ G∗v − c‖2. (21)

The semi-proximal ADMM proposed in [3], when applied to (19), has the following template.
Since the proximal terms added here are allowed to be positive semidefinite, the corresponding
method is referred to as semi-proximal ADMM instead of proximal ADMM as in [3].

Algorithm SPADMM: A generic 2-block semi-proximal ADMM for solving (19).
Let σ > 0 and τ ∈ (0,∞) be given parameters. Let Tf and Tg be given self-adjoint positive
semidefinite, not necessarily positive definite, linear operators defined on U and V, respectively.
Choose (u0, v0, x0) ∈ dom(f)×dom(g)×X . For k = 0, 1, 2, ..., perform the kth iteration as follows:

Step 1. Compute

uk+1 = argminu Lσ(u, vk;xk) +
σ

2
‖u− uk‖2Tf . (22)

Step 2. Compute

vk+1 = argminv Lσ(uk+1, v;xk) +
σ

2
‖v − vk‖2Tg . (23)

Step 3. Compute

xk+1 = xk + τσ(F∗uk+1 + G∗vk+1 − c). (24)
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In the above 2-block semi-proximal ADMM for solving (19), the presence of Tf and Tg can help
to guarantee the existence of solutions for the subproblems (22) and (23). In addition, they play
important roles in ensuring the boundedness of the two generated sequences {yk+1} and {zk+1}.
Hence, these two proximal terms are preferred. The choices of Tf and Tg are very much problem
dependent. The general principle is that both Tf and Tg should be as small as possible while yk+1

and zk+1 are still relatively easy to compute.
Let ∂f and ∂g be the subdifferential mappings of f and g, respectively. Since both ∂f and ∂g

are maximally monotone, there exist two self-adjoint and positive semidefinite operators Σf and
Σg such that for all u, ũ ∈ dom(f), ξ ∈ ∂f(u), and ξ̃ ∈ ∂f(ũ),

〈ξ − ξ̃, u− ũ〉 ≥ ‖u− ũ‖2Σf (25)

and for all v, ṽ ∈ dom(g), ζ ∈ ∂g(v), and ζ̃ ∈ ∂g(ṽ),

〈ζ − ζ̃, v − ṽ〉 ≥ ‖v − ṽ‖2Σg . (26)

For the convergence of the 2-block semi-proximal ADMM, we need the following assumption.

Assumption 2.1 There exists (û, v̂) ∈ ri(dom f × dom g) such that F∗û+ G∗v̂ = c.

Theorem 2.1 Let Σf and Σg be the self-adjoint and positive semidefinite operators defined by
(25) and (26), respectively. Suppose that the solution set of problem (19) is nonempty and that
Assumption 2.1 holds. Assume that Tf and Tg are chosen such that the sequence {(uk, vk, xk)}
generated by Algorithm SPADMM is well defined. Then, under the condition either (a) τ ∈ (0, (1+√

5 )/2) or (b) τ ≥ (1 +
√

5 )/2 but
∑∞

k=0(‖G∗(vk+1 − vk)‖2 + τ−1‖F∗uk+1 + G∗vk+1 − c‖2) < ∞,
the following results hold:

(i) If (u∞, v∞, x∞) is an accumulation point of {(uk, vk, xk)}, then (u∞, v∞) solves problem (19)
and x∞ solves (20), respectively.

(ii) If both σ−1Σf + Tf + FF∗ and σ−1Σg + Tg + GG∗ are positive definite, then the sequence
{(uk, vk, xk)}, which is automatically well defined, converges to a unique limit, say, (u∞, v∞, x∞)
with (u∞, v∞) solving problem (19) and x∞ solving (20), respectively.

(iii) When the u-part disappears, the corresponding results in parts (i)–(ii) hold under the condition
either τ ∈ (0, 2) or τ ≥ 2 but

∑∞
k=0 ‖G∗vk+1 − c‖2 <∞.

Remark 2.1 The conclusions of Theorem 2.1 follow essentially from the results given in [3, The-
orem B.1]. See [17] for more detailed discussions.

Next, we shall pay particular attention to the case when g is a quadratic function:

g(v) =
1

2
〈v, Σgv〉 − 〈b, v〉, v ∈ V, (27)

where Σg a self-adjoint positive semidefinite linear operator defined on V and b ∈ V is a given
vector. Problem (19) now takes the form of

min f(u) + 1
2〈v, Σgv〉 − 〈b, v〉

s.t. F∗u+ G∗v = c.
(28)
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The dual of problem (28) is given by

min {〈c, x〉+ f∗(s) + g∗(t) | Fx+ s = 0, Gx+ t = 0} . (29)

In order to solve subproblem (23) in Algorithm SPADMM, we need to solve a linear system with
the linear operator given by σ−1Σg + GG∗. Hence, an appropriate proximal term should be chosen
such that (23) can be solved efficiently. Here, we choose Tg as follows. Let Eg : V → V be a
self-adjoint positive definite linear operator such that it is a majorization of σ−1Σg + GG∗, i.e.,

Eg � σ−1Σg + GG∗.

We choose Eg such that its inverse can be computed at a moderate cost. Define

Tg := Eg − σ−1Σg − GG∗ � 0. (30)

Note that for numerical efficiency, we need the self-adjoint positive semidefinite linear operator Tg
to be as small as possible. In order to fully exploit the structure of the quadratic function g, we
add, instead of a naive proximal term, a proximal term based on the Schur complement as follows.
For a given Tf � 0, we define the self-adjoint positive semidefinite linear operator

T̂f := Tf + FG∗E−1
g GF∗. (31)

For later developments, here we state a proposition which uses the Schur complement condition
for establishing the positive definiteness of a linear operator.

Proposition 2.1 It holds that

W :=

(
F
G

)(
F
G

)∗
+ σ−1

(
Σf

Σg

)
+

(
T̂f
Tg

)
� 0 ⇔ FF∗ + σ−1Σf + Tf � 0.

Proof. We have that

W =

(
FF∗ + σ−1Σf + T̂f FG∗

F∗G GG∗ + σ−1Σg + Tg

)
.

Since Eg = GG∗ + σ−1Σg + Tg � 0, by the Schur complement condition for ensuring the positive
definiteness of linear operators, we have W � 0 if and only if

FF∗ + σ−1Σf + T̂f −FG∗E−1
g GF∗ � 0.

By (31), we know that the conclusion of this proposition holds.

Now, we can propose our Schur complement based semi-proximal augmented Lagrangian
method (SCB-SPALM) to solve (28) with a specially chosen proximal term involving T̂f and Tg.
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Algorithm SCB-SPALM: A Schur complement based semi-proximal augmented La-
grangian method for solving (28).
Let σ > 0 and τ ∈ (0,∞) be given parameters. Choose (u0, v0, x0) ∈ dom(f) × V × X . For
k = 0, 1, 2, ..., perform the kth iteration as follows:

Step 1. Compute

(uk+1, vk+1) = argminu,v Lσ(u, v;xk) +
σ

2
‖u− uk‖2T̂f +

σ

2
‖v − vk‖2Tg . (32)

Step 2. Compute

xk+1 = xk + τσ(F∗uk+1 + G∗vk+1 − c). (33)

Note that problem (32) in Step 1 is well defined if the the linear operator W defined in Propo-
sition 2.1 is positive definite, or equivalently, if FF∗ + σ−1Σf + Tf � 0. Also, note that in the
context of the convex optimization problem (28), Assumption 2.1 is reduced to the following:

Assumption 2.2 There exists (û, v̂) ∈ ri(dom f)× V such that F∗û+ G∗v̂ = c.

Now, we are ready to establish our convergence results for Algorithm SCB-SPALM for solving (28).

Theorem 2.2 Let Σf , Σg and Tg be three self-adjoint and positive semidefinite operators defined
by (25), (27) and (30), respectively. Suppose that the solution set of problem (28) is nonempty and
that Assumption 2.2 holds. Assume that Tf is chosen such that the sequence {(uk, vk, xk)} generated
by Algorithm SCB-SPALM is well defined. Then, under the condition either (a) τ ∈ (0, 2) or (b)
τ ≥ 2 but

∑∞
k=0 ‖F∗uk+1 + G∗vk+1 − c‖2 <∞, the following results hold:

(i) If (u∞, v∞, x∞) is an accumulation point of {(uk, vk, xk)}, then (u∞, v∞) solves problem (28)
and x∞ solves (29), respectively.

(ii) If σ−1Σf + Tf + FF∗ is positive definite, then the sequence {(uk, vk, xk)}, which is auto-
matically well defined, converges to a unique limit, say, (u∞, v∞, x∞) with (u∞, v∞) solving
problem (28) and x∞ solving (29), respectively.

Proof. By combining Theorem 2.1 and Proposition 2.1, one can prove the results of this theorem
directly.

The relationship between Algorithm SCB-SPALM and Algorithm SPADMM for solving (28)
will be revealed in the next proposition.

Let δg : U × V × X → U be an auxiliary linear function associated with (28) defined by

δg(u, v, x) := FG∗E−1
g (b− Gx− Σgv + σG(c−F∗u− G∗v)). (34)

Let ū ∈ U , v̄ ∈ V, x̄ ∈ X and c ∈ X be given. Denote

c̄ := c−F∗ū− G∗v̄ and δ̄g := δg(ū, v̄, x̄) = FG∗E−1
g (b− Gx̄− Σgv̄ + σGc̄).

Let (u+, v+) ∈ U × V be defined by

(u+, v+) = argminu,v Lσ(u, v; x̄) +
σ

2
‖u− ū‖2T̂f +

σ

2
‖v − v̄‖2Tg . (35)
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Proposition 2.2 Let ᾱ := σ−1b+ Tgv̄ + G(c− σ−1x̄). Define v′ ∈ V by

v′ = argminv Lσ(ū, v; x̄) +
σ

2
‖v − v̄‖2Tg = E−1

g (ᾱ− GF∗ū). (36)

The optimal solution (u+, v+) to problem (35) is generated exactly by the following procedure{
u+ = argminu Lσ(u, v̄; x̄) + 〈δ̄g, u〉+ σ

2 ‖u− ū‖
2
Tf ,

v+ = argminv Lσ(u+, v; x̄) + σ
2 ‖v − v̄‖

2
Tg = E−1

g (ᾱ− GF∗u+).
(37)

Furthermore, (u+, v+) can also be obtained by the following equivalent procedure{
u+ = argminu Lσ(u, v′; x̄) + σ

2 ‖u− ū‖
2
Tf ,

v+ = argminv Lσ(u+, v; x̄) + σ
2 ‖v − v̄‖

2
Tg = E−1

g (ᾱ− GF∗u+).
(38)

Proof. First we show that the equivalence between (35) and (37). Define

L̃σ(u, v; x̄) := Lσ(u, v; x̄) +
σ

2
‖u− ū‖2T̂f +

σ

2
‖v − v̄‖2Tg , (u, v) ∈ U × V.

By simple algebraic manipulations, we have that

L̃σ(u, v; x̄) = f(u) +
σ

2
‖u− ū‖2T̂f + φ(u, v)− 1

2σ
‖x̄‖2, (39)

where

φ(u, v) = g(v) +
σ

2
‖F∗u+ G∗v + σ−1x̄− c‖2 +

σ

2
‖v − v̄‖2Tg

=
σ

2

(
〈v, Egv〉+ 2〈v, GF∗u− ᾱ〉+ ‖F∗u+ σ−1x̄− c‖2 + ‖v̄‖2Tg

)
with ᾱ as defined in the proposition. For any given u ∈ U , let

v(u) := argminv∈V φ(u, v) = E−1
g (ᾱ− GF∗u).

Then by using the fact that minv
1
2〈v, Egv〉+ 〈q, v〉 = −1

2〈q, E
−1
g q〉 for any q ∈ V, we have that

φ(u, v(u)) =
σ

2

(
− 〈GF∗u− ᾱ, E−1

g (GF∗u− ᾱ)〉+ ‖F∗u+ σ−1x̄− c‖2 + ‖v̄‖2Tg
)

=
σ

2

(
〈u, (FF∗ −FG∗E−1

g GF∗)u〉+ 2〈u, F(G∗E−1
g ᾱ+ σ−1x̄− c)〉

)
+ κ0,

where κ0 = σ
2 (‖σ−1x̄− c‖2 + ‖v̄‖2Tg − ‖ᾱ‖

2
E−1
g

). Let

κ1 := κ0 +
σ

2
‖GF∗ū‖2E−1

g
− 1

2σ
‖x̄‖2 = −〈c, x̄〉+

σ

2
(‖c‖2 + ‖GF∗ū‖2E−1

g
+ ‖v̄‖2Tg − ‖ᾱ‖

2
E−1
g

).

From (39), we have that for any given u ∈ U ,

L̃σ(u, v(u); x̄) = f(u) +
σ

2
‖u− ū‖2Tf +

σ

2
‖GF∗(u− ū)‖2E−1

g
+ φ(u, v(u))− 1

2σ
‖x̄‖2

= f(u) +
σ

2
‖u− ū‖2Tf + σ〈u, F(G∗E−1

g ᾱ+ σ−1x̄− c)−FG∗E−1
g GF∗ū〉+

σ

2
〈u, FF∗u〉+ κ1

= f(u) +
σ

2
‖u− ū‖2Tf + 〈u, δ̄g〉+ 〈u, F(x̄+ σ(G∗v̄ − c))〉+

σ

2
〈u, FF∗u〉+ κ1

= Lσ(u, v̄; x̄) + 〈u, δ̄g〉+
σ

2
‖u− ū‖2Tf + κ2, (40)
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where κ2 = κ1 − g(v̄) − σ
2 ‖G

∗v̄ − c‖2 − 〈x̄, G∗v̄ − c〉. Note that with some manipulations, we can
show that the constant term

κ2 =
σ

2
‖GF∗ū‖2E−1

g
− σ

2
‖Egv̄ − ᾱ‖2E−1

g
.

Now, we have that

min
u∈U ,v∈V

L̃σ(u, v; x̄) = min
u∈U

(
min
v∈V
L̃σ(u, v; x̄)

)
= min

u∈U
L̃σ(u, v(u); x̄),

where L̃σ(u, v(u); x̄) satisfies (40). From here, the equivalence between (35) and (37) follows.
Next, we prove the equivalence between (37) and (38). Note that, the first minimization

problem in (38) can be equivalently recast as

0 ∈ ∂f(u+) + F x̄+ σF(F∗u+ + G∗v′ − c) + σTf (u+ − ū),

which, together with the definition of v′ given in (36), is equivalent to

0 ∈ ∂f(u+) + F x̄+ σF(F∗u+ − c+ G∗E−1
g (ᾱ− GF∗ū)) + σTf (u+ − ū). (41)

The condition (41) can be reformulated as

0 ∈ ∂f(u+) + F x̄+ σF(F∗u+ + G∗v̄ − c) + σFG∗E−1
g (ᾱ− GF∗ū− Egv̄) + σTf (u+ − ū).

Thus, we have

0 ∈ ∂f(u+) + F x̄+ σF(F∗u+ + G∗v̄ − c) + δ̄g + σTf (u+ − ū), (42)

which can equivalently be rewritten as

u+ = argminu Lσ(u, v̄; x̄) + 〈δ̄g, u〉+
σ

2
‖u− ū‖2Tf .

The equivalence between (37) and (38) then follows. This completes the proof of this proposition.

Proposition 2.3 Let δkg := δg(u
k, vk, xk) for k = 0, 1, 2, .... We have that uk+1 and vk+1 obtained

by Algorithm SCB-SPALM for solving (28) can be generated exactly according to the following
procedure: 

uk+1 = argminu Lσ(u, vk;xk) + 〈δkg , u〉+ σ
2 ‖u− u

k‖2Tf ,
vk+1 = argminv Lσ(uk+1, v;xk) + σ

2 ‖v − v
k‖2Tg ,

xk+1 = xk + τσ(F∗uk+1 + G∗vk+1 − c).
(43)

Proof. The conclusion follows directly from (37) in Proposition 2.2.
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Remark 2.2 (i) Note that comparing to (22) in Algorithm SPADMM, the first subproblem of
(43) has an extra linear term 〈δkg , ·〉. It is this linear term that allows us to design a convergent
SPADMM for solving multi-block convex optimization problems.

(ii) The linear term 〈δkg , ·〉 will vanish if Σg = 0, Eg = GG∗ � 0 and a proper starting point
(u0, v0, x0) is chosen. Specifically, if we choose x0 ∈ X such that Gx0 = b and (u0, v0) ∈ dom(f)×V
such that v0 = E−1

g G(c−F∗u0), then it holds that Gxk = b and vk = E−1
g G(c−F∗uk), which imply

that δkg = 0.

(iii) Observe that when Tf and Tg are chosen to be 0 in (43), apart from the range of τ , our
Algorithm SCB-SPALM differs from the classical 2-block ADMM for solving problem (28) only in
the linear term 〈δkg , ·〉. This shows that the classical 2-block ADMM for solving problem (28) has
an unremovable deviation from the augmented Lagrangian method. This may explain why even
when ADMM type methods suffer from slow local convergence, the latter can still enjoy fast local
convergence.

In the following, we compare our Schur complement based proximal term σ
2 ‖u−u

k‖2
T̂f

+ σ
2 ‖v−

vk‖2Tg used to derive the scheme (43) for solving (28) with the following proximal term which allows
one to update u and v simultaneously:

σ

2
(‖(u, v)− (uk, vk)‖2M + ‖u− uk‖2Tf + ‖v − vk‖2Tg) with M =

(
D1 −FG∗
−GF∗ D2

)
� 0, (44)

where D1 : U → U and D2 : V → V are two self-adjoint positive semidefinite linear operators
satisfying

D1 �
√

(FG∗)(FG∗)∗ and D2 �
√

(GF∗)(GF∗)∗ .

A common naive choice will be D1 = λmaxI1 and D2 = λmaxI2 where λmax = ‖FG∗‖2, I1 : U → U
and I2 : V → V are identity maps. Simple calculations show that the resulting semi-proximal
augmented Lagrangian method generates (uk+1, vk+1, xk+1) as follows:

uk+1 = argminu Lσ(u, vk;xk) + σ
2 ‖u− u

k‖2D1+Tf ,

vk+1 = argminv Lσ(uk, v;xk) + σ
2 ‖v − v

k‖2D2+Tg ,

xk+1 = xk + τσ(F∗uk+1 + G∗vk+1 − c).
(45)

To ensure that the subproblems in (45) are well defined, we may require the following sufficient
conditions to hold:

σ−1Σf + Tf + FF∗ +D1 � 0 and σ−1Σg + Tg + GG∗ +D2 � 0.

Comparing the proximal terms used in (32) and (44), we can easily see that the difference is:

‖u− uk‖2FG∗E−1
g GF∗

vs. ‖(u, v)− (uk, vk)‖2M.

To simplify the comparison, we assume that

D1 =
√

(FG∗)(FG∗)∗ and D2 =
√

(GF∗)(GF∗)∗ .
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By rescaling the equality constraint in (28) if necessary, we may also assume that ‖F‖ = 1. Now,
we have that

FG∗E−1
g GF∗ � FF∗

and
‖u− uk‖2FG∗E−1

g GF∗
≤ ‖u− uk‖2FF∗ ≤ ‖u− uk‖2.

In contrast, we have

‖(u, v)− (uk, vk)‖2M ≤ 2
(
‖u− uk‖2D1

+ ‖v − vk‖2D2

)
≤ 2‖FG∗‖

(
‖u− uk‖2 + ‖v − vk‖2

)
≤ 2‖G‖

(
‖u− uk‖2 + ‖v − vk‖2

)
,

which is larger than the former upper bound ‖u− uk‖2 if ‖G‖ ≥ 1/2. Thus we can conclude safely
that the proximal term ‖u−uk‖2FG∗E−1

g GF∗
can be potentially much smaller than ‖(u, v)−(uk, vk)‖2M

unless ‖G‖ is very small.
The above mentioned upper bounds difference is of course due to the fact that the SCB semi-

proximal augmented Lagrangian method takes advantage of the fact that g is assumed to be a
convex quadratic function. However, the key difference lies in the fact that (45) is a splitting
version of the semi-proximal augmented Lagrangian method with a Jacobi type decomposition,
whereas Algorithm SCB-SPALM is a splitting version of semi-proximal augmented Lagrangian
method with a Gauss-Seidel type decomposition. It is this fact that provides us with the key idea
to design Schur complement based proximal terms for multi-block convex optimization problems
in the next section.

3 A Schur complement based semi-proximal ADMM

In this section, we focus on the problem

min f(u) +
∑p

i=1 θi(yi) + g(v) +
∑q

j=1 ϕj(zj)

s.t. F∗u+
∑p

i=1A∗i yi + G∗v +
∑q

j=1 B∗j zj = c
(46)

with all θi and ϕj being assumed to be convex quadratic functions:

θi(yi) =
1

2
〈yi, Piyi〉 − 〈bi, yi〉, i = 1, . . . , p, ϕj(zj) =

1

2
〈zj , Qjzj〉 − 〈dj , zj〉, j = 1, . . . , q,

where Pi and Qj are given self-adjoint positive semidefinite linear operators. The dual of (46) is
given by

max
{
− 〈c, x〉 − f∗(−Fx)−

p∑
i=1

θ∗i (−Aix)− g∗(−Gx)−
q∑
j=1

ϕ∗j (−Bjx)
}
, (47)
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which can equivalently be written as

min 〈c, x〉+ f∗(s) +
∑p

i=1 θ
∗
i (ri) + g∗(t) +

∑q
j=1 ϕ

∗
j (wj)

s.t. Fx+ s = 0, Aix+ ri = 0, i = 1, . . . , p,

Gx+ t = 0, Bjx+ wj = 0, j = 1, . . . , q.

(48)

For i = 1, . . . , p, let Eθi be a self-adjoint positive definite linear operator on Yi such that it is a
majorization of σ−1Pi +AiA∗i , i.e.,

Eθi � σ
−1Pi +AiA∗i .

We choose Eθi in a way that its inverse can be computed at a moderate cost. Define

Tθi := Eθi − σ
−1Pi −AiA∗i � 0, i = 1, . . . , p. (49)

Note that for numerical efficiency, we need the self-adjoint positive semidefinite linear operator Tθi
to be as small as possible for each i. Similarly, for j = 1, . . . , q, let Eϕj be a self-adjoint positive
definite linear operator on Zj that majorizes σ−1Qj + BjB∗j in a way that E−1

ϕj can be computed
relatively easily. Denote

Tϕj := Eϕj − σ−1Qj − BjB∗j � 0, j = 1, . . . , q. (50)

Again, we need the self-adjoint positive semidefinite linear operator Tϕj to be as small as possible
for each j.

For notational convenience, we define

y≤i := (y1, y2, . . . , yi), y≥i := (yi, yi+1, . . . , yp), i = 0, . . . , p+ 1

with the convention that y0 = yp+1 = y≤0 = y≥p+1 = ∅. For i = 1, . . . , p, define the linear operator
A≤i : X → Y by 

A1x
A2x

...
Aix

 ≡ A≤ix := A1x×A2x . . .×Aix ∀x ∈ X .

In a similar manner, we can define z≤j , z≥j for j = 0, . . . , q + 1 and define the linear operator B≤j
for j = 1, . . . , q. Note that by definition, we have y = y≤p, z = z≤q, A = A≤p and B = B≤q.

Define the affine function Γ : U × Y × V × Z → X by

Γ(u, y, v, z) := F∗u+A∗y + G∗v + B∗z − c ∀ (u, y, v, z) ∈ U × Y × V × Z. (51)

Let σ > 0 be given. The augmented Lagrangian function associated with (46) is given as follows:

Lσ(u, y, v, z;x) = f(u) + θ(y) + g(v) + ϕ(z) + 〈x, Γ(u, y, v, z)〉+
σ

2
‖Γ(u, y, v, z)‖2 (52)

where θ(y) =
∑p

i=1 θi(yi) and ϕ(z) =
∑q

j=1 ϕj(zj).
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Now we are ready to present our SCB-SPADMM (Schur complement based semi-proximal
alternating direction method of multipliers) algorithm for solving (46).

Algorithm SCB-SPADMM: A Schur complement based SPADMM for solving (46).
Let σ > 0 and τ ∈ (0,∞) be given parameters. Let Tf and Tg be given self-adjoint positive
semidefinite operators defined on U and V respectively. Choose (u0, y0, v0, z0, x0) ∈ dom(f)× Y ×
dom(g) × Z × X . For k = 0, 1, 2, ..., generate (uk+1, yk+1, vk+1, zk+1) and xk+1 according to the
following iteration.

Step 1. Compute for i = p, . . . , 1,

yki = argminyi Lσ(uk, (yk≤i−1, yi, y
k
≥i+1), vk, zk;xk) +

σ

2
‖yi − yki ‖2Tθi , (53)

where Tθi is defined as in (49). Then compute

uk+1 = argminu Lσ(u, yk, vk, zk;xk) +
σ

2
‖u− uk‖2Tf . (54)

Step 2. Compute for i = 1, . . . , p,

yk+1
i = argminyi Lσ(uk+1, (yk+1

≤i−1, yi, y
k
≥i+1), vk, zk;xk) +

σ

2
‖yi − yki ‖2Tθi . (55)

Step 3. Compute for j = q, . . . , 1,

zkj = argminzj Lσ(uk+1, yk+1, vk, (zk≤j−1, zj , z
k
≥j+1);xk) +

σ

2
‖zj − zkj ‖2Tϕj , (56)

where Tϕj is defined as in (50). Then compute

vk+1 = argminv Lσ(uk+1, yk+1, v, zk;xk) +
σ

2
‖v − vk‖2Tg . (57)

Step 4. Compute for j = 1, . . . , q,

zk+1
j = argminzj Lσ(uk+1, yk+1, vk+1, (zk+1

≤j−1, zj , z
k
≥j+1);xk) +

σ

2
‖zj − zkj ‖2Tϕj . (58)

Step 5. Compute

xk+1 = xk + τσ(F∗uk+1 +A∗yk+1 + G∗vk+1 + B∗zk+1 − c). (59)

In order to prove the convergence of Algorithm SCB-SPADMM for solving (46), we need first
to study the relationship between SCB-SPADMM and the generic 2-block semi-proximal ADMM
for solving a two-block convex optimization problem discussed in the previous section.

Define for l = 1, . . . , p,

f1(u) := f(u), fl+1(u, y≤l) := f(u) +
∑l

i=1 θi(yi) ∀ (u, y≤l) ∈ U × Y≤l, (60)
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where Y≤l = Y1 × Y2 × . . .× Yl. Similarly, for l = 1, . . . , q, define Z≤l = Z1 ×Z2 × . . .×Zl, and

g1(v) := g(v), gl+1(v, z≤l) := g(v) +
∑l

j=1 ϕj(zj) ∀ (v, z≤l) ∈ V × Z≤l. (61)

Denote A∗0 ≡ F∗1 ≡ F∗ and B∗0 ≡ G∗1 ≡ G∗. Let

F∗i+1 =
(
F∗,A∗1, . . . ,A∗i

)
, i = 1, . . . , p, G∗j+1 =

(
G∗,B∗1, . . . ,B∗j

)
, j = 1, . . . , q.

Define the following self-adjoint linear operators: T̂f1 := Tf + F1A∗1E
−1
θ1
A1F∗1 ,

T̂fi :=

(
T̂fi−1

Tθi−1

)
+ FiA∗i E−1

θi
AiF∗i , i = 2, . . . , p (62)

and T̂g1 := Tg + G1B∗1E−1
ϕ1
B1G∗1 ,

T̂gj :=

(
T̂gj−1

Tϕj−1

)
+ GjB∗jE−1

ϕj BjG
∗
j , j = 2, . . . , q. (63)

Let (v̄, z̄, x̄, c) ∈ V × Z × X × X be given. Denote

c̄ := c− G∗v̄ − B∗z̄ and γ̄ := −Γ(ū, ȳ, v̄, z̄).

Define

βp,j := Aj−1A∗pE−1
θp

(bp −Apx̄− Ppȳp + σApγ̄), j = 1, . . . , p (64)

and for i = p− 1, . . . , 1,

βi,j := Aj−1A∗i E−1
θi

(
bi −

p∑
k=i+1

βk,i+1 −Aix̄− Piȳi + σAiγ̄

)
, j = 1, . . . , i. (65)

Let

δ̄θ :=

p∑
i=1

βi,1. (66)

We will show later in Proposition 3.1 that δ̄θ is the auxiliary linear term associated with problem
(46). Recall that

Lσ(u, y, v̄, z̄; x̄) = f(u) + θ(y) + g(v̄) + ϕ(z̄) + 〈x̄, Γ(u, y, v̄, z̄)〉+
σ

2
‖Γ(u, y, v̄, z̄)‖2.

For i = p, . . . , 1, let y′i ∈ Yi be defined by

y′i := argminyi Lσ(ū, (ȳ≤i−1, yi, y
′
≥i+1), v̄, z̄; x̄) +

σ

2
‖yi − ȳi‖2Tθi

= E−1
θi

(
σ−1bi − σ−1Aix̄+ Tθi ȳi +AiA∗i ȳi −AiΓ(ū, (ȳ≤i−1, ȳi, y

′
≥i+1), v̄, z̄)

)
(67)
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with the convention y′p+1 = ∅. Define (u+, y+) ∈ U × Y by

(u+, y+) := argminu,y Lσ(u, y, v̄, z̄; x̄) +
σ

2
‖(u, y≤p−1)− (ū, ȳ≤p−1)‖2T̂fp +

σ

2
‖yp − ȳp‖2Tθp . (68)

The following proposition about two other equivalent procedures for computing (u+, y+) is the key
ingredient for our algorithmic developments. The idea of proving this proposition is very simple:
use Proposition 2.2 repeatedly though the proof itself is rather lengthy due to the multi-layered
nature of the problems involved. For (68), we first express yp as a function of (u, y≤p−1) to obtain
a problem involving only (u, y≤p−1), and from the resulting problem, express yp−1 as a function of
(u, y≤p−2) to get another problem involving only (u, y≤p−2). We continue this way until we get a
problem involving only (u, y1).

Proposition 3.1 The optimal solution (u+, y+) defined by (68) can be obtained exactly by{
u+ = argminu Lσ(u, ȳ, v̄, z̄; x̄) + 〈δ̄θ, u〉+ σ

2 ‖u− ū‖
2
Tf ,

y+
i = argminyi Lσ(u+, (y+

≤i−1, yi, y
′
≥i+1), v̄, z̄; x̄) + σ

2 ‖yi − ȳi‖
2
Tθi
, i = 1, . . . , p,

(69)

where the auxiliary linear term δ̄θ is defined by (66). Furthermore, (u+, y+) can also be generated
by the following equivalent procedure{

u+ = argminu Lσ(u, y′, v̄, z̄; x̄) + σ
2 ‖u− ū‖

2
Tf ,

y+
i = argminyi Lσ(u+, (y+

≤i−1, yi, y
′
≥i+1), v̄, z̄; x̄) + σ

2 ‖yi − ȳi‖
2
Tθi
, i = 1, . . . , p.

(70)

Proof. We will separate our proof into two parts and for each part we prove our conclusions
by induction.

Part one. In this part we show that (u+, y+) defined by (68) can be obtained exactly by (69).
For the case p = 1, this follows directly from Proposition 2.2.

Assume that the equivalence between (68) and (69) holds for all p ≤ l. We need to show that
for p = l + 1, this equivalence also holds. For this purpose, we consider the following optimization
problem with respect to (u, y≤l) and yl+1:

min fl+1(u, y≤l) + θl+1(yl+1) + g(v̄) + ϕ(z̄)

s.t. F∗l+1(u, y≤l) +A∗l+1yl+1 = c̄.
(71)

The augmented Lagrangian function associated with problem (71) is given by

Ll+1
σ ((u, y≤l), yl+1; v̄, z̄, x) = fl+1(u, y≤l) + θl+1(yl+1) + g(v̄) + ϕ(z̄)

+〈x, Γ(u, y, v̄, z̄)〉+
σ

2
‖Γ(u, y, v̄, z̄)‖2. (72)

We denote the vector δθl+1
as the auxiliary linear term associated with problem (71) by

δθl+1
:= Fl+1A∗l+1E−1

θl+1
(bl+1 −Al+1x̄− Pl+1ȳl+1 + σAl+1γ̄). (73)

Note that by the definition of Fl+1 and p = l + 1, we have

〈δθp , (u, y≤l)〉 = 〈βp,1, u〉+
∑l

j=1〈βp,j+1, yj〉
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with βp,j , j = 1, . . . , l + 1, defined as in (64).
By noting that Ll+1

σ ((u, y≤l), yl+1; v̄, z̄, x̄) = Lσ(u, y≤l, yl+1, v̄, z̄; x̄), we can rewrite problem (68)
for p = l + 1 equivalently as

((u+, y+
≤l), y

+
l+1) = argmin

 L
l+1
σ ((u, y≤l), yl+1; v̄, z̄, x̄) + σ

2 ‖(u, y≤l)− (ū, ȳ≤l)‖2T̂fl+1

+σ
2 ‖yl+1 − ȳl+1‖2Tθl+1

 . (74)

Then, from Proposition 2.2, we know that problem (74) is equivalent to

(u+, y+
≤l) = argmin(u,y≤l)

 L
l+1
σ ((u, y≤l), ȳl+1; v̄, z̄, x̄) + 〈δθl+1

, (u, y≤l)〉
+σ

2 ‖(u, y≤l−1)− (ū, ȳ≤l−1)‖2
T̂fl

+ σ
2 ‖yl − ȳl‖

2
Tθl

 , (75)

y+
l+1 = argminyl+1

Ll+1
σ ((u+, y+

≤l), yl+1; v̄, z̄, x̄) +
σ

2
‖yl+1 − ȳl+1‖2Tθl+1

. (76)

By observing that Ll+1
σ ((u+, y+

≤l), yl+1; v̄, z̄, x̄) = Lσ(u+, y+
≤l, yl+1, v̄, z̄; x̄), we know that problem

(76) can equivalently be rewritten as

y+
l+1 = argminyl+1

Lσ(u+, y+
≤l, yl+1, v̄, z̄; x̄) +

σ

2
‖yl+1 − ȳl+1‖2Tθl+1

. (77)

In order to apply our induction assumption to problem (75), we need to construct a corresponding
optimization problem. Define for i = 1, . . . , l,

b̃i := bi − βp,i+1 and θ̃i(yi) := θi(yi) + 〈βp,i+1, yi〉 = 1
2〈yi, Piyi〉 − 〈̃bi, yi〉 ∀ yi ∈ Yi,

f̃1(u) := f(u) + 〈βp,1, u〉, f̃i+1(u, y≤i) := f̃1(u) +
∑i

j=1 θ̃j(yj) ∀ (u, y≤i) ∈ U × Y≤i.

We shall now consider the following optimization problem with respect to (u, y≤l):

min f̃1(u) +
∑l

i=1 θ̃i(yi) + θl+1(ȳl+1) + g(v̄) + ϕ(z̄)

s.t. F∗u+A∗≤ly≤l = c̄−A∗l+1ȳl+1.
(78)

The augmented Lagrangian function associated with problem (78) is defined by

L̃σ(u, y≤l; ȳl+1, v̄, z̄, x) = f̃1(u) +
∑l

i=1 θ̃i(yi) + θl+1(ȳl+1) + g(v̄) + ϕ(z̄)

+ 〈x, Γ(u, (y≤l, ȳl+1), v̄, z̄)〉+ σ
2 ‖Γ(u, (y≤l, ȳl+1), v̄, z̄)‖2.

Define
T
θ̃i
≡ Tθi and T

f̃i
≡ Tfi , i = 1, . . . , l.

By using the definitions of θ̃i and f̃i, i = 1, . . . , l, we have

E
θ̃i
≡ Eθi and T̂

f̃i
≡ T̂fi , i = 1, . . . , l. (79)

Therefore, problem (75) can equivalently be rewritten as

(u+, y+
≤l) = argmin(u,y≤l)

 L̃σ(u, y≤l; ȳl+1, v̄, z̄, x̄)

+σ
2 ‖(u, y≤l−1)− (ū, ȳ≤l−1)‖2

T̂
f̃l

+ σ
2 ‖yl − ȳl‖

2
T
θ̃l

 . (80)
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Define
β̃l,j := Aj−1A∗l E−1

θ̃l
(̃bl −Alx̄− Plȳl + σAlγ̄), j = 1, . . . , l

and for i = l − 1, l − 2, . . . , 1,

β̃i,j := Aj−1A∗i E
−1

θ̃i

(
b̃i −

∑l
k=i+1 β̃k,i+1 −Aix̄− Piȳi + σAiγ̄

)
, j = 1, . . . , i.

The auxiliary linear term δ
θ̃

associated with problem (80) is given by

δ
θ̃

:=
∑l

i=1 β̃i,1. (81)

We will show that for i = l, l − 1, . . . , 1,

β̃i,j = βi,j ∀ j = 1, . . . , i. (82)

First, by using (79), we have for j = 1, . . . , l that

β̃l,j = Aj−1A∗l E−1

θ̃l
(̃bl −Alx̄− Plȳl + σAlγ̄)

= Aj−1A∗l E−1
θl

(bl − βl+1,l+1 −Alx̄− Plȳl + σAlγ̄) = βl,j .

That is, (82) holds for i = l and j = 1, . . . , l. Now assume that we have proven β̃i,j = βi,j for
all i ≥ k + 1 with k + 1 ≤ l and j = 1, . . . , i. We shall next prove that (82) holds for i = k and
j = 1, . . . , k. Again, by using (79), we have for j = 1, . . . , k that

β̃k,j = Aj−1A∗kE−1

θ̃k

(
b̃k −

∑l
s=k+1β̃s,k+1 −Akx̄− Pkȳk + σAkγ̄

)
= Aj−1A∗kE−1

θk

(
bk − βp,k+1 −

∑l
s=k+1βs,k+1 −Akx̄− Pkȳk + σAkγ̄

)
= Aj−1A∗kE−1

θk

(
bk −

∑l+1
s=k+1βs,k+1 −Akx̄− Pkȳk + σAkγ̄

)
= βk,j ,

which, shows that (82) holds for i = k and j = 1, . . . , k. Thus, (82) is proven.
For i = l, l − 1, . . . , 1, define ỹ′i ∈ Yi by

ỹ′i := argminyi L̃σ(ū, (ȳ≤i−1, yi, ỹ
′
≥i+1); ȳl+1, v̄, z̄, x̄) +

σ

2
‖yi − ȳi‖2T

θ̃i

,

= E−1

θ̃i

(
σ−1b̃i − σ−1Aix̄+ T

θ̃i
ȳi +AiA∗i ȳi −AiΓ(ū, (ȳ≤i−1, ȳi, ỹ

′
≥i+1, ȳl+1), v̄, z̄)

)
, (83)

where we use the convention ỹ′l+1 = ∅. We will prove that

ỹ′i = y′i ∀ i = l, l − 1, . . . , 1. (84)

We first calculate

y′l+1 − ȳl+1 = E−1
θl+1

(σ−1bl+1 − σ−1Al+1x̄+ Tθl+1
ȳl+1 +Al+1A∗l+1ȳl+1 +Al+1γ̄ − Eθl+1

ȳl+1)

= E−1
θl+1

(σ−1bl+1 − σ−1Al+1x̄− σ−1Pl+1ȳl+1 +Al+1γ̄), (85)
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which, together with the definitions of βp,i in (64), implies

AiA∗l+1(y′l+1 − ȳl+1) = σ−1βp,i+1 ∀ i = 0, . . . , l. (86)

Now, by using (79), (86) and the definitions of ỹ′l and y′l, we have

y′l − ỹ′l = E−1
θl

(
σ−1βp,l+1 +AlA∗l+1(ȳl+1 − y′l+1)

)
= E−1

θl
(σ−1βp,l+1 − σ−1βp,l+1) = 0.

That is, (84) holds for i = l. Now assume that we have proven ỹ′i = y′i for all i ≥ k + 1 with
k + 1 ≤ l. We shall next prove that (84) holds for i = k. Again, by using the definitions of ỹ′k and
y′k and noting

Γ(ū, (ȳ≤k, ỹ
′
≥k+1, ȳl+1), v̄, z̄)− Γ(ū, (ȳ≤k, y

′
≥k+1), v̄, z̄) = A∗l+1(ȳl+1 − y′l+1),

we obtain that

y′k − ỹ′k = E−1
θk

(
σ−1(bk − b̃k) +AkA∗l+1(ȳl+1 − y′l+1)

)
= E−1

θk

(
σ−1βp,k+1 +AkA∗l+1(ȳl+1 − y′l+1)

)
= E−1

θl
(σ−1βp,k+1 − σ−1βp,k+1) = 0,

which, shows that (84) holds for i = k. Thus, (84) holds.
By applying our induction assumption to problem (80), we obtain equivalently that

u+ = argminu L̃σ(u, ȳ≤l; ȳl+1, v̄, z̄, x̄) + 〈δ
θ̃
, u〉+

σ

2
‖u− ū‖2Tf , (87)

y+
i = argminyi L̃σ(u+, (y+

≤i−1, yi, ỹ
′
≥i+1); ȳl+1, v̄, z̄, x̄) +

σ

2
‖yi − ȳi‖2Tθi , i = 1, . . . , l, (88)

where we use the facts that T
f̃1

= Tf and T
θ̃i

= Tθi for i = 1, . . . , l. By combining (82) and the

definitions of δ̄θ and δ
θ̃

defined in (66) and (81), respectively, we derive that

δ̄θ =
∑l

i=1 βi,1 + βl+1,1 =
∑l

i=1 β̃i,1 + βl+1,1 = δ
θ̃

+ βl+1,1. (89)

By direct calculations,

L̃σ(u, ȳ≤l; ȳl+1, v̄, z̄, x̄) = Lσ(u, ȳ, v̄, z̄; x̄) + 〈βl+1,1, u〉+

l∑
i=1

〈βl+1,i+1, ȳi〉. (90)

Using (84), (86) and the definition of L̃σ, we have for i = 1, . . . , l that

L̃σ(u+, (y+
≤i−1, yi, ỹ

′
≥i+1); ȳl+1, v̄, z̄, x̄)− Lσ(u+, (y+

≤i−1, yi, y
′
≥i+1), v̄, z̄; x̄)

= L̃σ(u+, (y+
≤i−1, yi, y

′
i+1, . . . , y

′
l); ȳl+1, v̄, z̄, x̄)− Lσ(u+, (y+

≤i−1, yi, y
′
≥i+1), v̄, z̄; x̄)

= 〈βp,i+1, yi〉+ 〈σAiA∗l+1(ȳl+1 − y′l+1), yi〉+ ci

= ci, (91)
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where ci is a constant term given by

ci = 〈βl+1,1, u
+〉+

i−1∑
j=1

〈βl+1,j+1, y
+
j 〉+

l∑
j=i+1

〈βl+1,j+1, y
′
j〉

+θl+1(ȳl+1)− θl+1(y′l+1) + 〈x̄, A∗l+1(ȳl+1 − y′l+1)〉

+
σ

2
〈A∗l+1(ȳl+1 − y′l+1), 2(F∗u+ +A∗≤i−1y

+
≤i−1 +

l∑
j=i+1

A∗jy′j − c̄) +A∗l+1(ȳl+1 + y′l+1)〉.

Thus, by using (89), (90) and (91) we know that (87) and (88) can be rewritten as{
u+ = argminu Lσ(u, ȳ, v̄, z̄; x̄) + 〈δ̄θ, u〉+ σ

2 ‖u− ū‖
2
Tf ,

y+
i = argminyi Lσ(u+, (y+

≤i−1, yi, y
′
≥i+1), v̄, z̄; x̄) + σ

2 ‖yi − ȳi‖
2
Tθi
, i = 1, . . . , l,

which, together with (77), shows that the equivalence between (68) and (69) holds for p = l + 1.
The proof of this part is completed.

Part two. In this part, we prove the equivalence between (69) and (70). Again, for the case
p = 1, it follows directly from Proposition 2.2.

Assume that the equivalence between (69) and (70) holds for all p ≤ l. We shall prove that
this equivalence also holds for p = l + 1. Write f0(·) ≡ f(·) +

∑l
i=1〈βi,1, ·〉. Since f0 differs from f

only with an extra linear term, we define Tf0 ≡ Tf . In order to use Proposition 2.2, we consider the
following optimization problem with respect to u and yl+1:

min f0(u) + θl+1(yl+1) +
∑l

i=1 θi(ȳi) + g(v̄) + ϕ(z̄)

s.t. F∗u+A∗l+1yl+1 = c̄−A∗≤lȳ≤l.
(92)

The augmented Lagrangian function associated with problem (92) is given as follows:

L0
σ(u, yl+1; ȳ≤l, v̄, z̄, x) = f0(u) + θl+1(yl+1) +

∑l
i=1θi(ȳi) + g(v̄) + ϕ(z̄)

+〈x, Γ(u, (ȳ≤l, yl+1), v̄, z̄)〉+
σ

2
‖Γ(u, (ȳ≤l, yl+1), v̄, z̄)‖2.

By observing that

L0
σ(u, ȳl+1; ȳ≤l, v̄, z̄, x̄) = Lσ(u, ȳ, v̄, z̄; x̄) +

∑l
i=1〈βi,1, u〉 and Tf0 ≡ Tf ,

we can rewrite the first subproblem in (69) as

u+ = argminu L0
σ(u, ȳl+1; ȳ≤l, v̄, z̄, x̄) + 〈βl+1,1, u〉+

σ

2
‖u− ū‖2Tf0 . (93)

By using the definition of y′l+1 given in (67), we have

y′l+1 = E−1
θl+1

(
σ−1(bl+1 −Al+1x̄) + Tθl+1

ȳl+1 +Al+1A∗l+1ȳl+1 +Al+1γ̄
)
. (94)

Since

L0
σ(ū, yl+1; ȳ≤l, v̄, z̄, x̄) = Lσ(ū, (ȳ≤l, yl+1), v̄, z̄; x̄) +

∑l
i=1〈βi,1, ū〉,
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the point y′l+1 can be rewritten equivalently as

y′l+1 = argminyl+1
L0
σ(ū, yl+1; ȳ≤l, v̄, z̄, x̄) +

σ

2
‖yl+1 − ȳl+1‖2Tθl+1

. (95)

Then, by applying Proposition 2.2 to problem (92) with respect to u and yl+1, we know that
problem (93) is equivalent to

u+ = argminu L0
σ(u, y′l+1; ȳ≤l, v̄, z̄, x̄) +

σ

2
‖u− ū‖2Tf0 . (96)

In order to apply our induction assumption to problem (96), we need to consider the following
optimization problem with respect to (u, y≤l):

min f(u) +
∑l

i=1 θi(yi) + θl+1(y′l+1) + g(v̄) + ϕ(z̄)

s.t. F∗(u) +A∗≤ly≤l = c̄−A∗l+1y
′
l+1.

(97)

The augmented Lagrangian function associated with problem (97) is given by

L̂σ(u, y≤l; y
′
l+1, v̄, z̄, x) = f(u) +

∑l
i=1θi(yi) + θl+1(y′l+1) + g(v̄) + ϕ(z̄)

+〈x, Γ(u, (y≤l, y
′
l+1), v̄, z̄)〉+

σ

2
‖Γ(u, (y≤l, y

′
l+1), v̄, z̄)‖2.

Define
γ̂ := −Γ(ū, (ȳ≤l, y

′
l+1), v̄, z̄) and hi := bi −Aix̄− Piȳi, i = 1, . . . , l.

For problem (97), we define the following associated terms

β̂l,j := Aj−1A∗l E−1
θl

(hl + σAlγ̂), j = 1, . . . , l

and for i = l − 1, l − 2, . . . , 1,

β̂i,j := Aj−1A∗i E−1
θi

(
hi −

∑l
k=i+1β̂k,i+1 + σAiγ̂

)
, j = 1, . . . , i.

The auxiliary linear term δ̂ associated with problem (97) is given by

δ̂ =
∑l

i=1 β̂i,1. (98)

We will show that, for i = l, l − 1, . . . , 1,

β̂i,j = βi,j ∀ j = 1, . . . , i. (99)

Similar to what we have done in part one, we shall first prove that β̂l,j = βl,j for j = 1, 2, . . . , l. In
fact, for j = 1, . . . , l, we have

βl,j = Aj−1A∗l E−1
θl

(hl − βl+1,l+1 + σAlγ̄)

= Aj−1A∗l E−1
θl

(hl −AlA∗l+1E−1
θl+1

(hl+1 + σAl+1γ̄) + σAlγ̄)

= Aj−1A∗l E−1
θl

(hl − σAlΓ(ū, (ȳ≤l, y
′
l+1), v̄, z̄))

= Aj−1A∗l E−1
θl

(hl + σAlγ̂) = β̂l,j ,
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where the third equation follows from (94) and simple calculations. This shows that (99) holds
for i = l and j = 1, . . . , l. Now we assume that β̂i,j = βi,j for all i ≥ k + 1 with k + 1 ≤ l and
j = 1, . . . , i. Next, we shall prove that (99) holds for i = k and j = 1, . . . , k. By direct calculations,
we know for j = 1, . . . , k that

βk,j = Aj−1A∗kE−1
θk

(
hk −

∑l+1
s=k+1βs,k + σAkγ̄

)
= Aj−1A∗kE−1

θk

(
hk −

∑l
s=k+1β̂s,k − βl+1,k + σAkγ̄

)
= Aj−1A∗kE−1

θk

(
hk −

∑l
s=k+1β̂s,k −AkA

∗
l+1E−1

θl+1
(hl+1 + σAl+1γ̄) + σAkγ̄

)
= Aj−1A∗kE−1

θk

(
hk −

∑l
s=k+1δ̂θs,k − σAkΓ(ū, (ȳ≤l, y

′
l+1), v̄, z̄)

)
= Aj−1A∗kE−1

θk

(
hk −

∑l
s=k+1δ̂θs,k + σAkγ̂

)
= β̂k,j ,

which, shows that (99) holds for i = k and j = 1, . . . , k. Therefore, we have shown that (99) holds.
For i = l, l − 1, . . . , 1, define ŷ′i ∈ Yi as

ŷ′i = argminyi L̂σ(ū, (ȳ≤i−1, yi, ŷ
′
≥i+1); y′l+1, v̄, z̄, x̄) +

σ

2
‖yi − ȳi‖2Tθi

= E−1
θi

(
σ−1bi − σ−1Aix̄+ Tθi ȳi +AiA∗i ȳi −AiΓ(ū, (ȳ≤i−1, ȳi, ŷ

′
≥i+1, y

′
l+1), v̄, z̄)

)
, (100)

where we use the convention ŷ′l+1 = ∅. We will prove that

ŷ′i = y′i ∀ i = 1, . . . , l. (101)

From (100), we know that

ŷ′l = E−1
θl

(
σ−1bl − σ−1Alx̄+ Tθl ȳl +AlA∗l ȳl −AlΓ(ū, (ȳ≤i−1, ȳl, y

′
l+1), v̄, z̄)

)
,

which is exactly the same as y′l defined in (67). This shows that (101) holds for i = l. Now we
assume that ŷ′i = y′i for all i ≥ k+ 1 with k+ 1 ≤ l. Next, we shall prove that (101) holds for i = k.
Again, by using the definition of ŷ′k in (100) and the definition of y′k in (67), we see that

ŷ′k = E−1
θk

(
σ−1bk − σ−1Akx̄+ Tθk ȳk +AkA∗kȳk −AkΓ(ū, (ȳ≤k−1, ȳk, ŷ

′
≥k+1, y

′
l+1), v̄, z̄)

)
= E−1

θk

(
σ−1bk − σ−1Akx̄+ Tθk ȳk +AkA∗kȳk −AkΓ(ū, (ȳ≤k−1, ȳk, y

′
≥k+1), v̄, z̄)

)
= y′k.

Thus, (101) is proven to be true.
By direct calculations, we obtain from (98) and (99) that

L0
σ(u, y′l+1; ȳ≤l, v̄, z̄, x̄)− L̂σ(u, ȳ≤l; y

′
l+1, v̄, z̄, x̄) =

∑l
i=1〈βi,1, u〉 = 〈δ̂, u〉. (102)

By using (102) and Tf0 ≡ Tf , we can reformulate problem (96) equivalently as

u+ = argminu L̂σ(u, ȳ≤l; y
′
l+1, v̄, z̄, x̄) + 〈δ̂, u〉+

σ

2
‖u− ū‖2Tf . (103)
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Then, from our induction assumption we know that problem (103) can be equivalently recast as{
ŷ′i = argminyi L̂σ(ū, (ȳ≤i−1, yi, ŷ

′
≥i+1); y′l+1, v̄, z̄, x̄) + σ

2 ‖yi − ȳi‖
2
Tθi
, i = l, l − 1, . . . , 1,

u+ = argminu L̂σ(u, ŷ′≤l; y
′
l+1, v̄, z̄, x̄) + σ

2 ‖u− ū‖
2
Tf .

(104)

By using (101) and observing

L̂σ(u, y≤l; y
′
l+1, v̄, z̄, x̄) = Lσ(u, y≤l, y

′
l+1, v̄, z̄; x̄),

we know that (104) is equivalent to{
y′i = argminyi Lσ(ū, (ȳ≤i−1, yi, y

′
≥i+1), v̄, z̄; x̄) + σ

2 ‖yi − ȳi‖
2
Tθi
, i = l, l − 1, . . . , 1,

u+ = argminu Lσ(u, (y′≤l, y
′
l+1), v̄, z̄; x̄) + σ

2 ‖u− ū‖
2
Tf ,

which, together with (95), shows that the equivalence between (69) and (70) holds for p = l + 1.
This completes the proof to the second part of this proposition.

Proposition 3.2 For any k ≥ 0, the point (xk+1, yk+1, vk+1, zk+1) obtained by Algorithm SCB-
SPADMM for solving problem (46) can be generated exactly according to the following iteration:

(uk+1, yk+1) = argminu,y Lσ(u, y, vk, zk;xk) + σ
2 ‖(u, y≤p−1)− (uk, yk≤p−1)‖2

T̂fp
+ σ

2 ‖yp − y
k
p‖2Tθp ,

(vk+1, zk+1) = argminv,z Lσ(uk+1, yk+1, v, z;xk) + σ
2 ‖(v, z≤q−1)− (vk, zk≤q−1)‖2

T̂gq
+ σ

2 ‖zq − z
k
q ‖2Tϕq ,

xk+1 = xk + τσ(F∗uk+1 +A∗yk+1 + G∗vk+1 + B∗zk+1 − c).

Proof. The (uk+1, yk+1) part directly follows from Proposition 3.1. The conclusion for the
(vk+1, zk+1) part can be obtained in similar arguments to the part about (uk+1, yk+1). Hence,
the required result follows.

Write Σf1 ≡ Σf and Σg1 ≡ Σg. Define

Σfi :=

(
Σfi−1

Pi−1

)
, i = 2, . . . , p+ 1

and

Σgj :=

(
Σgj−1

Qj−1

)
, j = 2, . . . , q + 1.

In order to prove the convergence of our algorithm SCB-SPADMM for solving problem (46), we
need the following proposition.

Proposition 3.3 It holds that

Fp+1F∗p+1 + σ−1Σfp+1 +

(
T̂fp

Tθp

)
� 0⇔ FF∗ + σ−1Σf + Tf � 0, (105)

Gq+1G∗q+1 + σ−1Σgq+1 +

(
T̂gq

Tϕq

)
� 0⇔ GG∗ + σ−1Σg + Tg � 0. (106)
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Proof. We only need to prove (105) as (106) can be obtained in the similar manner. For i =
3, . . . , p+ 1, we have

FiF∗i + σ−1Σfi +

(
T̂fi−1

Tθi−1

)
=

(
Fi−1F∗i−1 + σ−1Σfi−1

+ T̂fi−1
Fi−1A∗i−1

Ai−1F∗i−1 Ai−1A∗i−1 + σ−1Pi−1 + Tθi−1

)
.

Since Eθi−1
= Ai−1A∗i−1 +σ−1Pi−1 + Tθi−1

� 0 for all i ≥ 3, by the Schur complement condition for
ensuring the positive definiteness of linear operators, we have(

Fi−1F∗i−1 + σ−1Σfi−1
+ T̂fi−1

Fi−1A∗i−1

Ai−1F∗i−1 Eθi−1

)
� 0

m
Fi−1F∗i−1 + σ−1Σfi−1

+ T̂fi−1
−Fi−1A∗i−1E

−1
θi−1
Ai−1F∗i−1 � 0

m

Fi−1F∗i−1 + σ−1Σfi−1
+

(
T̂fi−2

Tθi−2

)
� 0.

Therefore, by taking i = 3, we obtain that

Fp+1F∗p+1 + σ−1Σfp+1 +

(
T̂fp

Tθp

)
� 0⇔ F2F∗2 + σ−1Σf2 +

(
T̂f1

Tθ1

)
� 0.

Note that

F2F∗2 + σ−1Σf2 +

(
T̂f1

Tθ1

)
=

(
F1F∗1 + σ−1Σf1 + T̂f1 F1A∗1

A1F∗1 A1A∗1 + σ−1P1 + Tθ1

)
.

Since Eθ1 = A1A∗1 + σ−1P1 + Tθ1 � 0, again by the Schur complement condition for ensuring the
positive definiteness of linear operators, we have(

F1F∗1 + σ−1Σf1 + T̂f1 F1A∗1
A1F∗1 Eθ1

)
� 0

m
F1F∗1 + σ−1Σf1 + T̂f1 −F1A∗1E

−1
θ1
A1F∗1 � 0

m
FF∗ + σ−1Σf + Tf � 0.

Thus, we have

Fp+1F∗p+1 + σ−1Σfp+1 +

(
Tfp

Tθp

)
� 0⇔ FF∗ + σ−1Σf + Tf � 0.

The proof of this proposition is completed.
Note that in the context of the multi-block convex optimization problem (46), Assumption 2.1

takes the following form:

Assumption 3.1 There exists (û, ŷ, v̂, ẑ) ∈ ri(dom f)×Y × ri(dom g)×Z such that F∗û+A∗ŷ+
G∗v̂ + B∗ẑ = c.
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After all these preparations, we can finally state our main convergence theorem.

Theorem 3.1 Let Σf and Σg be the two self-adjoint and positive semidefinite operators defined
by (25) and (26), respectively. Suppose that the solution set of problem (46) is nonempty and that
Assumption 3.1 holds. Assume that Tf and Tg are chosen such that the sequence {(uk, yk, vk, zk, xk)}
generated by Algorithm SCB-SPADMM is well defined. Recall that Tθi is defined in (49) for 1 ≤ i ≤
p and Tϕj is defined in (50) for 1 ≤ j ≤ q. Then, under the condition either (a) τ ∈ (0, (1+

√
5 )/2)

or (b) τ ≥ (1 +
√

5 )/2 but
∑∞

k=0(‖G∗(vk+1 − vk) + B∗(zk+1 − zk)‖2 + τ−1‖F∗uk+1 + A∗yk+1 +
G∗vk+1 + B∗zk+1 − c‖2) <∞, the following results hold:

(i) If (u∞, y∞, v∞, z∞, x∞) is an accumulation point of {(uk, yk, vk, zk, xk)}, then (u∞, y∞, v∞, z∞)
solves problem (46) and x∞ solves (48), respectively.

(ii) If both σ−1Σf + Tf + FF∗ and σ−1Σg + Tg + GG∗ are positive definite, then the sequence
{(uk, yk, vk, zk, xk)}, which is automatically well defined, converges to a unique limit, say,
(u∞, y∞, v∞, z∞, x∞) with (u∞, y∞, v∞, z∞) solving problem (46) and x∞ solving (48), re-
spectively.

(iii) When the u, y-part disappears, the corresponding results in parts (i)–(ii) hold under the con-
dition either τ ∈ (0, 2) or τ ≥ 2 but

∑∞
k=0 ‖G∗vk+1 + B∗zk+1 − c‖2 <∞.

Proof. By combining Theorem 2.1 with Proposition 3.2 and Proposition 3.3, we can readily obtain
the conclusions of this theorem.

Remark 3.1 Our SCB-SPADMM algorithm actually provides a potentially efficient approach to
handle large-scale and dense linear constraints. When dealing with such difficult linear systems,
instead of being trapped with the possible convergence issues brought about by inexact solvers such
as conjugate gradient methods, one can always first decompose the large systems into serval smaller
pieces, and then apply our SCB-SPADMM algorithm to the decomposed problems. As a result,
these smaller systems can always be handled by adding suitable proximal terms or by solving them
exactly.

4 Numerical experiments

We first examine the optimality condition for the general problem (46) and its dual (47). Suppose
that the solution set of problem (46) is nonempty and that Assumption 3.1 holds. Then in order
that (u∗, y∗, v∗, z∗) be an optimal solution for (46) and x∗ be an optimal solution for (47), it is
necessary and sufficient that (u∗, y∗, v∗, z∗) and x∗ satisfy

F∗u+
∑p

i=1A∗i yi + G∗v +
∑q

j=1 B∗j zj = c,

f(u) + f∗(−Fx) = 〈−Fx, u〉, θi(yi) + θ∗i (−Aix) = 〈−Aix, yi〉, i = 1, . . . , p,
g(v) + g∗(−Gx) = 〈−Gx, v〉, ϕi(zi) + ϕ∗i (−Bix) = 〈−Bix, zi〉, j = 1, . . . , q.

(107)

We will measure the accuracy of an approximate solution based on the above optimality condition.
If the given problem is properly scaled, the following relative residual is a natural choice to be used
in our stopping criterion:

η = max{ηP , ηf , ηg, ηθ, ηϕ}, (108)
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where

ηP =
‖F∗u+A∗y + G∗v + B∗z − c‖

1 + ‖c‖
, ηf =

‖u− Proxf (u−Fx)‖
1 + ‖u‖+ ‖Fx‖

, ηg =
‖v − Proxg(v − Gx)‖

1 + ‖v‖+ ‖Gx‖
,

ηθ = max
i=1,...,p

‖yi − Proxθi(yi −Aix)‖
1 + ‖yi‖+ ‖Aix‖

, ηϕ = max
j=1,...,q

‖zj − Proxϕj (zj − Bjx)‖
1 + ‖zj‖+ ‖Bjx‖

.

Additionally, we compute the relative gap by

ηgap =
objP − objD

1 + |objP |+ |objD|
,

where objP := f(u) +
∑p

i=1 θi(yi) + g(v) +
∑q

j=1 ϕj(zj) and objD := 〈c, x〉+ f∗(s) +
∑p

i=1 θ
∗
i (ri) +

g∗(t) +
∑q

j=1 ϕ
∗
j (wj). We test the following problem sets.

4.1 Numerical results for convex quadratic SDP

Consider the following QSDP problem

min 1
2〈X, QX〉+ 〈C, X〉

s.t. AEX = bE , AIX ≥ bI , X ∈ Sn+ ∩ K
(109)

and its dual problem

max −δ∗K(−Z) + 〈bI , yI〉 − 1
2〈X

′, QX ′〉+ 〈bE , yE〉
s.t. Z +A∗IyI −QX ′ + S +A∗EyE = C, yI ≥ 0, S ∈ Sn+ .

(110)

We use X ′ here to indicate the fact that X ′ can be different from the primal variable X. Despite
this fact, we have that at the optimal point, QX = QX ′. Since Q is only assumed to be a self-
adjoint positive semidefinite linear operator, the augmented Lagrangian function associated with
(110) may not be strongly convex with respect to X ′. Without further adding a proximal term, we
propose the following strategy to rectify this difficulty. Since Q is positive semidefinite, Q can be
decomposed as Q = B∗B for some linear map B. By introducing a new variable Ξ = −BX ′, the
problem (110) can be rewritten as follows:

max −δ∗K(−Z) + 〈bI , yI〉 − 1
2‖Ξ‖

2
F + 〈bE , yE〉

s.t. Z +A∗IyI + B∗Ξ + S +A∗EyE = C, yI ≥ 0, S ∈ Sn+ .
(111)

Note that now the augmented Lagrangian function associated with (111) is strongly convex with
respect to Ξ. Surprisingly, much to our delight, we can update the iterations in our SCB-SPADMM
without explicitly computing B or B∗. Given Z, ȳI , S, ȳE and X, denote

Ξ+ := argminΞ

1

2
‖Ξ‖2 +

σ

2
‖Z +A∗I ȳI + B∗Ξ + S +A∗E ȳE − C + σ−1X‖2 = −(I + σBB∗)−1BR,

where R = X + σ(Z + A∗I ȳI + S + A∗E ȳE − C). In updating the SCB-SPADMM iterations, we
actually do not need Ξ+ explicitly, but only need Υ+ := −B∗Ξ+. From the condition that (I +
σBB∗)(−Ξ+) = BR, we get (I + σB∗B)(−B∗Ξ+) = B∗BR, hence we can compute Υ+ via Q:

Υ+ = (I + σQ)−1(QR).
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In fact, Υ := −B∗Ξ can be viewed as the shadow of QX ′. Meanwhile, for the function δ∗K(−Z), we
have the following useful observation that for any λ > 0,

Z+ = argmin δ∗K(−Z) +
λ

2
‖Z − Z‖2 = Z +

1

λ
ΠK(−λZ), (112)

where (112) follows from the following Moreau decomposition:

x = Proxτf∗(x) + τProxf/τ (x/τ), ∀ τ > 0.

In our numerical experiments, we test QSDP problems without inequality constraints (i.e., AI
and bI are vacuous). We consider first the linear operator Q given by Q(X) = 1

2(BX + XB) for
a given matrix B ∈ Sn+. Suppose that we have the eigenvalue decomposition B = PΛP T , where
Λ = diag(λ) and λ = (λ1, . . . , λn)T is the vector of eigenvalues of B. Then

〈X, QX〉 =
1

2
〈X̂, ΛX̂ + X̂Λ〉 =

1

2

n∑
i=1

n∑
j=1

X̂2
ij(λi + λj) =

n∑
i=1

n∑
j=1

X̂2
ijH

2
ij = 〈X, B∗BX〉,

where X̂ = P TXP , Hij =

√
λi+λj

2 , BX = H ◦ (P TXP ) and B∗Ξ = P (H ◦Ξ)P T . In our numerical
experiments, the matrix B is a low rank random symmetric positive semidefinite matrix. Note
that when rank(B) = 0 and K is a polyhedral cone, problem (109) reduces to the SDP problem
considered in [17]. In our experiments, we test both the cases where rank(B) = 5 and rank(B) = 10.
All the linear constraints are extracted from the numerical test examples in [17] (Section 4.1). For
instance, we construct QSDP-BIQ problem sets based on the formulation in [17] as follows:

min 1
2〈X, QX〉+ 1

2〈Q, X0〉+ 〈c, x〉
s.t. diag(X0)− x = 0, α = 1,

X =

(
X0 x
xT α

)
∈ Sn+, X ∈ K := {X ∈ Sn : X ≥ 0}.

In our numerical experiments, the test data for Q and c are taken from Biq Mac Library maintained
by Wiegele, which is available at http://biqmac.uni-klu.ac.at/biqmaclib.html. In the same
sprit, we construct test problems QSDP-BIQ, QSDP-θ+, QSDP-QAP and QSDP-RCP.

Here we compare our algorithm Scb-spadmm with the directly extended Admm (with step
length τ = 1) and the convergent alternating direction method with a Gaussian back substitution
proposed in [9] (we call the method Admmgb here and use the parameter α = 0.99 in the Gaus-
sian back substitution step). We have implemented all the algorithms Scb-spadmm, Admm and
Admmgb in Matlab version 7.13. The numerical results reported later are obtained from a PC
with 24 GB memory and 2.80GHz quad-core CPU running on 64-bit Windows Operating System.

We measure the accuracy of an approximate optimal solution (X,Z,Ξ, S, yE) for QSDP (109)
and its dual (111) by using the following relative residual obtained from the general optimality
condition (107):

ηqsdp = max{ηP , ηD, ηZ , ηS1 , ηS2}, (113)
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Figure 1: Performance profiles of Scb-spadmm, Admm and Admmgb for the tested large scale
QSDP.

where

ηP =
‖AEX − bE‖

1 + ‖bE‖
, ηD =

‖Z + B∗Ξ + S +A∗EyE − C‖
1 + ‖C‖

, ηZ =
‖X −ΠK(X − Z)‖

1 + ‖X‖+ ‖Z‖
,

ηS1
=

|〈S, X〉|
1 + ‖S‖+ ‖X‖

, ηS2
=
‖X −ΠSn

+
(X)‖

1 + ‖X‖
.

We terminate the solvers Scb-spadmm, Admm and Admmgb when ηqsdp < 10−6 with the maxi-
mum number of iterations set at 25000.

Table 4 reports detailed numerical results for Scb-spadmm, Admm and Admmgb in solving
some large scale QSDP problems. Here, we only list the results for the case of rank(B) = 10,
since we obtain similar results for the case of rank(B) = 5. From the numerical results, one can
observe that Scb-spadmm is generally the fastest in terms of the computing time, especially when
the problem size is large. In addition, we can see that Scb-spadmm and Admm solved all instances
to the required accuracy, while Admmgb failed in certain cases.

Figure 1 shows the performance profiles in terms of the number of iterations and computing
time for Scb-spadmm, Admm and Admmgb, for all the tested large scale QSDP problems. We
recall that a point (x, y) is in the performance profiles curve of a method if and only if it can solve
(100y)% of all the tested problems no slower than x times of any other methods. We may observe
that for the majority of the tested problems, Scb-spadmm takes the least number of iterations.
Besides, in terms of computing time, it can be seen that both Scb-spadmm and Admm outperform
Admmgb by a significant margin, even though Admm has no convergence guarantee.

4.2 Numerical results for nearest correlation matrix (NCM) approximations

In this subsection, we first consider the problem of finding the nearest correlation matrix (NCM)
to a given matrix G ∈ Sn:

min 1
2‖H ◦ (X −G)‖2F + 〈C, X〉

s.t. AEX = bE , X ∈ Sn+ ∩ K ,
(114)
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where H ∈ Sn is a nonnegative weight matrix, AE : Sn → <mE is a linear map, G ∈ Sn, C ∈ Sn
and bE ∈ <mE are given data, K is a nonempty simple closed convex set, e.g., K = {W ∈ Sn : L ≤
W ≤ U} with L,U ∈ Sn being given matrices. In fact, this is also an instance of the general model
of problem (109) with no inequality constraints, QX = H ◦H ◦X and BX = H ◦X. We place this
special example of QSDP here since an extension will be considered next.

Now, let’s consider an interesting variant of the above NCM problem:

min ‖H ◦ (X −G)‖2 + 〈C, X〉
s.t. AEX = bE , X ∈ Sn+ ∩ K .

(115)

Note, in (115), instead of the Frobenius norm, we use the spectral norm. By introducing a slack
variable Y , we can reformulate problem (115) as

min ‖Y ‖2 + 〈C, X〉
s.t. H ◦ (X −G) = Y, AEX = bE , X ∈ Sn+ ∩ K .

(116)

The dual of problem (116) is given by

max −δ∗K(−Z) + 〈H ◦G, Ξ〉+ 〈bE , yE〉
s.t. Z +H ◦ Ξ + S +A∗EyE = C, ‖Ξ‖∗ ≤ 1, S ∈ Sn+ ,

(117)

which is obviously equivalent to the following problem

max −δ∗K(−Z) + 〈H ◦G, Ξ〉+ 〈bE , yE〉
s.t. Z +H ◦ Ξ + S +A∗EyE = C, ‖Γ‖∗ ≤ 1, S ∈ Sn+ ,

D∗Γ−D∗Ξ = 0,

(118)

where D : Sn → Sn is a nonsingular linear operator. Note that Scb-spadmm can not be directly
applied to solve the problem (117) while the equivalent reformulation (118) fits our model nicely.

In our numerical test, matrix Ĝ is the gene correlation matrix from [13]. For testing purpose
we perturb Ĝ to

G := (1− α)Ĝ+ αE,

where α ∈ (0, 1) and E is a randomly generated symmetric matrix with entries in [−1, 1]. We also
set Gii = 1, i = 1, . . . , n. The weight matrix H is generated from a weight matrix H0 used by a
hedge fund company. The matrix H0 is a 93×93 symmetric matrix with all positive entries. It has
about 24% of the entries equal to 10−5 and the rest are distributed in the interval [2, 1.28× 103]. It
has 28 eigenvalues in the interval [−520,−0.04], 11 eigenvalues in the interval [−5×10−13, 2×10−13],
and the rest of 54 eigenvalues in the interval [10−4, 2× 104]. The Matlab code for generating the
matrix H is given by

tmp = kron(ones(25,25),H0); H = tmp(1:n,1:n); H = (H’+H)/2.

The reason for using such a weight matrix is because the resulting problems generated are more
challenging to solve as opposed to a randomly generated weight matrix. Note that the matrices
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Table 1: The performance of Scb-spadmm, Admm, Admmgb on Frobenius norm H-weighted NCM problems

(dual of (114)) (accuracy = 10−6). In the table, “scb” stands for Scb-spadmm and “gb” stands for Admmgb,

respectively. The computation time is in the format of “hours:minutes:seconds”.

iteration ηqsdp ηgap time

problem ns α scb|admm|gb scb|admm|gb scb|admm|gb scb|admm|gb

Lymph 587 0.10 263 | 522 | 696 9.9-7 | 9.9-7 | 9.9-7 -4.4-7 | -4.5-7 | -4.0-7 30 | 53 | 1:23

587 0.05 264 | 356 | 592 9.9-7 | 9.9-7 | 9.9-7 -3.9-7 | -3.4-7 | -3.0-7 29 | 35 | 1:08

ER 692 0.10 268 | 355 | 711 9.9-7 | 9.9-7 | 9.9-7 -5.1-7 | -4.7-7 | -4.2-7 43 | 51 | 1:58

692 0.05 226 | 293 | 603 9.9-7 | 9.9-7 | 9.9-7 -4.2-7 | -3.8-7 | -3.3-7 37 | 43 | 1:54

Arabidopsis 834 0.10 510 | 528 | 725 9.9-7 | 9.9-7 | 9.9-7 -5.9-7 | -5.3-7 | -3.9-7 2:11 | 2:02 | 3:03

834 0.05 444 | 470 | 650 9.9-7 | 9.9-7 | 9.9-7 -5.8-7 | -5.2-7 | -4.8-7 1:51 | 1:43 | 2:44

Leukemia 1255 0.10 292 | 420 | 826 9.9-7 | 9.9-7 | 9.9-7 -5.4-7 | -5.3-7 | -4.4-7 3:13 | 4:11 | 9:13

1255 0.05 251 | 408 | 670 9.9-7 | 9.7-7 | 9.6-7 -5.4-7 | -4.9-7 | -4.0-7 2:48 | 4:03 | 7:35

hereditarybc 1869 0.10 555 | 634 | 871 9.9-7 | 9.9-7 | 9.9-7 -9.1-7 | -9.1-7 | -7.0-7 17:39 | 18:38 | 28:01

1869 0.05 530 | 626 | 839 9.9-7 | 9.9-7 | 9.9-7 -8.7-7 | -8.7-7 | -5.2-7 16:50 | 18:15 | 26:34

G and H are generated in the same way as in [11]. For simplicity, we further set C = 0 and
K = {X ∈ Sn : X ≥ −0.5}.

Generally speaking, there is no widely accepted stopping criterion for spectral norm H-weighted
NCM problem (116). Here, with reference to the general relative residue (108), we measure the
accuracy of an approximate optimal solution (X,Z,Ξ, S, yE) for spectral norm H-weighted NCM
problem problem (115) (equivalently (116)) and its dual (117) (equivalently (118)) by using the
following relative residual derived from the general optimality condition (107):

ηsncm = max{ηP , ηD, ηZ , ηS1 , ηS2 , ηΞ}, (119)

where

ηP =
‖AEX − bE‖

1 + ‖bE‖
, ηD =

‖Z +H ◦ Ξ + S +A∗EyE‖
1 + ‖Z‖+ ‖S‖

, ηZ =
‖X −ΠK(X − Z)‖

1 + ‖X‖+ ‖Z‖
,

ηS1
=

|〈S, X〉|
1 + ‖S‖+ ‖X‖

, ηS2
=
‖X −ΠSn

+
(X)‖

1 + ‖X‖
, ηΞ =

‖Ξ−Π{X∈<n×n :‖X‖∗≤1}(Ξ−H ◦ (X −G)‖
1 + ‖Ξ‖+ ‖H ◦ (X −G)‖

.

Firstly, numerical results for solving F-norm H-weighted NCM problems (115) are reported.
We compare all three algorithms, namely Scb-spadmm, Admm, Admmgb using the relative residue
(113). We terminate the solvers when ηqsdp < 10−6 with the maximum number of iterations set at
25000.

In Table 1, we report detailed numerical results for Scb-spadmm, Admm and Admmgb in
solving various instances of F-norm H-weighted NCM problem. As we can see from Table 1, our
Scb-spadmm is certainly more efficient than the other two algorithms on most of the problems
tested.

The rest of this subsection is devoted to the numerical results of the spectral norm H-weighted
NCM problem (115). As mentioned before, Scb-spadmm is applied to solve the problem (118)
rather than (117). We implemented all the algorithms for solving problem (118) using the relative
residue (119). We terminate the solvers when ηsncm < 10−5 with the maximum number of itera-
tions set at 25000. In Table 2, we report detailed numerical results for Scb-spadmm, Admm and
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Table 2: The performance of Scb-spadmm, Admm, Admmgb on spectral norm H-weighted NCM problem

(118) (accuracy = 10−5). In the table, “scb” stands for Scb-spadmm and “gb” stands for Admmgb,

respectively. The computation time is in the format of “hours:minutes:seconds”.

iteration ηsncm ηgap time

problem ns α scb|admm|gb scb|admm|gb scb|admm|gb scb|admm|gb

Lymph 587 0.10 4110 | 6048 | 7131 9.9-6 | 9.9-6 | 1.0-5 -3.4-5 | -2.8-5 | -2.7-5 13:21 | 17:10 | 21:43

587 0.05 5001 | 7401 | 8101 9.8-6 | 9.9-6 | 9.9-6 -2.0-5 | -2.3-5 | -8.1-6 19:41 | 21:25 | 25:13

ER 692 0.10 3251 | 4844 | 6478 9.9-6 | 9.9-6 | 1.0-5 -3.1-5 | -2.6-5 | -6.0-6 15:06 | 19:30 | 28:03

692 0.05 4201 | 5851 | 7548 9.3-6 | 9.8-6 | 1.0-5 -3.5-5 | -2.9-5 | -3.4-5 18:44 | 23:46 | 32:57

Arabidopsis 834 0.10 3344 | 6251 | 7965 9.9-6 | 9.7-6 | 1.0-5 -3.8-5 | -2.0-5 | -3.7-5 23:20 | 40:12 | 54:31

834 0.05 2496 | 3101 | 3231 9.9-6 | 9.9-6 | 1.0-5 -9.1-5 | -4.3-5 | -5.3-5 17:03 | 19:53 | 21:56

Leukemia 1255 0.10 4351 | 6102 | 7301 9.9-6 | 9.9-6 | 1.0-5 -3.7-5 | -3.3-5 | -3.0-5 1:22:42 | 1:49:02 | 2:16:52

1255 0.05 3957 | 5851 | 10151 9.9-6 | 9.7-6 | 9.5-6 -7.2-5 | -5.7-5 | -1.1-5 1:18:19 | 1:44:47 | 3:26:08

Table 3: The performance of Ladmm, Ladmmgb on spectral norm H-weighted NCM problem(117) (ac-

curacy = 10−5). In the table, “lgb” stands for Ladmmgb. The computation time is in the format of

“hours:minutes:seconds”.

iteration ηsncm ηgap time

problem ns α ladmm|lgb ladmm|lgb ladmm|lgb ladmm|lgb
Lymph 587 0.10 8401 | 25000 9.9-6 | 1.4-5 -1.6-5 | -2.1-5 23:59 | 1:22:58

Lymph 587 0.05 13609 | 25000 9.9-6 | 2.3-5 -1.6-5 | -4.2-5 39:29 | 1:18:50

Admmgb in solving various instances of spectral norm H-weighted NCM problem. As we can see
from Table 2, our Scb-spadmm is much more efficient than the other two algorithms.

Observe that although there is no convergence guarantee, one may still apply the directly
extended Admm with 4 blocks to the original dual problem (117) by adding a proximal term for
the Ξ part. We call this method Ladmm. Moreover, by using the same proximal strategy for Ξ,
a convergent linearized alternating direction method with a Gausssian back substitution proposed
in [10] (we call the method Ladmmgb here and use the parameter α = 0.99 in the Gasussian back
substitution step) can also be applied to the original problem (117). We have also implemented
Ladmm and Ladmmgb in Matlab. Our experiments show that solving the problem (117) directly
is much slower than solving the equivalent problem (118). Thus, the reformulation of (117) to (118)
is in fact advantageous for both Admm and Admmgb. In Table 3, for the purpose of illustration
we list a couple of detailed numerical results on the performance of Ladmm and Ladmmgb.

5 Conclusions

In this paper, we have proposed a Schur complement based convergent yet efficient semi-proximal
ADMM for solving convex programming problems, with a coupling linear equality constraint, whose
objective function is the sum of two proper closed convex functions plus an arbitrary number of
convex quadratic or linear functions. The ability of dealing with an arbitrary number of convex
quadratic or linear functions in the objective function makes the proposed algorithm very flexible in
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solving various multi-block convex optimization problems. By conducting numerical experiments
on QSDP and its extensions, we have presented convincing numerical results to demonstrate the
superior performance of our proposed SCB-SPADMM. As mentioned in the introduction, our pri-
mary motivation of introducing this SCB-SPADMM is to quickly generate a good initial point so
as to warm-start methods which have fast local convergence properties. For standard linear SDP
and linear SDP with doubly nonnegative constraints, this has already been done by Zhao, Sun and
Toh in [22] and Yang, Sun and Toh in [21], respectively. Naturally, our next target is to extend
the approach of [22, 21] to solve QSDP with an initial point generated by SCB-SPADMM. We will
report our corresponding findings in subsequent works.
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Table 4: The performance of Scb-spadmm, Admm, Admmgb on QSDP-θ+,
QSDP-QAP, QSDP-BIQ and QSDP-RCP problems (accuracy = 10−6). In the
table, “scb” stands for Scb-spadmmand “gb” stands for Admmgb, respectively.
The computation time is in the format of “hours:minutes:seconds”.

iteration ηqsdp ηgap time

problem mE ;ns rank(B) scb|admm|gb scb|admm|gb scb|admm|gb scb|admm|gb
theta6 4375 ; 300 10 311 | 407 | 549 7.9-7 | 9.7-7 | 9.9-7 2.1-6 | -1.6-6 | -6.2-7 08 | 09 | 14

theta62 13390 ; 300 10 153 | 196 | 229 9.6-7 | 9.9-7 | 9.6-7 -1.1-7 | 9.6-8 | -4.5-7 04 | 05 | 06

theta8 7905 ; 400 10 314 | 384 | 616 9.5-7 | 9.6-7 | 9.5-7 2.7-6 | -1.3-6 | -5.4-7 17 | 18 | 33

theta82 23872 ; 400 10 158 | 179 | 234 9.5-7 | 9.7-7 | 9.9-7 -3.7-8 | -2.8-7 | -8.2-7 10 | 09 | 13

theta83 39862 ; 400 10 200 | 177 | 219 9.3-7 | 9.6-7 | 9.4-7 6.2-9 | 1.4-7 | -1.2-7 11 | 09 | 14

theta10 12470 ; 500 10 329 | 439 | 614 9.0-7 | 8.5-7 | 9.7-7 -2.5-6 | 1.5-6 | 5.8-7 27 | 33 | 50

theta102 37467 ; 500 10 150 | 187 | 235 8.7-7 | 9.4-7 | 9.9-7 6.4-7 | 2.9-7 | -9.3-7 15 | 15 | 21

theta103 62516 ; 500 10 202 | 184 | 222 9.8-7 | 9.5-7 | 9.9-7 -4.2-8 | 6.9-8 | -1.6-7 20 | 15 | 21

theta104 87245 ; 500 10 181 | 181 | 242 9.4-7 | 9.5-7 | 9.9-7 6.9-8 | 2.0-7 | -2.8-7 20 | 15 | 23

theta12 17979 ; 600 10 343 | 441 | 703 9.9-7 | 8.3-7 | 9.9-7 3.0-6 | 1.4-6 | -8.8-7 42 | 48 | 1:27

theta123 90020 ; 600 10 204 | 205 | 213 9.7-7 | 9.8-7 | 9.9-7 -9.1-8 | 6.6-8 | -1.9-7 29 | 25 | 31

san200-0.7-1 5971 ; 200 10 2150 | 4758 | 5172 9.8-7 | 9.9-7 | 9.9-7 5.1-6 | 2.0-6 | -3.5-6 15 | 26 | 36

sanr200-0.7 6033 ; 200 10 177 | 223 | 280 9.6-7 | 9.7-7 | 9.7-7 1.9-7 | -6.0-8 | 1.7-8 02 | 02 | 03

c-fat200-1 18367 ; 200 10 2257 | 3027 | 3268 9.9-7 | 9.7-7 | 9.9-7 -2.6-6 | -2.0-6 | -2.2-6 24 | 26 | 35

hamming-8-4 11777 ; 256 10 2820 | 2945 | 3517 9.9-7 | 9.9-7 | 9.9-7 -6.0-7 | -6.4-7 | -1.1-6 53 | 49 | 1:09

hamming-9-8 2305 ; 512 10 3891 | 4980 | 5577 9.9-7 | 9.9-7 | 9.9-7 -3.4-6 | -5.8-7 | 9.9-7 3:54 | 4:12 | 5:50

hamming-8-3-4 16129 ; 256 10 202 | 220 | 294 4.8-7 | 8.9-7 | 9.8-7 4.5-6 | 5.9-7 | 2.2-7 04 | 04 | 06

hamming-9-5-6 53761 ; 512 10 436 | 535 | 684 8.5-7 | 8.7-7 | 9.6-7 1.1-5 | -1.7-6 | -1.6-7 36 | 37 | 57

brock200-1 5067 ; 200 10 198 | 210 | 291 9.7-7 | 9.4-7 | 9.8-7 9.9-8 | -2.9-7 | -6.9-10 02 | 02 | 03

brock200-4 6812 ; 200 10 209 | 186 | 263 9.8-7 | 9.9-7 | 9.8-7 1.2-7 | -2.6-9 | -1.1-7 03 | 02 | 03

brock400-1 20078 ; 400 10 168 | 217 | 275 9.0-7 | 9.6-7 | 9.7-7 8.6-7 | -4.9-8 | 6.2-9 11 | 10 | 15

keller4 5101 ; 171 10 669 | 909 | 963 9.9-7 | 9.9-7 | 9.9-7 -1.3-8 | 4.6-9 | -8.4-8 06 | 07 | 09

p-hat300-1 33918 ; 300 10 468 | 829 | 2501 9.9-7 | 9.9-7 | 8.3-7 -8.7-7 | 2.1-7 | -1.0-6 14 | 20 | 1:09

be250.1 251 ; 251 10 4126 | 7439 | 25000 9.6-7 | 9.9-7 | 1.3-6 -5.8-7 | -8.6-7 | -1.3-8 59 | 1:27 | 5:41

be250.2 251 ; 251 10 3604 | 6504 | 16322 9.8-7 | 9.9-7 | 9.9-7 -4.9-7 | -6.8-7 | -7.4-9 52 | 1:18 | 3:40

be250.3 251 ; 251 10 3562 | 5712 | 8501 9.9-7 | 9.9-7 | 9.7-7 -9.2-7 | -9.4-7 | 9.3-7 52 | 1:08 | 1:57

be250.4 251 ; 251 10 4072 | 7668 | 25000 9.9-7 | 9.9-7 | 1.4-6 -2.1-6 | 2.8-6 | -9.4-9 57 | 1:32 | 5:41

be250.5 251 ; 251 10 3210 | 4635 | 7406 9.9-7 | 9.9-7 | 9.9-7 -8.6-7 | -8.8-7 | 1.4-6 46 | 55 | 1:41

be250.6 251 ; 251 10 3250 | 5580 | 9812 9.9-7 | 9.9-7 | 9.9-7 -2.8-7 | -3.1-7 | -3.6-7 46 | 1:05 | 2:10

be250.7 251 ; 251 10 3699 | 6562 | 13501 9.9-7 | 9.9-7 | 9.9-7 -6.5-7 | -3.8-7 | 5.4-9 52 | 1:17 | 3:03

be250.8 251 ; 251 10 3507 | 4712 | 7701 9.9-7 | 9.9-7 | 9.6-7 -9.7-7 | -1.0-6 | 5.1-7 50 | 56 | 1:43

be250.9 251 ; 251 10 3678 | 7292 | 21001 9.9-7 | 9.9-7 | 9.9-7 -4.1-7 | -7.2-7 | -1.2-8 53 | 1:28 | 4:57

be250.10 251 ; 251 10 3305 | 5752 | 10500 9.9-7 | 9.9-7 | 9.9-7 -1.1-6 | -8.2-7 | -3.7-8 49 | 1:06 | 2:19
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Table 4: The performance of Scb-spadmm, Admm, Admmgb on QSDP-θ+,
QSDP-QAP, QSDP-BIQ and QSDP-RCP problems (accuracy = 10−6). In the
table, “scb” stands for Scb-spadmmand “gb” stands for Admmgb, respectively.
The computation time is in the format of “hours:minutes:seconds”.

iteration ηqsdp ηgap time

problem mE ;ns rank(B) scb|admm|gb scb|admm|gb scb|admm|gb scb|admm|gb
bqp100-1 101 ; 101 10 1376 | 2134 | 3067 9.9-7 | 9.9-7 | 9.9-7 2.6-7 | -1.9-7 | -5.1-7 05 | 06 | 10

bqp100-2 101 ; 101 10 3109 | 4319 | 7107 9.9-7 | 9.9-7 | 9.9-7 -1.8-7 | -7.2-7 | -5.3-7 10 | 13 | 22

bqp100-3 101 ; 101 10 1751 | 2371 | 6276 9.9-7 | 9.9-7 | 9.9-7 -2.7-6 | -3.1-6 | 4.7-7 06 | 06 | 20

bqp100-4 101 ; 101 10 2646 | 3986 | 13901 9.9-7 | 9.9-7 | 9.1-7 -4.0-7 | -6.6-7 | -3.3-8 09 | 11 | 45

bqp100-5 101 ; 101 10 1979 | 3001 | 6901 9.9-7 | 9.9-7 | 9.7-7 -3.7-7 | -1.5-7 | 1.7-8 07 | 08 | 22

bqp100-6 101 ; 101 10 1316 | 2083 | 2937 9.4-7 | 9.9-7 | 9.9-7 1.1-7 | 3.3-7 | -9.5-7 05 | 06 | 11

bqp100-7 101 ; 101 10 1787 | 2341 | 3664 9.9-7 | 9.9-7 | 9.9-7 -5.5-7 | -5.1-7 | -1.3-6 06 | 06 | 12

bqp100-8 101 ; 101 10 1820 | 3337 | 9612 9.9-7 | 9.9-7 | 9.9-7 7.3-7 | 8.9-8 | 1.1-8 06 | 09 | 32

bqp100-9 101 ; 101 10 1948 | 4146 | 15901 9.9-7 | 9.9-7 | 9.9-7 -2.2-6 | -6.7-7 | 2.6-9 07 | 11 | 52

bqp100-10 101 ; 101 10 3207 | 5077 | 12101 9.9-7 | 9.9-7 | 9.9-7 8.0-8 | 4.3-7 | 2.7-8 10 | 15 | 38

bqp250-1 251 ; 251 10 3931 | 5941 | 11758 9.6-7 | 9.9-7 | 9.9-7 -1.2-6 | -1.5-6 | 1.2-7 57 | 1:10 | 2:39

bqp250-2 251 ; 251 10 4007 | 5774 | 9704 9.5-7 | 9.9-7 | 9.9-7 -6.6-7 | -2.3-7 | -1.2-6 57 | 1:07 | 2:11

bqp250-3 251 ; 251 10 4112 | 5708 | 12202 9.9-7 | 9.9-7 | 9.9-7 -3.9-6 | 3.8-8 | 3.0-6 57 | 1:05 | 2:40

bqp250-4 251 ; 251 10 3158 | 4290 | 9671 9.9-7 | 9.9-7 | 9.9-7 -5.5-7 | -2.4-6 | 4.5-6 45 | 52 | 2:13

bqp250-5 251 ; 251 10 4430 | 7349 | 22802 9.9-7 | 9.9-7 | 9.9-7 -2.0-6 | 3.6-6 | -1.3-8 1:02 | 1:29 | 5:13

bqp250-6 251 ; 251 10 2871 | 5122 | 7801 9.9-7 | 9.9-7 | 9.9-7 -1.2-6 | -1.3-6 | -2.5-7 42 | 1:01 | 1:47

bqp250-7 251 ; 251 10 3991 | 5570 | 11508 9.9-7 | 9.9-7 | 9.9-7 -2.2-6 | -2.0-6 | -2.7-6 57 | 1:04 | 2:31

bqp250-8 251 ; 251 10 2882 | 4008 | 5501 9.9-7 | 9.8-7 | 9.8-7 -2.0-7 | -7.1-7 | -1.0-6 40 | 45 | 1:14

bqp250-9 251 ; 251 10 4127 | 6279 | 11998 9.7-7 | 9.9-7 | 9.9-7 -5.1-7 | -3.9-7 | 3.8-6 58 | 1:11 | 2:38

bqp250-10 251 ; 251 10 3044 | 4185 | 7986 9.9-7 | 9.9-7 | 9.9-7 -9.3-7 | -7.5-7 | -2.5-6 43 | 48 | 1:43

bqp500-1 501 ; 501 10 6003 | 8391 | 13416 9.9-7 | 9.9-7 | 9.9-7 -3.9-7 | -7.3-7 | -5.4-7 6:01 | 7:05 | 13:34

bqp500-2 501 ; 501 10 6601 | 10203 | 25000 9.7-7 | 9.9-7 | 3.4-6 -4.2-7 | -1.2-7 | 1.8-5 6:52 | 8:43 | 25:23

bqp500-3 501 ; 501 10 7450 | 10517 | 21140 9.9-7 | 9.9-7 | 9.9-7 7.6-7 | -4.3-6 | 1.1-6 7:31 | 8:46 | 21:10

bqp500-4 501 ; 501 10 7035 | 9903 | 23551 9.6-7 | 9.9-7 | 9.9-7 -3.3-7 | -1.3-6 | 2.6-6 7:08 | 8:12 | 23:36

bqp500-5 501 ; 501 10 6164 | 8406 | 20533 9.9-7 | 9.9-7 | 9.9-7 -8.8-7 | -4.8-7 | 2.8-6 6:30 | 7:04 | 20:37

bqp500-6 501 ; 501 10 6905 | 8659 | 25000 9.8-7 | 9.9-7 | 1.4-4 -3.8-7 | -1.5-6 | -1.8-4 7:13 | 7:30 | 25:44

bqp500-7 501 ; 501 10 6587 | 9038 | 18072 9.9-7 | 9.9-7 | 9.9-7 -6.8-7 | 2.5-7 | 2.8-6 6:41 | 7:39 | 18:13

bqp500-8 501 ; 501 10 6300 | 8832 | 16496 9.9-7 | 9.9-7 | 9.9-7 1.3-6 | -1.6-6 | 5.8-6 6:24 | 7:17 | 16:20

bqp500-9 501 ; 501 10 6532 | 9015 | 18065 9.9-7 | 9.9-7 | 9.9-7 9.9-7 | -6.5-7 | -3.5-6 6:39 | 7:37 | 18:10

bqp500-10 501 ; 501 10 7199 | 9787 | 24119 9.9-7 | 9.9-7 | 9.9-7 -1.9-6 | 2.1-6 | -2.3-6 7:09 | 8:12 | 24:15

gka1d 101 ; 101 10 1600 | 2266 | 4068 9.8-7 | 9.9-7 | 9.7-7 -4.2-7 | -8.8-7 | 7.4-7 06 | 06 | 13

gka2d 101 ; 101 10 1903 | 3097 | 5601 9.9-7 | 9.9-7 | 9.3-7 -5.9-7 | -2.4-7 | -3.8-8 07 | 09 | 21

gka3d 101 ; 101 10 2431 | 3101 | 5618 9.9-7 | 9.9-7 | 9.9-7 -2.6-7 | -3.8-7 | 1.7-8 08 | 09 | 19
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Table 4: The performance of Scb-spadmm, Admm, Admmgb on QSDP-θ+,
QSDP-QAP, QSDP-BIQ and QSDP-RCP problems (accuracy = 10−6). In the
table, “scb” stands for Scb-spadmmand “gb” stands for Admmgb, respectively.
The computation time is in the format of “hours:minutes:seconds”.

iteration ηqsdp ηgap time

problem mE ;ns rank(B) scb|admm|gb scb|admm|gb scb|admm|gb scb|admm|gb
gka4d 101 ; 101 10 2266 | 2787 | 6632 9.9-7 | 9.9-7 | 9.9-7 2.3-7 | -4.4-7 | -1.9-8 08 | 09 | 22

soybean-large-2 308 ; 307 10 1267 | 1717 | 11208 9.9-7 | 9.9-7 | 9.9-7 -5.8-8 | -6.5-8 | -7.9-8 20 | 23 | 2:55

soybean-large-3 308 ; 307 10 936 | 1362 | 9261 8.3-7 | 9.1-7 | 9.8-7 -5.1-8 | -5.7-8 | -1.7-8 17 | 17 | 2:29

soybean-large-4 308 ; 307 10 1681 | 2132 | 13401 9.9-7 | 9.9-7 | 9.9-7 -1.0-7 | -1.0-7 | -4.3-8 29 | 28 | 3:49

soybean-large-5 308 ; 307 10 834 | 1229 | 3937 9.9-7 | 9.9-7 | 9.9-7 -3.2-8 | -1.9-8 | -2.3-8 14 | 18 | 1:08

soybean-large-6 308 ; 307 10 310 | 475 | 707 9.4-7 | 8.9-7 | 8.3-7 -8.1-8 | -5.8-8 | -1.5-7 05 | 06 | 12

soybean-large-7 308 ; 307 10 1028 | 1327 | 3970 9.9-7 | 9.9-7 | 9.9-7 -3.6-8 | -6.3-8 | -1.8-8 19 | 20 | 1:12

soybean-large-8 308 ; 307 10 782 | 1091 | 2901 9.8-7 | 9.9-7 | 8.9-7 -3.7-8 | -4.5-8 | -1.0-8 14 | 15 | 51

soybean-large-9 308 ; 307 10 928 | 1187 | 4901 9.8-7 | 9.8-7 | 9.9-7 1.1-7 | -6.0-8 | -1.7-8 17 | 19 | 1:26

soybean-large-10 308 ; 307 10 309 | 489 | 518 9.9-7 | 9.9-7 | 9.7-7 2.0-7 | 3.1-7 | 1.4-7 06 | 07 | 09

soybean-large-11 308 ; 307 10 877 | 1605 | 1755 9.9-7 | 8.6-7 | 9.5-7 -2.2-7 | 3.5-7 | -2.6-7 17 | 23 | 32

spambase-small-2 301 ; 300 10 409 | 610 | 2792 8.8-7 | 9.5-7 | 9.0-7 -3.1-7 | -3.9-7 | -1.1-6 06 | 07 | 40

spambase-small-3 301 ; 300 10 476 | 665 | 1201 9.6-7 | 9.9-7 | 9.6-7 7.8-9 | -3.7-8 | -3.3-8 09 | 08 | 17

spambase-small-4 301 ; 300 10 1305 | 1983 | 6073 9.9-7 | 9.9-7 | 9.9-7 -4.5-9 | 6.6-9 | -1.7-8 20 | 28 | 1:36

spambase-small-5 301 ; 300 10 608 | 819 | 868 8.5-7 | 9.8-7 | 9.9-7 -7.3-7 | -2.7-7 | -1.4-7 11 | 11 | 14

spambase-small-6 301 ; 300 10 811 | 1198 | 1334 9.9-7 | 9.9-7 | 9.9-7 -1.5-7 | -2.0-7 | -1.3-7 14 | 17 | 23

spambase-small-7 301 ; 300 10 849 | 1240 | 1359 9.9-7 | 9.9-7 | 9.9-7 4.0-7 | 2.8-7 | 1.8-7 15 | 18 | 25

spambase-small-8 301 ; 300 10 1109 | 1244 | 1501 9.9-7 | 9.9-7 | 8.8-7 7.1-8 | 9.3-8 | 7.6-8 20 | 18 | 27

spambase-small-9 301 ; 300 10 1090 | 1415 | 1440 9.9-7 | 9.7-7 | 9.9-7 -1.7-7 | 2.9-8 | -1.3-8 20 | 21 | 27

spambase-small-10 301 ; 300 10 1081 | 1341 | 1500 9.9-7 | 9.9-7 | 9.9-7 1.7-7 | 1.5-7 | -1.5-7 20 | 22 | 27

spambase-small-11 301 ; 300 10 1319 | 1482 | 1653 9.9-7 | 9.9-7 | 9.9-7 -3.6-7 | -8.3-7 | -5.8-7 25 | 25 | 31

spambase-medium-2 901 ; 900 10 471 | 596 | 1201 9.9-7 | 9.9-7 | 8.9-7 -1.6-6 | -1.3-6 | -1.9-6 1:42 | 1:37 | 4:01

spambase-medium-3 901 ; 900 10 1205 | 1582 | 11000 9.9-7 | 9.9-7 | 9.9-7 -2.0-7 | -1.8-7 | -2.2-7 4:18 | 4:16 | 36:54

spambase-medium-4 901 ; 900 10 2560 | 2990 | 4045 9.7-7 | 9.8-7 | 9.9-7 -2.3-6 | 2.5-6 | 1.1-6 9:06 | 8:04 | 13:37

spambase-medium-5 901 ; 900 10 1414 | 1900 | 2901 9.9-7 | 9.9-7 | 9.0-7 7.4-8 | 3.8-8 | -1.1-6 5:06 | 5:17 | 9:58

spambase-medium-6 901 ; 900 10 1607 | 2107 | 2698 9.9-7 | 9.9-7 | 9.9-7 -1.0-8 | 3.7-8 | -1.3-6 6:01 | 6:16 | 9:25

spambase-medium-7 901 ; 900 10 1805 | 2508 | 2846 9.9-7 | 9.9-7 | 9.9-7 -8.7-8 | -4.5-8 | -1.4-6 6:55 | 7:36 | 10:00

spambase-medium-8 901 ; 900 10 1655 | 2309 | 2489 9.9-7 | 9.9-7 | 9.9-7 -2.6-8 | -6.7-8 | 4.6-7 6:19 | 6:54 | 8:47

spambase-medium-9 901 ; 900 10 1683 | 2330 | 2687 9.9-7 | 9.9-7 | 9.9-7 2.6-8 | -5.9-8 | 2.2-8 6:23 | 6:56 | 9:38

spambase-medium-10 901 ; 900 10 1641 | 2030 | 2617 9.9-7 | 9.9-7 | 9.8-7 -6.5-7 | -4.7-7 | 1.9-6 6:11 | 5:59 | 9:22

spambase-medium-11 901 ; 900 10 1608 | 1838 | 3210 9.9-7 | 9.9-7 | 9.9-7 -5.0-7 | 5.4-7 | 9.0-7 6:06 | 5:20 | 11:21

abalone-medium-2 401 ; 400 10 500 | 682 | 1301 9.9-7 | 9.9-7 | 8.5-7 -7.4-8 | 5.8-8 | 3.4-8 16 | 17 | 40

abalone-medium-3 401 ; 400 10 715 | 1011 | 1679 9.9-7 | 9.9-7 | 9.9-7 -2.5-9 | 1.3-8 | -1.1-8 24 | 28 | 56
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Table 4: The performance of Scb-spadmm, Admm, Admmgb on QSDP-θ+,
QSDP-QAP, QSDP-BIQ and QSDP-RCP problems (accuracy = 10−6). In the
table, “scb” stands for Scb-spadmmand “gb” stands for Admmgb, respectively.
The computation time is in the format of “hours:minutes:seconds”.

iteration ηqsdp ηgap time

problem mE ;ns rank(B) scb|admm|gb scb|admm|gb scb|admm|gb scb|admm|gb
abalone-medium-4 401 ; 400 10 372 | 626 | 684 9.9-7 | 9.9-7 | 9.9-7 -5.3-8 | 3.6-9 | 6.3-9 12 | 16 | 24

abalone-medium-5 401 ; 400 10 524 | 779 | 942 9.9-7 | 9.9-7 | 9.9-7 -3.8-8 | -1.4-7 | -9.6-8 18 | 21 | 32

abalone-medium-6 401 ; 400 10 536 | 946 | 1162 9.7-7 | 9.9-7 | 9.9-7 -1.3-7 | -2.3-7 | -1.8-7 22 | 27 | 38

abalone-medium-7 401 ; 400 10 1046 | 1676 | 2013 9.9-7 | 9.9-7 | 9.9-7 -8.9-8 | -4.2-8 | -3.3-8 37 | 47 | 1:09

abalone-medium-8 401 ; 400 10 745 | 1123 | 1641 9.6-7 | 9.7-7 | 9.9-7 -3.9-8 | -2.2-7 | -9.1-8 27 | 32 | 55

abalone-medium-9 401 ; 400 10 1035 | 1504 | 1709 9.9-7 | 9.5-7 | 9.9-7 -8.3-8 | 7.1-8 | -1.2-8 38 | 43 | 1:02

abalone-medium-10 401 ; 400 10 1349 | 1803 | 1904 9.9-7 | 9.4-7 | 9.8-7 -1.7-7 | -2.0-7 | -2.2-7 49 | 51 | 1:07

abalone-medium-11 401 ; 400 10 1066 | 1504 | 1704 9.9-7 | 9.7-7 | 9.5-7 -1.1-7 | -1.6-7 | -1.6-7 40 | 45 | 1:02

abalone-large-2 1001 ; 1000 10 594 | 734 | 909 9.9-7 | 9.8-7 | 9.9-7 4.6-7 | 4.5-7 | 1.3-7 3:16 | 2:35 | 3:54

abalone-large-3 1001 ; 1000 10 656 | 1014 | 1901 9.9-7 | 9.9-7 | 9.9-7 -1.4-8 | -7.2-8 | -4.4-8 3:03 | 3:37 | 8:20

abalone-large-4 1001 ; 1000 10 505 | 749 | 995 9.9-7 | 9.9-7 | 9.8-7 -1.3-9 | -1.6-8 | -6.6-8 2:42 | 2:39 | 4:24

abalone-large-5 1001 ; 1000 10 752 | 1187 | 1550 9.8-7 | 9.9-7 | 9.9-7 -6.8-8 | -1.8-7 | -1.2-7 4:11 | 4:16 | 6:53

abalone-large-6 1001 ; 1000 10 886 | 1364 | 1670 9.9-7 | 9.9-7 | 9.9-7 -9.5-8 | -1.1-7 | -1.2-7 4:09 | 4:56 | 7:27

abalone-large-7 1001 ; 1000 10 1206 | 1614 | 2251 9.9-7 | 9.9-7 | 9.9-7 -1.1-7 | 1.8-8 | -7.5-8 5:40 | 5:47 | 9:59

abalone-large-8 1001 ; 1000 10 1092 | 1721 | 2046 9.9-7 | 9.9-7 | 9.9-7 -3.1-7 | -1.8-7 | -2.9-7 5:08 | 6:14 | 9:07

abalone-large-9 1001 ; 1000 10 1557 | 2407 | 2746 9.8-7 | 9.9-7 | 9.9-7 -3.8-7 | -3.5-7 | -2.8-7 8:30 | 8:47 | 12:15

abalone-large-10 1001 ; 1000 10 1682 | 2488 | 2821 9.9-7 | 9.9-7 | 9.9-7 -1.6-7 | -2.6-7 | -2.5-7 8:00 | 9:06 | 12:39

abalone-large-11 1001 ; 1000 10 1923 | 3005 | 3723 9.8-7 | 9.9-7 | 9.9-7 1.3-7 | 3.6-8 | -3.5-8 9:17 | 11:00 | 16:39

segment-medium-2 701 ; 700 10 1016 | 1541 | 1880 9.7-7 | 9.8-7 | 9.9-7 1.3-6 | -1.1-6 | 2.5-7 2:07 | 2:13 | 3:26

segment-medium-3 701 ; 700 10 713 | 714 | 1801 9.4-7 | 9.5-7 | 9.2-7 -4.0-7 | -9.7-7 | -8.7-7 1:24 | 1:03 | 3:20

segment-medium-4 701 ; 700 10 2282 | 2710 | 17881 9.9-7 | 9.9-7 | 9.9-7 -7.1-8 | -6.5-8 | -6.5-8 4:30 | 4:25 | 34:11

segment-medium-5 701 ; 700 10 2322 | 3100 | 18701 9.9-7 | 9.9-7 | 9.9-7 -1.2-7 | -9.5-8 | -7.3-8 4:40 | 5:02 | 35:56

segment-medium-6 701 ; 700 10 2966 | 3916 | 25000 9.9-7 | 9.9-7 | 1.4-6 -1.7-7 | -1.4-7 | -1.3-7 6:12 | 6:29 | 51:26

segment-medium-7 701 ; 700 10 3185 | 4268 | 25000 9.9-7 | 9.9-7 | 1.6-6 -1.7-7 | -1.7-7 | -1.6-7 7:03 | 7:34 | 53:28

segment-medium-8 701 ; 700 10 2998 | 4140 | 25000 9.9-7 | 9.9-7 | 1.1-6 -1.6-7 | -1.7-7 | -6.7-8 6:28 | 7:09 | 52:54

segment-medium-9 701 ; 700 10 2123 | 2635 | 8801 9.9-7 | 9.9-7 | 9.9-7 -1.9-7 | -3.0-8 | -4.3-8 4:32 | 4:25 | 18:04

segment-medium-10 701 ; 700 10 1695 | 2414 | 6101 9.9-7 | 9.9-7 | 9.8-7 -2.4-7 | -1.2-7 | -2.2-8 3:35 | 4:07 | 12:27

segment-medium-11 701 ; 700 10 1454 | 2437 | 2101 9.4-7 | 9.7-7 | 8.6-7 6.4-8 | -6.3-7 | -1.5-7 3:01 | 4:00 | 4:13

segment-large-2 1001 ; 1000 10 1348 | 1823 | 2038 9.6-7 | 9.9-7 | 9.9-7 -1.3-6 | -1.3-6 | -1.4-6 6:30 | 6:15 | 8:40

segment-large-3 1001 ; 1000 10 479 | 533 | 1601 9.9-7 | 9.9-7 | 8.7-7 -4.0-7 | -1.0-6 | -4.4-7 2:10 | 1:53 | 6:49

segment-large-4 1001 ; 1000 10 2157 | 2802 | 20226 9.9-7 | 9.9-7 | 9.9-7 -9.1-8 | -9.5-8 | -7.1-8 9:57 | 9:57 | 1:27:58

segment-large-5 1001 ; 1000 10 2618 | 3404 | 25000 9.9-7 | 9.9-7 | 1.0-6 -1.1-7 | -9.3-8 | -8.3-8 12:13 | 12:12 | 1:50:29

segment-large-6 1001 ; 1000 10 3236 | 4143 | 25000 9.9-7 | 9.9-7 | 1.4-6 -1.8-7 | -1.8-7 | -1.2-7 15:28 | 15:20 | 1:52:58
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Table 4: The performance of Scb-spadmm, Admm, Admmgb on QSDP-θ+,
QSDP-QAP, QSDP-BIQ and QSDP-RCP problems (accuracy = 10−6). In the
table, “scb” stands for Scb-spadmmand “gb” stands for Admmgb, respectively.
The computation time is in the format of “hours:minutes:seconds”.

iteration ηqsdp ηgap time

problem mE ;ns rank(B) scb|admm|gb scb|admm|gb scb|admm|gb scb|admm|gb
segment-large-7 1001 ; 1000 10 3505 | 4318 | 25000 9.9-7 | 9.9-7 | 1.8-6 -1.8-7 | -1.7-7 | -1.9-7 17:07 | 16:39 | 1:56:00

segment-large-8 1001 ; 1000 10 3063 | 3749 | 25000 9.9-7 | 9.9-7 | 1.2-6 -9.3-8 | -7.8-8 | -1.0-7 14:55 | 14:18 | 1:56:05

segment-large-9 1001 ; 1000 10 2497 | 3248 | 15649 9.9-7 | 9.9-7 | 9.9-7 -1.4-7 | -1.2-7 | -5.1-8 12:05 | 13:16 | 1:11:25

segment-large-10 1001 ; 1000 10 1723 | 2226 | 4901 9.9-7 | 9.9-7 | 9.9-7 7.4-9 | 1.4-8 | -2.1-8 8:00 | 8:12 | 21:45

segment-large-11 1001 ; 1000 10 1571 | 2331 | 3417 9.9-7 | 9.7-7 | 9.9-7 1.9-7 | -5.1-7 | -1.7-8 7:20 | 8:30 | 15:23

housing-2 507 ; 506 10 3183 | 5358 | 4689 9.4-7 | 9.7-7 | 9.7-7 -1.9-7 | 1.8-7 | 2.0-7 2:54 | 3:22 | 3:48

housing-3 507 ; 506 10 845 | 1970 | 1714 9.9-7 | 9.9-7 | 9.9-7 -1.5-7 | 1.2-7 | -2.2-8 48 | 1:16 | 1:24

housing-4 507 ; 506 10 805 | 1742 | 2057 9.4-7 | 9.9-7 | 9.9-7 -2.5-8 | -4.8-8 | -3.4-8 45 | 1:09 | 1:45

housing-5 507 ; 506 10 874 | 1262 | 1774 9.9-7 | 9.9-7 | 9.9-7 2.4-7 | -2.3-7 | -2.6-7 1:10 | 1:14 | 3:08

housing-6 507 ; 506 10 586 | 826 | 1005 9.9-7 | 9.9-7 | 9.9-7 -1.9-8 | 2.9-9 | -8.6-8 1:41 | 1:26 | 1:39

housing-7 507 ; 506 10 583 | 906 | 1069 9.9-7 | 9.9-7 | 9.9-7 -1.3-7 | -2.7-7 | -1.7-7 32 | 37 | 56

housing-8 507 ; 506 10 682 | 904 | 1074 9.9-7 | 9.3-7 | 9.9-7 -1.1-7 | -6.9-9 | -6.6-8 39 | 38 | 59

housing-9 507 ; 506 10 765 | 1208 | 1590 8.5-7 | 9.9-7 | 9.8-7 -1.5-7 | -1.3-8 | 8.5-8 44 | 53 | 1:26

housing-10 507 ; 506 10 1027 | 1381 | 1541 9.9-7 | 9.9-7 | 9.9-7 -6.4-8 | -1.6-7 | -1.0-7 58 | 1:02 | 1:27

housing-11 507 ; 506 10 867 | 1327 | 1359 9.9-7 | 9.9-7 | 9.9-7 -1.0-7 | -9.0-8 | -9.2-8 49 | 1:01 | 1:19
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