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Abstract

We study the uniqueness of minimal liftings of cut-generating functions obtained from
maximal lattice-free polyhedra. We prove a basic invariance property of unique minimal
liftings for general maximal lattice-free polyhedra. This generalizes a previous result by
Basu, Cornuéjols and Köppe [BCK12] for simplicial maximal lattice-free polytopes, thus
completely settling this fundamental question about lifting for maximal lattice-free poly-
hedra. We further give a very general iterative construction to get maximal lattice-free
polyhedra with the unique-lifting property in arbitrary dimensions. This single construc-
tion not only obtains all previously known polyhedra with the unique-lifting property,
but goes further and vastly expands the known list of such polyhedra. Finally, we ex-
tend characterizations from [BCK12] about lifting with respect to maximal lattice-free
simplices to more general polytopes. These nontrivial generalizations rely on a number
of results from discrete geometry, including the Venkov-Alexandrov-McMullen theorem
on translative tilings and characterizations of zonotopes in terms of central symmetry of
their faces.

1 Introduction

Mixed-integer corner polyhedra. The mixed-integer corner polyhedron is the convex
hull of a mixed-integer set of the following form:

Xf (R,P ) :=
{

(s, y) ∈ Rk+ × Z`+ : f +Rs+ Py ∈ Zn
}
, (1.1)

where k, ` ∈ Z+, n ∈ N, R ∈ Rn×k, P ∈ Rn×` and f ∈ Rn \ Zn. The set Xf (R,P ) was
first studied by Gomory [Gom69] for the purposes of generating cutting planes for general
mixed-integer linear problems (MILPs). A short description of Gomory’s idea is as follows.
Consider a general MILP with a feasible region given in the standard form:{

x ∈ Rh+ × Zq+ : Ax = b
}
. (1.2)

Here Ax = b is the defining linear system, h is the number of continous variables and q is
the number of integer variables. The simplex method applied to the linear relaxation of the
MILP decomposes the variables of x into basic and non-basic ones. As a result, we can split
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x into four vectors: the vector s ∈ Rk+ of non-basic continuous variables, the vector t ∈ Rm+
of basic continuous variables, the vector y ∈ Z`+ of non-basic integer variables and the vector
z ∈ Zn+ of basic integer variables.

The basic variables can be expressed through the non-basic ones. That is, one has z =
f + Rs + Py and t = g + Us + V y for appropriate matrices U, V,R, P and appropriate
vectors f ∈ Rn, g ∈ Rm. Gomory suggests relaxing the MILP by discarding the nonnegativity
conditions on basic variables, that is, the conditions t ∈ Rm+ and z ∈ Zn+ are relaxed to t ∈ Rm
and z ∈ Zn. After this, z and t can eliminated from the problem description, since they are
expressed through the non-basic variables; the condition z ∈ Zn can also be reformulated
without any use of z as f +Rs+Ry ∈ Zn. This gives rise to the mixed-integer set Xf (R,P )
as defined in (1.1). Previous studies show that the corner polyhedron (the convex hull of
Xf (R,P )) has a quite special facial structure, in sharp contrast to the facial structure of the
convex hull of (1.2), which has much less structure in general. There has been a vast amount
of literature, specially in the last 5-6 years, on utilizing the corner polyhedron for developing
general-purpose solution methods in mixed-integer linear programming. We refer the reader
to the survey [CCZ11a] for this line of research.

Cut generating functions. In the 1970s Gomory and Johnson [GJ72a, GJ72b, Joh74]
suggested the following approach for generation of cuts for Xf (R,P ). We denote the columns
of matrices R and P by r1, . . . , rk and p1, . . . , p`, respectively. We allow the possibility that
k = 0 or ` = 0 (but not both). Given n ∈ N and f ∈ Rn \Zn, a cut-generating pair (ψ, π) for
f is a pair of functions ψ, π : Rn → R such that

k∑
i=1

ψ(ri)si +
∑̀
j=1

π(pj)yj ≥ 1 (1.3)

is a valid inequality (also called a cut) for the set Xf (R,P ) for every choice of k, ` ∈ Z+ and
for all matrices R ∈ Rn×k and P ∈ Rn×`. We emphasize that cut-generating pairs depend
on n and f and do not depend on k, `, R and P . For technical reasons, it is customary
to concentrate on nonnegative cut-generating functions. This paper will also consider only
nonnegative cut-generating pairs, i.e., ψ ≥ 0 and π ≥ 0.

Example 1. Let n = 1 and f ∈ R \ Z. Define

ψ(r) = max

{
r

1− [f ]
,− r

[f ]

}
π(p) = min

{
[p]

1− [f ]
,
1− [p]

[f ]

}
, (1.4)

where [x] = x − bxc denotes the fractional part of any real number x. Then (ψ, π) forms
a cut-generating pair for f ; i.e.,

∑k
i=1 ψ(ri)si +

∑`
j=1 π(pj)yj ≥ 1 is a valid inequality for

Xf (R,P ). In this case Xf (R,P ) and the pair (ψ, π) are determined from a single row of the
simplex tableaux of the underlying MILP. (1.4) gives the formula for the well-known Gomory
Mixed-Integer (GMI) cut [Gom60].

We call a subset B of Rn lattice-free if B is n-dimensional, closed, convex and the in-
terior of B does not contain integer points. If B is a lattice-free set and f ∈ int(B), then
B can be defined analytically using the gauge function of B − f , which is the function
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φB−f (r) := inf
{
ρ > 0 : r

ρ ∈ B − f
}
. Intuitively, φB−f (r) plays the role of the length of r.

Note that φB−f satisfies all the properties of the seminorm with the exception of the sym-
metry φB−f (r) = φB−f (−r), which need not be fulfilled. Thus, φB−f induces an oriented
“distance” on Rn, where under orientation we mean that the “distance” from a ∈ Rn to
b ∈ Rn need not be equal to the distance from b to a. By the choice of B, the “distance”
from f to every point of Zn is at least one. It was observed by Johnson [Joh74] that if
(ψ, π) is a cut-generating pair for f , then ψ is the gauge function of B − f for some lattice-
free set B. Therefore, one approach to obtaining cut-generating pairs is to start with some
lattice-free set B with f ∈ int(B), let ψ be the gauge function of B − f and find functions
π that can be combined with ψ to form a valid cut-generating pair for f . For example,
it is not hard to see that for any lattice-free set B with f ∈ int(B), (φB−f , φB−f ) is a
cut-generating pair. Indeed, notice that φB−f shares the following properties of a distance
function: positive homogeneity, i.e., φB−f (λr) = λφB−f (r) for every r ∈ Rn and λ ≥ 0, and
the triangle inequality or subadditivity, i.e., φB−f (r1 + r2) ≤ φB−f (r1) + φB−f (r2) for every
r1, r2 ∈ Rn. Moreover, since B is lattice-free, φB−f (x − f) ≥ 1 for every x ∈ Zn. So for

any (s, y) ∈ Xf (R,P ), since
∑k

i=1 risi +
∑`

j=1 pjyj ∈ Zn − f , we have 1 ≤ φB−f (
∑k

i=1 risi +∑`
j=1 pjyj) ≤

∑k
i=1 φB−f (risi) +

∑`
j=1 φB−f (pjyj) =

∑k
i=1 φB−f (ri)si +

∑`
j=1 φB−f (pj)yj .

In general, for a particular lattice-free set B with f ∈ int(B) and ψ given by the gauge of
B−f , there exist multiple functions π that can be appended to make (ψ, π) a cut-generating
pair. If (ψ, π) is a cut-generating pair, then π is called a lifting of ψ. The set of liftings of
ψ is partially ordered: we say that a lifting π′ for ψ dominates another lifting π′′ for ψ if
π′(r) ≤ π′′(r) for every r ∈ Rn. A minimal lifting for ψ is a lifting which is not dominated by
another (distinct) lifting for ψ. A simple application of Zorn’s lemma shows that that every
lifting π of ψ is dominated by some minimal lifting π′ of ψ; see Theorem 1.1 and its proof
in [BHKM13].

Computations with cut-generating functions and unique minimal lifting. The
main idea behind cut-generating functions is to keep an arsenal of cut generating pairs (ψ, π)
that can be efficiently evaluated so that when we have a concrete MILP to solve, we “plug
in” r1, . . . , rk into ψ and p1, . . . , p` into π and we obtain (1.3) as a cutting plane for solving
the MILP. Thus, we want ψ and π to be computable quickly, and thus require computational
perspectives on the abstract notions of gauge and minimal liftings. This has been the focus
of recent research on the corner polyhedron. We introduce these ideas next for motivating
our work in this paper.

Lattice-free sets maximal with respect to inclusion are called maximal lattice-free. It is
known that every maximal lattice-free set in Rn is a polyhedron and the recession cone of B
is a linear space spanned by rational vectors; see [Lov89], [BCCZ10] and [Ave13]. Then B
can be given by finitely many linear inequalities in the form

B = {x ∈ Rn : ai · (x− f) ≤ 1 ∀i ∈ I} , (1.5)

where I is a nonempty finite index set with at most 2n elements (the fact that |I| ≤ 2n is a
theorem due to Lovasz [Lov89] - see also [Doi73] and [Sca77]). An important observation in
recent work is that, using the fact that the recession cone of B is a linear space, the gauge
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function φB−f is computable by means of the simple formula

φB−f (r) = max {ai · r : i ∈ I} . (1.6)

Given a maximal lattice-free set B, define the following Zn-periodic function derived from
its gauge function φB−f :

φ∗B−f (r) := inf
w∈Zn

φB−f (r + w). (1.7)

It is well-known that if ψ is the gauge φB−f of a lattice-free set B with f ∈ int(B)
and π = φ∗B−f , then (ψ, π) is a cut-generating pair. To see this, observe that Xf (R,P ) =
Xf (R,P+W ) for any integral matrix W . Consequently, the cut-generating pair (φB−f , φB−f )
can be strengthened to (φB−f , φ

∗
B−f ).

Example 1 (continued). In Example 1, consider the closed interval with endpoints bfc, dfe
to be the lattice-free set B (recall that we are working in n = 1). Then, ψ, π from the example
are given by formulas (1.6) and (1.7) respectively, as illustrated in this figure:

f

1

0 1− [f ]−[f ]

B

ψ

π

Not all cut-generating pairs (ψ, π) are of the form where ψ is a gauge function of a
maximal lattice-free convex set, and π is a minimal lifting of ψ - for some cut generating
pairs ψ may be the gauge of a lattice-free set that is not maximal. However, we have a nice
formula for ψ given by (1.6) when it is the gauge of a maximal lattice-free convex set; thus,
one can compute very quickly the coefficients in a valid inequality. This is one reason to
study minimal liftings of such special functions ψ. The hope is that minimal liftings may also
often have closed form expressions that can be computed efficiently and thus the coefficients
in (1.3) can be computed quickly. However, not many efficient procedures for computing
minimal liftings are known in the literature. In fact, to the best of the authors’ knowledge,
(1.7) is the only expression that has been put forward in the literature as a way to compute
liftings. The following proposition makes precise the claim that formula (1.7) is efficiently
computable when n is not part of the input (meaning, in practice, that n is small). The proof
of this proposition appears in the appendix.

Proposition 1.1. Let n ∈ N, f ∈ Rn \ Zn and B be a maximal lattice-free polyhedron given
by (1.5), where I is a nonempty finite index set. Then the infimum in (1.7) is attained for
some w ∈ Zn. Furthermore, for each fixed dimension n ∈ N, the computational problem
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of determining φ∗B−f (r) in (1.7) from the input consisting of the rational vectors ai ∈ Qn
with i ∈ I and the point f ∈ Qn \ Zn, given in the standard binary encoding, is solvable in
polynomial time.

Recently, many authors have studied properties of minimal liftings; see [BCC+13, BCK12,
CCZ11b, DW10b, DW10a]. Given a maximal lattice-free polyhedron B with f ∈ int(B), there
may exist multiple minimal liftings for the gauge function φB−f , or there may be a unique
minimal lifting. We say that a maximal lattice-free set B has the unique-lifting property with
respect to f ∈ int(B) if the gauge function of B−f has exactly one minimal lifting. Otherwise,
the gauge function has more than one minimal lifting and we say that B has the multiple-
lifting property with respect to f . Maximal lattice-free sets with the unique-lifting property
give rise to concrete formulas for cutting planes, because φ∗B−f defined in (1.7) becomes the
unique minimal lifting, and we can use the formula (1.6) for φB−f and Proposition 1.1 to
quickly compute the coefficients in (1.3).

Moreover, the function φ∗B−f given by (1.7) is not always a minimal lifting of φB−f .
The following proposition shows the importance of unique liftings in this context (the proof
appears in the appendix).

Proposition 1.2. Let B be a maximal lattice-free polyhedron with f ∈ int(B). Then φ∗B−f
defined by (1.7) is a minimal lifting for the gauge function φB−f of B−f if and only if φB−f
has a unique minimal lifting.

We hope the above discussion lends credence to the claim that characterizing pairs B, f
with unique minimal liftings is an important question in the cut-generating function approach
to cutting planes. The purpose of this manuscript is to study maximal lattice-free sets with
the unique-lifting property.

Our contributions. We summarize our main contributions in this paper.

(i) Invariance result. A natural question arises: is it possible that B has the unique-lifting
property with respect to one f1 ∈ int(B), and has the multiple-lifting property with
respect to another f2 ∈ int(B)? This question was investigated in [BCK12] and the
main result was to establish that this cannot happen when B is a simplicial polytope.
We prove this for general maximal lattice-free polytopes without the simpliciality as-
sumption: for every maximal lattice-free set B either B has the unique-lifting property
with respect to every f ∈ int(B) or otherwise B has the multiple-lifting property with
respect to every such f (see Theorem 3.6). In view of this result, we can speak about
the unique-lifting property of B, without reference to any f ∈ int(B).

(ii) Result on the volume of the lifting region modulo Zn. To prove the mentioned invariance
result, we study the so-called lifting region (defined precisely in Section 2), and show
that its volume modulo the lattice Zn, is an affine function of f (see Theorem 3.4).
This is also an extension of the corresponding theorem from [BCK12] for simplicial
B. Besides handling the general case, our proof is also significantly shorter and more
elegant. We develop a tool for computing volumes modulo Zn, which enables us to
circumvent a complicated inclusion-exclusion argument from [BCK12] (see pages 349-
350 in [BCK12]).
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(iii) Topological result. In Section 4 we show that in the space of all maximal lattice-free
sets, endowed with the Hausdorff metric, the subset of the sets having the unique-lifting
property is closed (see Theorem 4.1). This topological property turns out to be useful
for verification of the unique-lifting property of maximal lattice-free sets built using the
coproduct operations (see below).

(iv) Constructions involving the coproduct operation. Our techniques give an iterative pro-
cedure to construct new families of polytopes with the unique-lifting property in every
dimension n ∈ N. This vastly expands the known list of polytopes with the unique-
lifting property. Furthermore, the coproduct operation enables to construct all sets
with the unique-lifting property for n = 2. See Section 5; in particular, Theorem 5.3
and Corollaries 5.4, 5.5 and 5.7.

(v) A characterization for special polytopes. A major contribution of [BCK12] was to char-
acterize the unique-lifting property for a special class of simplices. We generalize all
the results from [BCK12] to a broader class of polytopes called pyramids, which are
constructed using the so-called coproduct operation; see Theorem 6.5 and Theorem 6.3.
For these generalizations, we build tools in Section 6 that rely on nontrivial theorems
from the geometry of numbers and discrete geometry, such as the Venkov-Alexandrov-
McMullen theorem for translative tilings in Rn and McMullen’s characterizations of
polytopes with centrally symmetric faces [McM70].

All results that are stated in this paper for general maximal lattice-free polytopes, also
hold for maximal lattice-free polyhedra B that are unbounded. This follows from the fact
that for unbounded maximal lattice-free sets, the lifting region can be viewed as a cylinder
over the lifting region of a lower dimensional maximal lattice-free polytope. Restricting to
polytopes keeps the presentation less technical.

In our arguments we rely on tools from convex geometry, the theory of polytopes and the
geometry of numbers; for the background information see [Gru07], [Roc70], [Sch93], [Zie95].
The necessary basic notation and terminology, used throughout the manuscript, is introduced
in the beginning of the following section.

2 Preliminaries

Basic notation and terminology. Let n ∈ N. We will also use e1, e2, . . . , en to denote
the standard unit vectors of Rn. The notation vol stands for the n-dimensional volume (i.e.,
the Lebesgue measure) in Rn with the standard normalization vol([0, 1]n) = 1. For a, b ∈ Rn
we introduce the segment [a, b] and the relatively open segment (a, b) joining a and b by:

[a, b] := {(1− λ)a+ λb : 0 ≤ λ ≤ 1} ,
(a, b) := {(1− λ)a+ λb : 0 < λ < 1} .

We will denote the convex hull, affine hull, interior of a set X and the relative interior of
a convex set X by conv(X), aff(X), int(X) and relint(X), respectively.

Given a polytope P , we denote by F(P ) the set of all faces of P . For an integer i ≥ −1,
by F i(P ) we denote the set of all i-dimensional faces of P . Note that F−1(P ) = {∅} and
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Fn(P ) = {P}. Elements of F0(P ) are called vertices of P . Elements of F i(P ) with i =
dim(P )− 1 are called facets of P .

We shall make use of the following types of polytopes. Let P be a polytope in Rn:

• P is called a pyramid if P can be represented by P = conv(P0 ∪ {a}), where P0 is a
polytope and a is a point lying outside aff(P0). In this case the polytope P0 is called
the base of P and a is called the apex of P0.

• P is called a double pyramid if P can be represented by P = conv(P0∪{a1, a2}), where
P0 is a polytope and a1, a2 are points such that [a1, a2] intersects P0, but neither a1 nor
a2 is in the affine hull of P0.

• P is called a spindle if P can be represented by P = (P1 +a1)∩ (P2 +a2), where P1, P2

are pointed polyhedral cones and a1, a2 are points satisfying ai ∈ relint(Pj) + aj for
{i, j} = {1, 2}. The points a1, a2 are called the apexes of P .

Geometric characterization of unique minimal liftings. The authors of [BCC+13]
were able to characterize the unique lifting property in a purely geometric way. Let B be a
maximal lattice-free polytope in Rn and let f ∈ B (not necessarily in the interior of B). With
each F ∈ F(B) \ {∅, B} and f we associate conv({f} ∪ F ), which is a pyramid of dimension
dim(F ) + 1 whenever f 6∈ F . For every z ∈ F ∩ Zn we define the polytope

SF,z(f) := conv({f} ∪ F ) ∩
(
z + f − conv({f} ∪ F )

)
,

given as the intersection of conv({f} ∪ F ) and the reflection of conv({f} ∪ F ) with respect
to (z + f)/2. Note that, if f 6∈ F (which is a generic situation), then SF,z(f) is a spindle.
Furthermore, we define

RF (f) :=
⋃

z∈F∩Zn

SF,z(f),

the union of all sets SF,z(f) arising from the face F .
The set

R(B, f) :=
⋃

F∈F(B)\{∅,B}

RF (f)

is called the lifting region of B associated with the point f . In [BCC+13] it was shown that
for f ∈ int(B)

B has the unique-lifting property with respect to f ⇐⇒ R(B, f) + Zn = Rn.

Thus, in the rest of the paper, we study the covering properties of R(B, f) by lattice
translates to analyze the unique-lifting property of B with respect to f ∈ int(B).

We observe that, since RF1(f) ⊆ RF2(f) for F1, F2 ∈ F(B) \ {B, ∅} satisfying F1 ⊆ F2,
the lifting region R(B, f) can also be represented using the set Fn−1(B) of all facets of B as
follows:

R(B, f) =
⋃

F∈Fn−1(B)

RF (f).
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3 Invariance theorem on the uniqueness of lifting

Integral formula for the volume of a region modulo Zn. For t ∈ R let [t] = t−btc be
the fractional part of t. For any set X ⊆ Rn, define X/Zn := {[x] : x ∈ X} ⊆ [0, 1]n. Observe
that a compact set X ⊆ Rn covers Rn by lattice translations, i.e., X + Zn = Rn if and only
if vol(X/Zn) = 1.

Let X be a finite subset of Rn and assume that we wish to count the number of elements
in X/Zn. Then it suffices to consider all x ∈ X and count the element x with the weight
1/|X∩(x+Zn)|, because all elements of X∩(x+Zn) also belong to X and generate the same
element [x]. The following lemma is a “continuous counterpart” of the above combinatorial
observation.

Lemma 3.1. Let R ⊆ Rn be a compact set with nonempty interior. Then

vol(R/Zn) =

∫
R

dx

|R ∩ (x+ Zn)| . (3.1)

Proof. We use the following formula for substitution of integration variables in the case that
the underlying substitution function f : R→ Rn is not necessarily injective:∫

Rn

∑
x̃∈R : f(x̃)=y

g(x̃) d y =

∫
R
g(x)|det(∇f)(x)| dx. (3.2)

Here g : R → Rn is a Lebesgue measurable function, f : R → Rn is an almost every-
where Lipschitz function and ∇f denotes the Jacobian matrix of f . Note that in the case
of injective f , we get a well-known substitution formula with the left hand side equal to∫
f(R) g(f−1(y)) d y. Formula (3.2) is a standard fact in geometric measure theory; it is a

special case of Corollary 5.1.3 in [KP08]. We use (3.2) in the case f(x) = ([x1], . . . , [xn]) and
g(x) = 1

|R∩(x+Zn)| , where x = (x1, . . . , xn) ∈ R. Clearly, (∇f)(x) is the identity matrix for

almost every x ∈ R. Thus, the right hand side of (3.2) coincides with the right hand side of
(3.1). We analyze the left hand side of (3.2). Consider an arbitrary y ∈ f(R), that is, y ∈ Rn
and f(x) = y for some x ∈ R. We fix x as above. For every x̃ ∈ R the equality f(x̃) = y can
be written as f(x̃) = f(x), which is equivalent to x− x̃ ∈ Zn. Consequently, g(x) = g(x̃) and
{x̃ ∈ R : f(x̃) = y} = R ∩ (x+ Zn). It follows that the sum on the left hand side of (3.2) is
equal to 1 for every y ∈ f(R), and 0 for every y 6∈ f(R). Thus, the the left hand side of (3.2)
is equal to

∫
f(R) d y and, by this, coincides with the left hand side of (3.1).

Structure of congruences modulo Zn for points of the lifting region.

Lemma 3.2. Let n ∈ N, let B be a maximal lattice-free polytope in Rn and let f ∈ B. Let
F1, F2 ∈ Fn−1(B) and let zi ∈ relint(Fi) ∩ Zn for i ∈ {1, 2}. Suppose x1 ∈ int(SF1,z1(f)) and
x2 ∈ int(SF2,z2(f)) be such that x1 − x2 ∈ Zn. Then F1 = F2 and, furthermore, the vector
x1 − x2 is the difference of two integral points in the relative interior of Fi (i ∈ {1, 2}), i.e.:

x1 − x2 ∈ relint(Fi) ∩ Zn − relint(Fi) ∩ Zn. (3.3)

In particular, the vector x1 − x2 is parallel to the hyperplane aff(Fi).
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Proof. For i ∈ {1, 2}, if f , xi and zi do not lie on a common line, we introduce the two-
dimensional affine space Ai := aff{f, xi, zi}. Otherwise choose Ai to be any two-dimensional
affine space containing f , xi and zi. The set Ti := conv(Fi ∪ {f}) ∩ Ai is a triangle, whose
one vertex is f . We denote the other two vertices by ai and bi. Observe that ai, bi are on
the boundary of facet Fi such that the open interval (ai, bi) ⊆ relint(Fi). Since zi lies on
the line segment connecting ai, bi and zi ∈ relint(Fi), there exists 0 < λi < 1 such that
zi = λiai + (1 − λi)bi. Since xi ∈ int(SFi,zi(f)), there exist 0 < µi, αi, βi < 1 such that
xi = µif +αiai + βibi and µi +αi + βi = 1. Also, observe that xi ∈ relint(Ti ∩ (zi + f − Ti)).
Therefore, αi < λi and βi < 1− λi.

Consider first the case µ1 ≥ µ2. In this case, z2 + x1 − x2 is an integral point, which can
be represented by

z2 + x1 − x2 = (µ1 − µ2)f + (λ2 − α2)a2 + (1− λ2 − β2)b2 + α1a1 + β1b1

Observe that (µ1 − µ2) + (λ2 − α2) + (1 − λ2 − β2) + α1 + β1 = 1, each of the terms in
the sum is nonnegative, and the coefficients λ2 − α2, 1− λ2 − β2, α1, β1 are strictly positive.
Further, if F1 6= F2, then for every facet F ∈ Fn−1(B), at least one of the points a1, b1, a2, b2
does not lie on the facet F (because (ai, bi) ⊆ relint(Fi)); therefore, the point z2 + x1 − x2

does not lie on any facet. This would imply that z2 + x1 − x2 ∈ int(B) contradicting the
fact that B is lattice-free. Therefore, F1 = F2. Now for every facet F 6= F1 at least one
of a1, b1, a2, b2 is again not on F , and so the point z2 + x1 − x2 does not lie on F . Thus,
since int(B) is lattice-free, z2 + x1 − x2 must lie on F1; and further z2 + x1 − x2 ∈ relint(F1).
Since F1 = F2, z2 ∈ relint(F1) otherwise, SF2,z2(f) has empty interior. Thus, we obtain that
x1 − x2 is the difference of two integral points in the relative interior of F1.

The case µ1 ≤ µ2 is similar with the same analysis performed on z1 + x2 − x1.

Invariance theorem for unique liftings. We now have all the tools to prove our main
invariance result about unique minimal liftings. The main idea is to show that the volume of
the lifting region modulo Zn is the restriction of an affine function.

We first recall a basic fact about affine transformations.

Lemma 3.3. Let H be a hyperplane in Rn and let f∗, f be two points in Rn \H that lie in the
same open halfspace determined by H. Let T be the affine transformation on Rn, given by
x 7→ T (x) := Ax+ b with A ∈ Rn×n and b ∈ Rn, that acts identically on H and sends f∗ to

f . For every x ∈ Rn let δ(x) denote the Euclidean distance of x to H. Then det(A) = δ(f)
δ(f∗) .

Proof. By changing coordinates using a rigid motion (i.e., applying an orthogonal transfor-
mation and a translation such that distances, angles and volumes are preserved), we can
assume that H = Rn−1 × {0} and f∗, f ∈ Rn−1 × R>0. For every a ∈ Rn−1 × R>0, the value
δ(a) is the last component of a. It is easy to see that the linear transformation Ta that keeps
e1, . . . , en−1 unchanged and sends en onto a is given by a matrix whose determinant is δ(a).

Since T = TfT
−1
f∗ , we conclude that det(A) = δ(f)

δ(f∗) .

Theorem 3.4. Let n ∈ N and let B be a maximal lattice-free polytope in Rn. Then the
function f 7→ vol(R(B, f)/Zn), acting from B to R, is the restriction of an affine function.
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Proof. First, we observe that

vol(R(B, f)/Zn) =
∑

F∈Fn−1(B)

vol(RF (B, f)/Zn) (3.4)

because, by Lemma 3.2, for two distinct facets F1 and F2 of B, no point of int(RF1(B, f))
is congruent to a point of int(RF2(B, f)) modulo Zn . Therefore, it suffices to consider an
arbitrary F ∈ Fn−1(B) and show that the mapping f ∈ B 7→ V (f) := vol(RF (B, f)/Zn) is
a restriction of an affine function. We fix a vector f∗ ∈ int(B). For every f ∈ B, let δ(f)
be the Euclidean distance of f to the hyperplane aff(F ). It suffices to show that for every
f ∈ B one has

V (f)

V (f∗)
=

δ(f)

δ(f∗)
, (3.5)

because (3.5) implies V (f) = V (f∗)
δ(f∗) δ(f), where V (f∗)

δ(f∗) is a constant factor and f ∈ B 7→ δ(f)

is a restriction of an affine function. From now on, we fix f ∈ B. If f ∈ F , then (3.5) clearly
holds, because both V (f) and δ(f) vanish. Therefore, we assume f ∈ B\F . By Theorem 3.1,
we have the following integral expressions for V (f∗) and V (f):

V (f∗) =

∫
RF (f∗)

dx∗

|RF (f∗) ∩ (x∗ + Zn)| , V (f) =

∫
RF (f)

dx

|RF (f) ∩ (x+ Zn)| . (3.6)

Consider the bijective affine transformation T which acts identically on aff(F ) and sends
f∗ to f . We want to relate both integral expressions in (3.6) by changing the integration
variables using the transformation T . We will derive (3.5) by substituting T (x∗) for x in the
integral expression for V (f). For this purpose, it is sufficient to verify the following three
conditions dealing with the domains of integration, the integrands and the determinant of
the Jacobian matrix of T , respectively:

1. T maps RF (f∗) onto RF (f), i.e., T (RF (f∗)) = RF (f).

2. One has RF (f) ∩ (x+ Zn) = RF (f∗) ∩ (x∗ + Zn) if x = T (x∗) and x∗ ∈ RF (f∗).

3. One has |det∇T | = δ(f)
δ(f∗) , where ∇T denotes the Jacobian matrix of T .

For verifying Condition 1 we recall that the set RF (f) is defined using the pyramids conv(F ∪
{f}) and the reflected pyramids f + z − conv(F ∪ {f}) with z ∈ F ∩ Zn. Clearly, T maps
conv(F ∪ {f∗}) onto conv(F ∪ {f}). But then T also maps f∗ + z − conv(F ∪ {f∗}) with
z ∈ F ∩Zn onto f+z−conv(F ∪{f}) because an element of f∗+z−conv(F ∪{f∗}) is an affine
combination of f∗, z and a point of conv(F∪{f∗}) with coefficients 1, 1 and −1. Furthermore,
from the definition of T we get T (f∗) = f , T (z) = z and T (conv(F ∪{f∗}) = conv(F ∪{f}).
Thus, T (RF (f∗)) = RF (f)) and Condition 1 is fulfilled.

We verify Condition 2. Choose an arbitrary y∗ ∈ RF (f∗) ∩ (x∗ + Zn). Then x∗, y∗ ∈
RF (f∗), x∗ − y∗ ∈ Zn and, by Lemma 3.2, the segment [x∗, y∗] (which is possibly degenerate
to a point) is parallel to aff(F ). Since T acts identically on aff(F ) and [x∗, y∗] is parallel to
aff(F ), the segment [T (x∗), T (y∗)] is a translation of [x∗, y∗]. In particular, T (y∗)−T (x∗) ∈ Zn
and by this, taking into account Condition 1, we see that T (y∗) is an element of T (RF (f∗))∩
(T (x∗) +Zn) = RF (f)∩ (x+Zn). This shows that the image of RF (f∗)∩ (x∗+Zn) under T
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is a subset of RF (f) ∩ (x+ Zn). Interchanging x and x∗ and replacing T by T−1, the above
argument can also be used to show that the image of RF (f)∩ (x+Zn) under T−1 is a subset
of RF (f∗) ∩ (x∗ + Zn). The latter verifies Condition 2.

Condition 3 is fulfilled in view of Lemma 3.3.
The above shows (3.5) and yields the conclusion.

Theorem 3.4 implies the following.

Corollary 3.5. Let B be a maximal lattice-free polytope in Rn. Then the set { f ∈ B :
vol(R(B, f)/Zn) = 1 } is a face of B.

Proof. Since vol(R(B, f)/Zn) is always at most 1, the value 1 is a maximum value for the
function vol(R(B, f)/Zn). By Theorem 3.4, optimizing this function over B is a linear pro-
gram and hence the optimal set is a face of B.

Theorem 3.6. (Unique-lifting invariance theorem.) Let n ∈ N and let B be a maximal lattice-
free polytope in Rn. Let f1, f2 ∈ int(B). Then B has the unique-lifting property with respect
to f1 if and only if B has the unique-lifting property with respect to f2.

Proof. Corollary 3.5 implies Theorem 3.6. Indeed, if the set { f ∈ B : vol(R(B, f)/Zn) = 1 }
is B, then R(B, f)+Zn = Rn for all f ∈ B and, in particular, for all f ∈ int(B). Hence, B has
the unique-lifting property with respect to every f ∈ int(B). Otherwise, R(B, f) + Zn 6= Rn
for all f ∈ int(B), which implies that B has the multiple-lifting property with respect to
every f ∈ int(B).

4 Limits of polytopes with the unique-lifting property

Background information on the Hausdorff metric and convex bodies. We first
collect standard notions and basic facts from convex geometry that we need for our topological
result on unique liftings. We refer the reader to the monograph [Sch93, Chapter 1].

Let Cn be the family of all nonempty compact subsets of Rn and Kn be the family of all
nonempty compact convex subsets of Rn. With eachK ∈ Cn we associate the support function
h(K, · ) defined by h(K,u) := max {u · x : x ∈ K} . The function h(K, · ) is sublinear and, by
this, also continuous. Furthermore, h(K,u) is additive in K with respect to the Minkowski
addition. That is, if K,L ∈ Cn and u ∈ Rn, then h(K + L, u) = h(K,u) + h(L, u).

As a direct consequence of separation theorems the following characterization of the
inclusion-relation for elements in Kn can be derived: for K,L ⊆ Kn, one has K ⊆ L if
and only if the inequality h(K,u) ≤ h(L, u) holds for every u ∈ Rn. The latter, in combina-
tion with the additivity of h(K,u) in K, implies the cancellation law for Minkowski addition:
if K,L,M ∈ Kn, then the inclusion K ⊆ L is equivalent to the inclusion K +M ⊆ L+M .

For K ∈ Kn, a set of the form

F (K,u) := {x ∈ K : u · x = h(K,u)} , (4.1)

where u ∈ Rn, is called an exposed face of K in direction u. All (nonempty) faces of a
polytope are exposed.
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Given c ∈ Rn and ρ ≥ 0, let B(c, ρ) denote the closed (Euclidean) ball of radius ρ with
center at c. For K,L ∈ Cn, the Hausdorff distance dist(K,L) between K and L is defined by

dist(K,L) := min {ρ ≥ 0 : K ⊆ L+ B(o, ρ), L ⊆ K + B(o, ρ)} .

The Hausdorff distance is a metric on Cn. The formulation of the main theorem of this section
involves the topology induced by the Hausdorff distance. In what follows, speaking about
the convergence for sequences of elements from Cn, we shall always mean the convergence in
the Hausdorff metric.

It is known that the mapping h(K,u) continuously depends on the pair (K,u) ∈ Kn ×
Rn; see the comment preceding Lemma 1.8.10 in [Sch93]. More precisely, if (Kt)t∈N is a
sequence of elements of Kn converging to some K ∈ Kn and (ut)t∈N is a sequence of vectors
in Rn converging to some vector u ∈ Rn, then h(Kt, ut) converges to h(K,u), as t → ∞.
Furthermore, one can pass to the limit in inclusions, with respect to convergence in the
Hausdorff distance. More precisely, let (Kt)t∈N and (Lt)t∈N be sequences of elements from
Cn converging to K ∈ Cn and L ∈ Cn. If Kt ⊆ Lt for every t ∈ N, then K ⊆ L. In particular,
considering the case that Kt consists of a single point, say pt, we derive that if pt ∈ Lt for
every t ∈ N and, pt converges to some p ∈ N, as t→∞, then we have p ∈ L.

We also note that, if K,L ∈ Cn, the definition of the Hausdorff distance implies

dist
(
conv(K), conv(L)

)
≤ dist

(
K,L

)
. (4.2)

Topology of the space of polytopes with the unique-lifting property. The following
is the main result of this section.

Theorem 4.1. Let (Bt)t∈N be a convergent sequence (in the Hausdorff metric) of maximal
lattice-free polytopes in Rn such that the limit B of this sequence is a maximal lattice-free
polytope. If, for every t ∈ N, the set Bt has the unique-lifting property, then B too has the
unique-lifting property.

Proof. Fix an arbitrary f ∈ int(B). Let R := R(B, f). We need to verify R+ Zn = Rn.
Choose ε > 0 such that B(f, ε) ⊆ B. Let us show that f ∈ Bt for all sufficiently large

t ∈ N and, thus, the lifting region Rt := R(Bt, f) is well-defined for all sufficiently large t.
Since B is the limit of Bt, as t → ∞, there exists t0 ∈ N such that B ⊆ Bt + B(o, ε) for all
t ≥ t0. Hence, f + B(o, ε) = B(f, ε) ⊆ B ⊆ Bt + B(o, ε) for all t ≥ t0. Using the cancellation
law for the Minkowski addition, we arrive at f ∈ Bt for all t ≥ t0. Thus, replacing (Bt)t∈N
by its appropriate subsequence, we assume that f ∈ Bt for every t ∈ N.

Assume that, for every t ∈ N, the set Bt has the unique-lifting property. By Theorem 3.4,
one has Rt + Zn = Rn. Below, we use the latter relation to show R+ Zn = Rn. We consider
an arbitrary x ∈ Rn and show that x ∈ R+ Zn.

Since x ∈ Rn = Rt + Zn, there exists wt ∈ Zn such that x ∈ Rt + wt for every t ∈ N.
Every convergent sequence of nonempty compact sets is necessarily bounded. Hence, there
exists M ∈ N such that every Bt with t ∈ N is a subset of the box [−M,M ]n. In view of
the inclusions Rt ⊆ Bt ⊆ [−M,M ]n, the vector wt lies in the finite set ([−M,M ]n + x)∩Zn.
Consequently, replacing (Bt)t∈N by its appropriate subsequence, we can assume that wt is
independent of t. With this assumption, we have x ∈ Rt +w for every t ∈ N, where w := wt.
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The point x − w belongs to Rt. Using the definition of the lifting region, we conclude that
x − w ∈ conv({f} ∪ Ft) ∪ (f + zt − conv({f} ∪ Ft) for some face Ft of Bt and some point
zt ∈ Ft ∩ Zn. Note that zt lies in the finite set [−M,M ]n ∩ Zn. Passing to appropriate
subsequences once again, we can assume that zt is independent of t. With this assumption,
for every t ∈ N, we have

x− w ∈ conv({f} ∪ Ft) ∩ (f + z − conv({f} ∪ Ft)), (4.3)

where z := zt. Relation (4.3) implies that both x − w and (f + z) − (x − w) belong to
conv({f} ∪ Ft). The latter can be represented by the equalities

x− w = (1− λt)f + λtpt, (4.4)

(f + z)− (x− w) = (1− µt)f + µtqt, (4.5)

which hold for some λt, µt ∈ [0, 1] and some pt, qt ∈ Ft. We can represent Ft as Ft = F (Bt, ut)
for some unit vector ut in Rn. The conditions pt ∈ Ft and qt ∈ Ft can be reformulated as
follows:

pt ∈ Bt, h(Bt, ut) = ut · pt, (4.6)

qt ∈ Bt, h(Bt, ut) = ut · qt. (4.7)

Since λt, µt lie in the compact set [0, 1], the points pt, qt lie in the compact set [−M,M ]n

and ut lie in the unit sphere, we can pass to a subsequence and assume that that the scalars
λt, µt ∈ [0, 1], the points pt, qt and the unit vector ut converge to some scalars λ, µ ∈ [0, 1],
points p ∈ Rn, q ∈ Rn and a unit vector u, respectively, as t → ∞. Passing to the limit, as
t→∞, in relations (4.4)–(4.7), we arrive at the respective relations

x− w = (1− λ)f + λp,

(f + z)− (x− w) = (1− µ)f + µq

and

p ∈ B, h(B, u) = u · p,
q ∈ B, h(B, u) = u · q.

The latter implies that x− w ∈ conv({f} ∪ F ) ∩ (f + z − conv({f} ∪ F )) for F := F (B, u).
Thus, x− w belongs to R and, by this, x belongs to R+ Zn. Since x was chosen arbitrarily,
we arrive at Rn = R+ Zn. It follows that B has the unique-lifting property.

Let Un be the set of all maximal lattice-free polytopes in Rn with the unique-lifting
property and letMn be the set of all maximal lattice-free polytopes in Rn. We view Un and
Mn as metric spaces endowed with the Hausdorff metric. Clearly, Un ⊆ Mn. Theorem 4.1
asserts that Un is a closed subset of Mn.

In view of Theorem 4.1, one may wonder if the limit of every convergent sequence of maxi-
mal lattice-free polytopes with the unique-lifting property is necessarily a maximal lattice-free
set. This question is beyond the scope of this manuscript; however, we note that the limit of a
convergent sequence of arbitrary maximal lattice-free polytopes is not necessarily a maximal
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lattice-free polytope. In other words, Mn is not a closed subset of Kn. For every n ≥ 3,
this can be shown by considering a sequence of maximal lattice-free sets which get arbitrar-
ily flat and in the limit become non-full-dimensional, following a construction from [Ave12,
Example 3.4] (we recall that according to our definition, maximal lattice-free sets in Rn are
required to be n-dimensional). In the case n = 2 one can show that the square [0, 1]2, which
is lattice-free but not maximal lattice-free, lies in the closure of M2. Let c be the center
of [0, 1]2. Rotating the square by a small angle around c and slightly enlarging the rotated
square by a homothetic transformation with homothetic center at c, we can construct a max-
imal lattice-free polytope fromM2 which is arbitrarily close to [0, 1]2. This shows that [0, 1]2

belongs to the closure of M2. Hence, M2 is not a closed subset of K2.

5 Construction of polytopes with the unique-lifting property

Coproduct and its properties. Recall that F(P ) denotes the set of all faces of P , F i(P )
denotes the set of faces of dimension i and Fdim(P )−1(P ) denotes the set of facets of P .
Further, h(P, u) := max {u · x : x ∈ P} denotes the support function of the polytope P , and
we will use the notation F (P, u) = {x ∈ P : h(P, u) = u · x} to be the optimal face of P
when maximizing in the direction of u.

Let n1, n2 ∈ N and n := n1 + n2. For each i ∈ {1, 2}, let oi be the origin of Rni .
Given K1 ∈ Kn1 and K2 ∈ Kn2 , the set

K1 ♦K2 := conv(K1 × {o2} ∪ {o1} ×K2) ∈ Kn.

is called the coproduct of K1 and K2
1. Clearly, up to nonsingular affine transformations,

pyramids and double pyramids can be given as coproducts K1 ♦ K2 for polytopes K1,K2

with oi ∈ Ki for each i ∈ {1, 2} and dim(K1) = 1. Note also that the coproduct operation is
associative, and so in the expressions involving the coproduct of three and more sets we can
omit brackets. We shall use coproducts of an arbitrary number of sets later in this section.

Clearly,

K1 ♦K2 =
⋃

0≤λ≤1

(1− λ)K1 × λK2. (5.1)

By the basic properties of the relative-interior operation (see [Roc70, Theorem 6.9]), we have

relint(K1 ♦K2) =
⋃

0<λ<1

(1− λ) relint(K1)× λ relint(K2). (5.2)

If dim(Ki) = ni for each i ∈ {1, 2}, then dim(K1 ♦K2) = n and the operation relint in (5.2)
can be replaced by int.

Lemma 5.1. (On faces of the coproduct of polytopes.) For i ∈ {1, 2}, let ni ∈ N, let oi
be the origin of Rni and let Pi be an ni-dimensional polytope in Rni with oi ∈ Pi. Let
P := P1 ♦ P2 ⊆ Rn, where n := n1 + n2. Let F be a nonempty subset of Rn. Then the
following assertions hold:

1[HRGZ97, p. 250] calls this construction the free sum; we use coproduct following a suggestion by Peter
McMullen. The construction is dual to the operation of taking Cartesian products, i.e., when oi ∈ int(Ki) for
each i ∈ {1, 2}, we have the relation (K1 ×K2)

◦ = K◦1 ♦K◦2 for the polar polytopes of K1 ×K2, K1 and K2.

14



(a) The set F is a face of P if and only if one of the following four conditions is fulfilled:

F = F1 ♦ F2, where oi 6∈ Fi ∈ F(Pi) ∀i ∈ {1, 2}, or (5.3)

F = F1 ♦ F2, where oi ∈ Fi ∈ F(Pi) ∀i ∈ {1, 2}, or (5.4)

F = F1 × {o2}, where o1 6∈ F1 ∈ F(P1), or (5.5)

F = {o1} × F2, where o2 6∈ F2 ∈ F(P2). (5.6)

(b) Under conditions (5.3), (5.4), (5.5) and (5.6), the dimension of the face F of P is ex-
pressed by the equalities dim(F ) = dim(F1) + dim(F2) + 1, dim(F ) = dim(F1) + dim(F2),
dim(F ) = dim(F1) and dim(F ) = dim(F2), respectively.

(c) The set F is a facet of P if and only if one of the following three conditions is fulfilled:

F = F1 ♦ F2, where oi 6∈ Fi ∈ Fni−1(Pi) ∀i ∈ {1, 2}, or (5.7)

F = F1 ♦ P2, where o1 ∈ F1 ∈ Fn1−1(P1), or (5.8)

F = P1 ♦ F2, where o2 ∈ F2 ∈ Fn2−1(P2). (5.9)

Proof. Assertion (a): We start with the necessity in (a). We assume that F is a face of P
and show that one of the four conditions (5.3)–(5.6) is fulfilled. By the assumptions of the
lemma, F is nonempty, and so we have

F = F (P, u) = {x ∈ P : h(P, u) = u · x}

for some u := (u1, u2) ∈ Rn1 × Rn2 . Since

h(P, u) = max{h(P1, u1), h(P2, u2)},

we get:

F (P, u) = F (P1, u1) ♦ F (P2, u2) if h(P1, u1) = h(P2, u2), (5.10)

F (P, u) = F (P1, u1)× {o2} if h(P1, u1) > h(P2, u2), (5.11)

F (P, u) = {o1} × F (P2, u2) if h(P1, u1) < h(P2, u2). (5.12)

Since for each i ∈ {1, 2}, one has oi ∈ Pi, the support function h(Pi, · ) is nonnegative.
We compare h(P1, u1) with h(P2, u2) and distinguish three cases as in (5.10)–(5.12).

In the case h(P1, u1) = h(P2, u2), we define Fi := F (Pi, ui) for i ∈ {1, 2}. One has
either h(P1, u1) = h(P2, u2) > 0 or h(P1, u1) = h(P2, u2) = 0. In the former case, the
face F (Pi, u) of Pi does not contain oi for each i ∈ {1, 2} and, by this, (5.3) is fulfilled.
In the latter case, the face F (Pi, ui) of Pi contains oi for each i ∈ {1, 2} and, by this,
(5.4) is fulfilled. If h(P1, u1) > h(P2, u), we have h(P1, u1) > 0 and so (5.5) is fulfilled for
F1 := F (P1, u1). Analogously, if h(P2, u1) < h(P2, u), we have h(P2, u2) > 0 and so (5.6) is
fulfilled for F2 := F (P2, u2). This proves the necessity in (a).

For proving the sufficiency, we assume that F fulfills one of the four conditions (5.3)–(5.6)
and show that F = F (P, u) for an appropriate choice of u ∈ Rn. Consider the case that F
fulfills (5.3). For each i ∈ {1, 2}, we choose a vector ui ∈ Rni , with Fi = F (Pi, ui). Since
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oi 6∈ Fi, we have h(Pi, ui) > 0 and by this also ui 6= oi. Appropriately rescaling the vectors
u1 and u2, we ensure the inequality h(P1, u1) = h(P2, u2). In view of (5.10), it follows that
F = F (P, u) with u = (u1, u2). The case that F fulfills (5.4) is similar. For each i ∈ {1, 2}
we choose ui ∈ Rni with Fi = F (Pi, ui). Since oi ∈ Fi, we have h(Pi, ui) = 0. In view of
(5.10), F = F (P, u) with u = (u1, u2). In the case that F fulfills (5.5), we choose u1 ∈ Rn1

satisfying F1 = F (P1, u1) and define u2 := o2. Since o1 6∈ F1, we get h(P1, u1) > 0. In view
of (5.11), we get F = F (P, u) for u = (u1, u2). The case that F fulfills (5.6) is completely
analogous to the previously considered case.

Assertion (b): The cases (5.5) and (5.6) are trivial. In the case (5.4), the face F contains
o, and so the dimension of F is the dimension of the linear hull of F . Applying the definition
of the coproduct and the fact that, for each i ∈ {1, 2}, the face Fi contains oi, we see
that the linear hull of F is the Cartesian product of the linear hulls of F1 and F2. Hence
dim(F ) = dim(F1)+dim(F2). The case (5.3) can be handled by a reduction to the case (5.4).
Assume that (5.3) is fulfilled. Then, in view of (5.1), the set F = F1 ♦F2 does not contain o.
Then dim(K) = dim(F )+1 for K := conv(F ∪{o}). Using the definition of the coproduct, we
can easily verify the equality K = conv(F1∪{o1})♦conv(F2∪{o2}). Using the argument from
the case (5.4) we conclude that dim(K) = dim(conv(F1 ∪{o1}) + dim(conv(F2 ∪{o2}). Since
oi 6∈ Fi, we have dim(conv(Fi∪{oi})) = dim(Fi)+1. Hence dim(F ) = dim(F1)+dim(F2)+1.

Assertion (c) is a straightforward consequence of (a) and (b).

Constructions based on the coproduct operation. It will be more convenient to work
with general affine lattices and then specialize to the Zn case. To that end, we say that a set
Λ ⊆ Rn is an affine lattice of rank n if Λ is a translation of a lattice of rank n. Equivalently, a
set Λ ⊂ Rn is an affine lattice of rank n if and only if there exist affinely independent points
x0, . . . , xn ∈ Rn such that Λ is the set of all x = z0x0 + · · · + znxn with z0, . . . , zn ∈ Z and
z0 + · · · + zn = 1. Note that the notions of lattice-free set, maximal lattice-free set, lifting
region (denoted by R(B, f)) and sets with the unique-lifting property, which were introduced
with respect the integer lattice Zn, can be extended directly to the more general situation
where, in place of Zn, we take an arbitrary affine lattice Λ of rank n in Rn. Thus, for such
Λ we can introduce the respective notions of Λ-free set, maximal Λ-free set, lifting region
with respect to Λ (which we will denote by RΛ(B, f)) and set with the unique-lifting property
with respect to Λ. We shall use the following result of Lovász [Lov89]; see also [BCCZ10] and
[Ave13].

Theorem 5.2. (Lovász’s characterization of maximal lattice-free sets.) Let B be an n-
dimensional Λ-free polyhedron in Rn. Then B is maximal Λ-free if and only if relint(F )∩Λ 6=
∅ for every facet F of B.

The following is the main result of this section.

Theorem 5.3. (Coproduct construction of various types of Λ-free sets.) For i ∈ {1, 2}, let
ni ∈ N, let oi be the origin of Rni, let Λi be an affine lattice of rank ni in Rni and let Bi be an
ni-dimensional polytope with oi ∈ Bi. Let 0 < µ < 1. Then, for the n-dimensional polytope
B := B1 ♦ B2 with n := n1 + n2 and the affine lattice Λ := (1 − µ)Λ1 × µΛ2 of rank n, the
following assertions hold:

(a) If Bi is Λi-free for each i ∈ {1, 2}, then B is Λ-free.
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(b) If Bi is maximal Λi-free for each i ∈ {1, 2}, then B is maximal Λ-free.

(c) If Bi is maximal Λi-free and has the unique-lifting property with respect to Λi for each
i ∈ {1, 2}, then B is maximal Λ-free and has the unique-lifting property with respect to
Λ.

Proof. (a): Consider an arbitrary point x = (x1, x2) ∈ Rn1 ×Rn2 belonging to int(B1 ♦B2).
In view of (5.2), one has x1 ∈ (1 − λ) int(B1) and x2 ∈ λ int(B2) for some 0 < λ < 1. If
λ ≥ µ, then taking into account o1 ∈ B1, we obtain x1 ∈ (1 − λ) int(B1) ⊆ (1 − µ) int(B1).
Since B1 is Λ1-free, we have x1 6∈ (1 − µ)Λ1 implying that x 6∈ Λ. Analogously, in the case
λ ≤ µ, we deduce that the point x2 is not in µΛ2 and thus x 6∈ Λ.

(b): Assume that Bi is maximal Λi-free for each i ∈ {1, 2}. We show that B is maximal
Λ-free. In view of (a), the polytope B is Λ-free. By Theorem 5.2, in order to verify the
maximality of B it suffices to show that the relative interior of each facet of B contains a
point of Λ. Let F be an arbitrary facet of B. We use the classification of facets of the
coproduct which is provided by Lemma 5.1.(c). Consider the case that F fulfills condition
(5.7). By Theorem 5.2 applied to the maximal Λi-free set Bi, for each i ∈ {1, 2} there exists a
point xi ∈ relint(Fi) belonging to Λi. Then the point x := ((1− µ)x1, µx2) belongs to Λ. By
(5.2), the point x also belongs to relint(F ). Let us switch to the case that F fulfills condition
(5.8). By Theorem 5.2, there exists a point x1 ∈ relint(F1) which belongs to Λ1. Then
(1− µ)x1 ∈ (1− µ) relint(F1). Since o1 ∈ F1, the latter containment relation remains valid if
we slightly shrink the right hand side (1−µ) relint(F1). That is, (1−µ)x1 ∈ (1−λ) relint(F1)
for some λ satisfying µ < λ < 1, which is sufficiently close to µ. Since o2 ∈ B2, we have
int(B2)  λ

µ int(B2). Since B2 is maximal Λ2-free, there exists a point x2 ∈ λ
µ int(B2)

which belongs to Λ2. It follows that µx2 ∈ λ int(B2) is a point belonging to µΛ2. Thus,
x := ((1− µ)x1, µx2) is a point belonging to (1− λ) relint(F1)× λ int(B2) and to Λ. Taking
into account (5.2), we see that x belongs to relint(F ). The case of F fulfilling condition (5.8)
is completely analogous to the previously considered case. Summarizing, we conclude that
the relative interior of each facet of B contains a point of Λ. Thus, by Theorem 5.2, the set
B is maximal Λ-free.

(c): We distinguish two cases.
Case 1: oi ∈ int(Bi) for each i ∈ {1, 2}. In this case o ∈ int(B). Thus for showing that B

has the unique-lifting property with respect to Λ, it suffices to check the equality R+Λ = Rn
for the lifting region

R := RΛ(B, o) =
⋃

F∈Fn−1(B)

z∈Λ∩F

SF,z(o), (5.13)

where, for every F ∈ Fn−1(B) and z ∈ Λ ∩ F , one has

SF,z(o) = conv(F ∪ {o}) ∩
(
z − conv(F ∪ {o})

)
. (5.14)

Since oi ∈ int(Bi), no facet of Bi contains oi. Thus, by Lemma 5.1.(c), a subset F of Rn is a
facet of B if and only if F = F1♦F2, where Fi is a facet of Bi for each i ∈ {1, 2}. We consider
an arbitrary such facet F = F1 ♦F2. Choose also an arbitrary zi ∈ Fi ∩Λi for each i ∈ {1, 2}
and introduce the point z := ((1 − µ)z1, µz2), which by construction belongs to F ∩ Λ. We
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establish an inclusion relation between SF,z(o) and the two sets SF,zi(oi) with i ∈ {1, 2}. The
set conv(F ∪ {o}), which occurs twice on the right hand side of (5.14), fulfills

conv(F ∪ {o}) = conv
(
F1 × {o2} ∪ {o1} × F2 ∪ {o}

)
= conv

(
(F1 ∪ {o1})× {o2} ∪ {o1} × (F2 ∪ {o2})

)
= conv(F1 ∪ {o1}) ♦ conv(F2 ∪ {o2})
⊇ (1− µ) conv(F1 ∪ {o1})× µ conv(F2 ∪ {o2}). (5.15)

Therefore, also z−conv(F ∪{o}) ⊇ (1−µ)(z1−conv(F1∪{o1})×µ(z2−conv(F2∪{o2})).
Analogously to (5.14), one has SFi,zi(oi) = conv(Fi ∪ {oi}) ∩

(
zi − conv(Fi ∪ {oi}

)
for each

i ∈ {1, 2}. From this and (5.15), we get

SF,z(o) ⊇ (1− µ)SF1,z1(o1)× µSF2,z2(o2).

In view of (5.13), the latter yields the following relation between R and the lifting regions
Ri := RΛi(Bi, oi) with i ∈ {1, 2}:

R ⊇ (1− µ)
⋃

F1∈F
n1−1(B1)

z1∈Λ1∩F1

SF1,z1(o1)× µ
⋃

F2∈F
n2−1(B1)

z2∈Λ2∩F2

SF2,z2(o2) = (1− µ)R1 × µR2.

Consequently, using the fact that Bi has the unique-lifting property with respect to Λi and,
by this, Ri + Λi = Rni for each i ∈ {1, 2}, we obtain

R+ Λ ⊇ (1− µ)R1 × µR2 + (1− µ)Λ1 × µΛ2

= (1− µ)(R1 + Λ1)× µ(R2 + Λ2) = (1− µ)Rn1 × µRn2 = Rn.

Thus, R+ Λ = Rn, and so B has the unique-lifting property with respect to Λ.
Case 2: oi 6∈ int(Bi) for some i ∈ {1, 2}. For each i ∈ {1, 2}, we have oi ∈ Bi. Thus we

can choose a sequence (xi,t)t∈N of points in int(Bi) converging to oi. For every i ∈ {1, 2} and
t ∈ N, the interior of Bi − xi,t contains oi. Clearly, the set Bi − xi,t is maximal (Λi − xi,t)-
free and has the unique-lifting property with respect to Λi − xi,t. Hence, we can apply the
assertion obtained in Case 1. It follows that the set (B1 − x1,t) ♦ (B2 − x2,t) is maximal
(1− µ)(Λ1 − x1,t)× µ(Λ2 − x2,t)-free and has the unique-lifting property with respect to this
affine lattice. We introduce the vector

xt :=
(
(1− µ)x1,t, µx2,t

)
,

and the set Bt := (B1− x1,t)♦ (B2− x2,t) + xt (note that for t ∈ {1, 2}, there is a collision of
notations, because B1 and B2 are already introduced; we avoid this collision by imposing the
additional condition t ≥ 3). The set Bt is maximal Λ-free and has the unique-lifting property
with respect to Λ. We check that Bt → B = B1 ♦B2, as t→∞. Using the notation

B′1,t := (B1 − x1,t)× {o2}, B′1 := B1 × {o2},
B′2,t := {o1} × (B2 − x2,t), B′2 := {o1} ×B2,
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we obtain the following upper bounds on dist(Bt, B):

dist(Bt, B) = dist
(
conv(B′1,t ∪B′2,t) + xt, conv(B′1 ∪B′2)

)
≤dist

(
conv(B′1,t ∪B′2,t), conv(B′1 ∪B′2)

)
+ ‖xt‖

≤max
{

dist(B′1,t, B
′
1),dist(B′2,t, B

′
2)
}

+ ‖xt‖

One has
dist(B′i,t, B

′
i) = dist(Bi − xi,t, Bi) ≤ ‖xi,t‖.

Thus, dist(Bt, B) ≤ max {‖x1,t‖, ‖x2,t‖} + ‖xt‖, where the right hand side of this equality
converges to 0, as t → ∞. We have shown that the maximal Λ-free set Bt, which has the
unique-lifting property with respect to Λ, converges to the maximal Λ-free set B, as t→∞.
By Theorem 4.1, we conclude that B has the unique-lifting property with respect to Λ.

Theorem 5.3 can be extended to a version dealing with the coproduct of k ∈ N sets.

Corollary 5.4. Let k ∈ N. For each i ∈ {1, . . . , k}, let µi > 0, let ni ∈ N, let Λi be an
affine lattice of rank ni in Rni and let Bi be a ni-dimensional polytope in Rni such that the
origin of Rni is contained in Bi. Then, for B = µ(B1 ♦ . . .♦Bk) with µ := µ1 + · · ·+µk and
Λ := µ1Λ1 × · · · × µkΛk, the following assertions hold:

(a) If Bi is Λi-free for each i ∈ {1, . . . , k}, then B is Λ-free.

(b) If Bi is maximal Λi-free for each i ∈ {1, . . . , k}, then B is maximal Λ-free.

(c) If Bi is maximal Λi-free and has the unique-lifting property with respect to Λi for each
i ∈ {1, . . . , k}, then B is maximal Λ-free and has the unique-lifting property with respect
to Λ.

Proof. The assertion follows by induction, by using Theorem 5.3 in the inductive step, with
the basis case k = 1 being trivial.

The following is a simple reformulation of Corollary 5.4 in a form which uses lattice-free
sets rather than general Λ-free sets, where Λ is a translate of an arbitrary lattice.

Corollary 5.5. (Coproduct construction of various types of lattice-free sets.) Let k ∈ N.
For i ∈ {1, . . . , k}, let µi > 0, let ni ∈ N, let Bi be an ni-dimensional polytope in Rni and let
ci ∈ Bi. Then, for the polytope

B :=
µ(B1 − c1)

µ1
♦ · · · ♦ µ(Bk − ck)

µk
+ (c1, . . . , ck)

with µ := µ1 + · · ·+ µk, the following assertions hold:

(a) If Bi is lattice-free for each i ∈ {1, . . . , k}, then B is lattice-free.

(b) If Bi is maximal lattice-free for each i ∈ {1, . . . , k}, then B is maximal lattice-free.

(c) If Bi is maximal lattice-free and has the unique-lifting property for each i ∈ {1, . . . , k},
then B is maximal lattice-free and has the unique-lifting property.
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Proof. For every of the three assertions the proof is based on the respective assertion of
Corollary 5.4. We only prove (a), since the proofs of (b) and (c) are analogous. Assume
that, for each i ∈ {1, . . . , k}, the set Bi is maximal lattice-free. Then Bi − ci is maximal
(Zni − ci)-free. The origin of Rni belongs to Bi − ci. Thus, we can use Theorem 5.3 for the
sets Bi−ci. We obtain that the set µ

(
(B1−c1)♦· · ·♦(Bk−ck)

)
is maximal µ1(Zn1−c1)×· · ·×

µk(Znk − ck)-free. Using the affine transformation that sends (x1, . . . , xk) ∈ Rn1 × · · · × Rnk

to ( 1
µ1
x1, . . . ,

1
µk
xk) + (c1, . . . , ck), we conclude that the set B is lattice-free.

Pyramids and double pyramids. Since pyramids and double pyramids can be described
using the coproduct operation, Corollary 5.5 can be used to construct pyramids and double
pyramids which have the unique-lifting property. This is presented in the following corollary.

Corollary 5.6. Let B be an n-dimensional polytope in Rn. Let c ∈ B, let 0 ≤ γ < 1 and
let 0 < µ < 1. Then, for the polytope

P := conv

(
B − µc
1− µ × {γ} ∪ {c} ×

[(µ− 1)γ

µ
,
(µ− 1)γ + 1

µ

])
(5.16)

(which is a pyramid if γ = 0 and a double pyramid otherwise), the following assertions hold:

(a) If B is lattice-free, then P is lattice-free.

(b) If B is maximal lattice-free, then P is maximal lattice-free.

(c) If B has the unique-lifting property, then P has the unique-lifting polytope.

Proof. A straightforward computation shows that P = B−c
1−µ ♦ [0,1]−γ

µ + (c, γ), where c ∈ B
and γ ∈ [0, 1). Thus, the assertion follows directly from Corollary 5.5.

We can also use Corollary 5.5 to provide families of simplices and cross-polytopes having
the unique-lifting property.

Corollary 5.7. Let n ∈ N and let a1, . . . , an > 0 be such that 1
a1

+ · · · + 1
an

= 1. Then the
following assertions hold:

(a) The simplex conv{o, a1e1, . . . , anen} has the unique-lifting property.

(b) The cross-polytope conv{±a1
2 e1, . . . ,±an

2 en}+ (1
2 , . . . ,

1
2) has the unique-lifting property.

Proof. For both assertions we use Corollary 5.5 with k = n, Bi = [0, 1] and µi = 1
ai

for
every i. For assertion (a) we choose c1 = · · · = cn = 0, while for assertion (b) we choose
c1 = · · · = cn = 1

2 .

Remark 5.8. As mentioned in the Introduction, without loss of generality we only deal
with polytopes in this paper because maximal lattice-free polyhedra have a recession cone
which is a rational linear subspace, and so the lifting region is a cylinder over the lifting
region of a polytope. To use the coproduct operation on such unbounded maximal lattice-
free polyhedra, one would use the operation on the polytopes - after removing the linearity
spaces of the polyhedra - and then add back the direct sum of these two linear subspaces. �
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Comparison with existing results on the unique-lifting property. All known classes
of maximal lattice-free polytopes with the unique-lifting property from the literature can be
constructed using the formula (5.16). For simplices with the unique-lifting property:

• Setting a1 = a2 = . . . = an = n gives the so-called Type 1 triangle (for n = 2) and
its higher-dimensional generalizations that were first shown to have the unique-lifting
property in [CCZ11b] and [BCK12].

• All the results on 2-partitionable simplices from Section 4 in [BCK12] can be derived
using (5.16).

Of course, (5.16) can be used to create pyramids that are not simplices (for example, by
creating a n-dimensional pyramid over a 2-dimensional quadrilateral with unique-lifting), and
so it is a much more powerful and general construction compared to existing constructions for
simplices with unique lifting. Similarly, the cross-polytope construction in Corollary 5.7 (b)
for n = 2 gives precisely the quadrilaterals with unique-lifting property. Further, every max-
imal lattice-free polytope for n = 2 can be obtained using the coproduct construction (5.16).

In summary, the coproduct construction can be used to obtain every previously known
maximal lattice-free polytope with the unique-lifting property, and gives a very general way
to obtain new unique-lifting polytopes in higher dimensions.

The cube construction. One may wonder, in the light of previous remarks, whether for
a given dimension n ≥ 2 the coproduct construction generates all unique-lifting polytopes in
Rn. We saw that for n = 2 this is indeed the case. Below we describe a construction, which
shows that for infinitely many choices of n, there exist unique-lifting polytopes which cannot
be generated using the coproduct construction. First, we observe that nonsingular affine
transformations of cubes of dimension at least three are not coproducts of any polytopes:

Proposition 5.9. Let n ∈ N and n ≥ 3. Let B ⊆ [0, 1]n an image of the n-dimensional cube
under a nonsingular affine transformation. Then B is not representable as P1 ♦P2, where Pi
is an ni-dimensional polytope in Rni and ni ∈ N for each i ∈ {1, 2}.

Proof. Assume the contrary, that is, B = P1 ♦P2. For each i ∈ {1, 2} choose a facet Fi of Pi
with oi 6∈ Fi, where oi denotes the origin of Rni . By Lemma 5.1, the polytopes F = F1 ♦ F2

is a facet of B, while the polytopes F1 × {o2} and {o1} × F2 are faces of B. All faces of B
are nonsingular affine images of cubes of dimensions at most n. A cube of dimension k ∈ N
has 2k facets. Thus, Fi has 2(ni − 1) facets. In the case that ni ≥ 2 for each i ∈ {1, 2},
the set Fn−2(F ) of all facets of F is precisely the set of polytopes of the form F1 ♦ G2 and
G1 ♦ F2, where Gi is a facet of Fi. Consequently, F has 2(n1 − 1) + 2(n2 − 1) = 2(n − 2)
facets. On the other hand, since F is a facet of B and by this an nonsingular affine image of
an (n−1)-dimensional cube, F has 2(n−1) facets, which is a contradiction. We switch to the
case that ni = 1 for some i ∈ {1, 2}. Without loss of generality, let n2 = 1. In this case F2

is 0-dimensional and thus F is a pyramid with the base F1 × {o2}, which is a polytope with
2(n1 − 1) facets, and the apex {o1} × F2. It follows that F has 2(n1 − 1) + 1 = 2(n− 2) + 1
facets, which is a contradiction to the fact that F has 2(n− 1) facets.
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Proposition 5.10. Let n ∈ N be odd and n ≥ 3. Let Λ be the lattice of rank n in Rn given
by

Λ := {z = (z1, . . . , zn) ∈ Zn : z1 + · · ·+ zn is even} .
Then the cube B := [0, 2]n is a maximal Λ-free polytope with the unique-lifting property with
respect to Λ.

Proof. Clearly, B is Λ-free because the only integer point in the relative interior of B is
(1, . . . , 1) ∈ Rn. Since the dimension n is odd, this point is not in Λ. The cube B is even
maximal Λ-free, because in the relative interior of every facet of B one can find a point
of Λ with one component equal to 0 or 2 and the remaining components equal to 1. For
the verification of the unique-lifting property we choose f := (1, . . . , 1) and test whether
RΛ(B, f) + Λ = Rn. Let D be the fundamental parallelepiped for Λ, i.e., every point in Rn is
uniquely representable as a point from Λ and a point from D. Define RΛ(B, f)/Λ = {p ∈ D :
(p+Λ)∩RΛ(B, f) 6= ∅}. Then RΛ(B, f)+Λ = Rn if and only if vol(RΛ(B, f)/Λ) = vol(D) =
det(Λ) = 2. Consider the spindle S := SF,z(f) associated with the facet F := [0, 2]n−1 × {0}
and the lattice point z := (1, . . . , 1, 0) ∈ Λ, where z is the only point of Λ in the relative
interior of F . Furthermore, by symmetry reasons, the parts of RΛ(B, f) associated to the
remaining facets of B the same properties with respect to Λ as our fixed facet F . It follows,
taking into account (3.4), that vol(RΛ(B, f)/Λ) = 2n vol(S/Λ), where 2n is the number of
facets of B. We have relint(F ) ∩ Λ = {z}. Thus, in view of (3.3), the interior of S does
not contain distinct points congruent modulo Λ (note that we apply (3.3) with Λ in place
of Zn). Thus, one has vol(S/Λ) = vol(S). Note that, since F is centrally symmetric with
center at z, we see that S is a double pyramid, which can be represented by SF,z(f) =
conv{[1

2 ,
3
2 ]n−1 × {1

2} ∪ {z, f}), where z, f are the apexes of S and the set [1
2 ,

3
2 ]n−1 × {1

2}
is the base of S. Using the standard formula for the volume of double pyramids we obtain
vol(S) = 1

n . Thus, vol(RΛ(B, f)/Λ) = 2 = det(Λ). It follows that B has the unique-lifting
property with respect to Λ.

We remark that in the case of dimension n = 3, the polytope B discussed in the above
proposition can be found in [AWW11], where the authors use the standard lattice Z3 rather
than Λ. The respective polytope is written as [o, e1+e2]+[o,−e1+e2]+[o, e1+e2+2e3] rather
than [0, 2]3. To verify the equivalence with the example of the previous proposition it suffices
to check that the linear mapping sending e1 + e2 to 2e1, −e1 + e2 to 2e2 and e1 + e2 + 2e3 to
2e3, which maps bijectively the mentioned polytope from [AWW11] to the cube [0, 2]3, is also
a bijection between Z3 and Λ. Thus, B is a maximal lattice-free set which has the unique
lifting property, but is not the representable as a coproduct by Proposition 5.9.

6 Characterization of special polytopes with the unique-lifting
property

Towards explicit description of polytopes with the unique-lifting property. Pro-
viding an explicit description of all n-dimensional maximal lattice-free polytopes with the
unique-lifting property for n ≥ 2 is a challenging problem: so far, only the case n = 2 has
been settled completely. Already the case n = 3 seems to be highly nontrivial. In the authors’

22



opinion, one of the difficulties is that, in general, the set int(RF (B, f)) with f ∈ B \ F has
complicated geometry whenever the relative interior of a facet F of an n-dimensional max-
imal lattice-free polytope B contains more than one integral point. It is thus interesting to
analyze the somewhat more accessible special case in which relint(F )∩Zn consists of exactly
one point for each facet F of B. In this section we provide some partial information on the
problem described above.

We say that a closed set S ⊆ Rn with nonempty interior translatively tiles Rn if Rn can
be represented as

⋃
u∈U (S + u), where U ⊆ Rn and int(S + u1) ∩ int(S + u2) 6= ∅ for all

u1, u2 ∈ U with u1 6= u2. We say that S tiles Rn by its integral translations if the latter
condition holds with U = Zn.

Proposition 6.1. Let n ∈ N and let B be a maximal lattice-free set in Rn such that the
relative interior of each facet of B contains exactly one integral point. Then vol(R(B, f)) =
vol(R(B, f)/Zn) and therefore, the following are equivalent: (a) B has the unique-lifting
property, (b) vol(R(B, f)) = 1 for every f ∈ B and (c) the topological closure of int(R(B, f))
tiles Rn by its integral translations for every f ∈ B.

Proof. Consider an arbitrary facet F of B and an arbitrary f ∈ B. By Lemma 3.2, no point
of int(RF (B, f)) is congruent to a point of another set int(RF ′(B, f)) modulo Zn, where F ′ is
a facet of B with F ′ 6= F . Furthermore, taking into account the assumption on the facets of
B, (3.3) implies that no two distinct points of int(R(B, f)) are congruent modulo Zn. Hence
vol(R(B, f)) = vol(R(B, f)/Zn) ≤ 1. The latter implies the assertions (a), (b) and (c).

Thus, in our special situation, for verifying whether B has the unique-lifting property,
it suffices to compute the volume of the entire lifting region R(B, f) rather than the set
R(B, f)/Zn, which is a simplification. Nevertheless, since R(B, f) is still quite a complicated
set (e.g., not necessarily a convex one), checking vol(R(B, f)) = 1 is not an easy task.

Special pyramids with the unique-lifting property. We analyze and partially charac-
terize pyramids with the unique-lifting property. We shall use the following theorem, which
is proved in the appendix.

Theorem 6.2. (McMullen [McM13].) Let S ⊆ Rn be an n-dimensional spindle that transla-
tively tiles space. Then S is the image of the n-dimensional hypercube under an invertible
affine transformation.

Theorem 6.2 can be used to prove the following.

Theorem 6.3. Let n ∈ N and let B ⊆ Rn be a maximal lattice-free polytope with the unique-
lifting property such that B is a pyramid whose base contains exactly one integral point in the
relative interior. Then B is a simplex.

Proof. Let f be the apex and F be the base of B and let z be the unique integral point
in relint(F ). Since B has the unique-lifting property, by Proposition 6.1(c), the topologi-
cal closure of int(R(B, f)) tiles Rn by its integral translations. The topological closure of
int(R(B, f)) is S = SF,z(f), since SF,z(f) is the only full-dimensional spindle involved in the
definition of R(B, f). Thus, S tiles Rn by translations. By Theorem 6.2, S is an image of a
cube under an invertible affine transformation. In particular, the tangent cone at the apex f
is a simple cone. Therefore, B is a simplex.
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The following theorem is proved in [BCK12].

Theorem 6.4. Let n ∈ N and let B be a maximal lattice-free simplex in Rn such that each
facet of B has exactly one integer point in its relative interior. Then B has the unique-lifting
property if and only if B is an affine unimodular transformation of conv({o, ne1, . . . , nen}).

We can now generalize this result to pyramids.

Theorem 6.5. Let n ∈ N and let B be a maximal lattice-free pyramid in Rn such that every
facet of P contains exactly one integer point in its relative interior. Then B has the unique-
lifting property if and only if B is an affine unimodular transformation of conv({o, ne1, . . . , nen}).

Proof. Sufficiency follows from Corollary 5.7.(a). For showing the necessity we assume that
B has the unique-lifting property. By Theorem 6.3, B is a simplex. Thus, Theorem 6.4 can
be applied and the necessity follows immediately.
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A Proofs of Propositions 1.1 and 1.2

Proof of Proposition 1.1. First we show that the infimum in (1.7) is attained.
Consider the case of a bounded B. For a sufficiently large N ∈ N the Euclidean ball of

radius N centered at o contains B. It follows that φB−f (r) ≥ 1
N ‖r‖ for every r ∈ Rn, where

‖ · ‖ is the Euclidean norm. Consequently, φB−f (r + w) ≥ 1
N ‖r + w‖ ≥ 1

N (‖w‖ − ‖r‖) >
φB−f (r) for r ∈ Rn and w ∈ Zn whenever w fulfills ‖w‖ > (NφB−f (r) + ‖r‖). It follows
that infw∈Zn φB−f (r + w) is attained for some of finitely many vectors w ∈ Zn satisfying
‖w‖ ≤ (NφB−f (r) + ‖r‖).

Let us switch to the case that B is unbounded. It is known that the recession cone of B
is a linear space spanned by rational vectors; see see [Lov89], [BCCZ10] and [Ave13]. Up to
appropriate unimodular transformations, we can assume that B has the form B = B′ × Rk,
where k ∈ {1, . . . , n − 1} and B′ is a bounded maximal lattice-free set in Rn−k. We denote
by φB′−f the gauge-function of B′; it is well known that φB−f ((r′, r′′)) = φB′−f (r′) for all
(r′, r′′) ∈ Rn−k×Rk. Thus, it suffices to apply the assertion of the bounded case to B′ to get
the assertion for an unbounded B.

It remains to prove the assertion on polynomial-time computability. Assume that n ∈ N
is fixed and that f and ai (i ∈ I) are rational vectors, whose components are given as the
input in standard binary encoding. We have

φ∗B−f (r) := min
w∈Zn

φB−f (r + w)

= min
w∈Zn

max
i∈I

ai · (r + w)

= min {ρ ≥ 0 : ρ ≥ ai(r + w) ∀i ∈ I, w ∈ Zn} . (A.1)

Expression (A.1) defines a mixed-integer linear program with rational coefficients with n
integer variables (the components of w) and one real variable (the value ρ). Since n is fixed,
Lenstra’s algorithm [Len83] can be used to determine (A.1) in polynomial time.
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Proof of Proposition 1.2. It was established in [BCC+13] that for every r ∈ Rn such that
r + f ∈ R(f,B), π(r) = φB−f (r) for every minimal lifting π of φB−f . Moreover, it is not
difficult to see that every minimal lifting is periodic with respect to Zn, i.e., π(r) = π(r+w)
for every r ∈ Rn and w ∈ Zn. If φB−f has a unique lifting, then R(f,B) + Zn = Rn.
Therefore, for any r, there exists w ∈ Zn such that r + w + f ∈ R(f,B) and thus π(r) =
π(r + w) = φB−f (r + w) ≥ φ∗B−f (r) for every minimal lifting π, thus establishing that φ∗B−f
is a minimal lifting.

Suppose φB−f does not have a unique minimal lifting. This implies there are at least two
distinct minimal liftings and so there must exist a minimal lifting π that is different from the
lifting φ∗B−f . However, we show below that π ≤ φ∗B−f . Thus, φ∗B−f is not a minimal lifting.

To show that π ≤ φ∗B−f , consider any r ∈ Rn. It is well-known that π ≤ φB−f because π
is a minimal lifting. By Theorem 1.1, there exists w ∈ Zn such that φ∗B−f (r) = φB−f (r+w).
By the Zn-periodicity of π, we have π(r) = π(r + w) ≤ φB−f (r + w) = φ∗B−f (r).

B Proof of Theorem 6.2

Let P ⊆ Rn be an n-dimensional centrally symmetric polytope with centrally symmetric
facets. Let G be any (n − 2)-dimensional face of P . The belt corresponding to G is the set
of all facets which contain a translate of G or −G. Observe that every centrally symmetric
polytope P with centrally symmetric facets has belts of even size greater than or equal to 4.

A zonotope is a polytope given by a finite set of vectors V = {v1, . . . , vk} ⊆ Rn in the
following way: Z(V ) := {λ1v1 + . . . + λkvk : −1 ≤ λi ≤ 1 ∀i = 1, . . . , k}. We recall that
F (P, u) denotes the face of points in P maximizing the linear function x 7→ u·x. The following
simple lemma is well-known.

Lemma B.1. Let n ∈ N. Let V be a nonempty finite subset of Rn and let u ∈ Rn. Then
the face F (Z(V ), u) of the zonotope Z(V ) coincides, up to a translation, with the zonotope
Z
(
{v ∈ V : u · v = 0}

)
.

Proof. By the Minkowski additivity of the functional F ( · , u), defined by (4.1), we get
F (Z(V ), u) =

∑
v∈V F ([−v, v], u). It is straightforward to verify that for every v ∈ V one has

F ([−v, v], u) :=


{−v} if u · v < 0,

[−v, v] if u · v = 0,

{v} if u · v > 0.

Putting these observations together, we have the assertion.

The latter lemma shows that every face of a zonotope is a zonotope (and, thus, centrally
symmetric). The following lemma deals with belts of zonotopes. Each belt of the cube
[−1, 1]n consists of exactly four facets. The following theorem shows that the latter property
essentially characterizes cubes within all zonotopes.

Theorem B.2. Let n ∈ N, n ≥ 3. Let V be a finite set linearly spanning Rn and such that
each belt of the n-dimensional zonotope Z(V ) consists of exactly four facets. Then Z(V ) is
the image of the n-dimensional cube [−1, 1]n under a invertible linear transformation.
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Proof. Choose a basis b1, . . . , bn of Rn consisting of vectors in V . It suffices to show that
every vector of V is parallel to some vector of {b1, . . . , bn}. After a change of coordinates in
Rn we can assume that b1, . . . , bn is the standard basis e1, . . . , en.

Assume to the contrary, that there exists a vector a = (α1, α2, . . . , αn) ∈ V which is not
parallel to any vector of the basis e1, . . . , en. Thus, at least two of its components α1, . . . , αn
are nonzero. Without loss of generality let α1 6= 0 and α2 6= 0. Let W := V ∩ ({0}2 ×Rn−2).
We have e3, . . . , en ∈W and e1, e2, a ∈ V \W . Choose a nonzero vector u′ = R2×{0}n−2 such
that u′ is not orthogonal to any vector from V \W (e.g., one can choose u′ = (1, ε, 0, . . . , 0),
where ε > 0 is small). By Lemma B.1, the face G := F (Z(V ), u′) is a translation of Z(W ).
By the choice of W , the zonotope Z(W ) is (n− 2)-dimensional. We analyze the belt of Z(V )
determined by the (n− 2)-dimensional face G.

We shall construct a number of facets F (Z(V ), u) with u ∈ R2 × {0}n−2 belonging to
the belt generated by G. In view of Lemma B.1, for u = e1 the face F (Z(V ), u) contains a
translation of Z({e2} ∪W ). Similarly, for u = e2 the face F (Z(V ), u) contains a translation
of Z({e1} ∪ W ). For a nonzero vector u ∈ R2 × {0}n−2 orthogonal to a (say, for u =
(−α2, α1, 0, . . . , 0)) the face F (Z(V ), u) contains a translation of Z({a} ∪ W ). Since the
zonotopes Z({e1} ∪W ), Z({e2} ∪W ) and Z({a} ∪W ) are (n− 1)-dimensional, we see that
for all three choices of u above, the face F (Z(V ), u) is actually a facet. The latter shows
that the six distinct facets F (Z(V ), u) with u ∈ {±e1,±e2,±(−α2, α1, 0, . . . , 0)} belong to
the belt generated by G. The latter is a contradiction to the assumptions on Z(V ).

Theorem B.3. (McMullen [McM13].) Let n ∈ N, n ≥ 3, and let S ⊆ Rn be an n-dimensional
spindle with centrally symmetric facets. Then S is the image of the n-dimensional hypercube
under an invertible affine transformation.

Proof. Since all facets of S are centrally symmetric, by the Alexandrov-Shephard theorem
(see [McM76] for a short proof), the polytope S itself is also centrally symmetric. Without
loss of generality, we assume that S is symmetric in the origin. Let a and −a be the apexes
of the spindle S.

We first show that every belt of S is of length 4. Let G be an arbitrary (n−2)-dimensional
face of S and consider the belt of S associated with G. Since S is centrally symmetric, each
belt is even length, i.e., of length 2k where k ≥ 2. There are k facets F1, . . . , Fk involved
in this belt that contain a; the remaining k facets contain −a. We project S onto the two-
dimensional space perpendicular to G to get a polygon P . The facets F1, . . . , Fk are all
projected onto k distinct edges of the polygon P . Moreover, observe the projection of a is
contained in all these edges. Since P is two-dimensional, intersection of more than three
edges of P is empty. Hence k ≤ 2 and since we also have k ≥ 2, we get k = 2.

We next show that all faces of S are centrally symmetric. To do this, we first show
that every n − 2-dimensional face G is centrally symmetric (for n = 3 this is clear). For
i ∈ {1, 2}, by ci we denote the center of symmetry of Fi. Then G has the form Fi ∩ Fj or
(−Fi)∩ (−Fj) or Fi∩ (−Fj) with appropriate i, j satisfying {i, j} = {1, 2}. Consider the case
G = Fi ∩ Fj = F1 ∩ F2. The symmetry of F1 implies that 2c1 − G (the reflection of G with
respect to c1) is a face of F1. Since a ∈ G, the face 2c1−G does not contain a. The face G is
contained in exactly two facets of S, both belonging to the belt {F1, F2,−F1,−F2} generated
by G. The facet −F1 cannot contain 2c1 −G, because −F1 is opposite to F1 and thus does
not share any nonempty face with F1. The facet F2 of S cannot contain 2c1−G, because F2
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contains a, while 2c1 −G does not contain a. It follows that the facet −F2 contains 2c1 −G.
Then the reflection −2c2 − (2c1 − G) of 2c1 − G with respect to the center −c2 of −F2 is a
facet of −F2. On the other hand, the reflection −G of G with respect to the center o of S is a
face of S which does not contain a. Hence −G is a facet of −F2. We have shown that 2c1−G,
−2c2−2c1 +G and −G are facets of −F2. Since all these facets of F2 are parallel, two of them
must coincide. We cannot have 2c1 − G = −G, since this would imply c1 = o and, by this,
relint(F1)∩ int(S) 6= ∅, which is a contradiction. Consequently, 2c1 −G = −2c2 − 2c1 +G or
−2c2−2c1 +G = −G, where each of the two equalities implies that G is centrally symmetric.
The case G = (−Fi) ∩ (−Fj) is completely analogous to the case G = Fi ∩ Fj .

Let us switch to the case G = Fi ∩ (−Fj) with {i, j} = {1, 2}. Without loss of generality,
let G = F1 ∩ (−F2). The face G of S contains neither a nor −a. The same also holds for
the face −G of S. The reflection 2c1 −G of G with respect to the center c1 of F1 is a facet
of F1. Then 2c1 − G is not a facet of −F1, because 2c1 − G is a facet of F1, while F1 and
−F1 are opposite facets of S. Thus, 2c1 −G is a facet of F2 or −F2. If 2c1 −G is a facet of
F2, then also 2c2 − (2c1 −G) is a facet of F2. It follows that 2c1 −G, 2c2 − 2c1 +G and −G
are facets of F2. Again, since they are all parallel, two of them must coincide. Coincidence
of 2c1 −G and −G implies c1 = o and yields a contradiction. Coincidence of any two other
of these three facets of F2 implies that G is centrally symmetric. In the case that 2c1 − G
is a facet of −F2, we get that −2c2 − (2c1 − G) is a facet of −F2. Thus, G, −2c2 − G and
−2c2 − 2c1 + G are facets of −F2. Coincidence of G and −2c2 − 2c1 + G implies c1 = c2,
yielding relint(F1) ∩ relint(F2) 6= ∅, which is a contradiction. Coincidence of any other of
these three facets of S implies that G is centrally symmetric.

It follows that every (n− 2)-dimensional face of S is centrally symmetric. Therefore, by
a theorem of McMullen [McM70], in the case n ≥ 4, every face of S is centrally symmetric
(in the case n = 3 this is clear from the assumptions). Consequently, all 2-dimensional
faces of S are centrally symmetric and, by this, S is a zonotope; see, for example, [Sch93,
Theorem 3.5.1]. Since S is a zonotope whose belts are length 4, by Lemma B.1, S is the
image of the n-dimensional hypercube under an invertible affine transformation.

Theorem B.3 was communicated to us by Peter McMullen via personal email. We include
a complete proof here as the result does not appear explicitly in the literature. The above
proof is based on a proof sketch by Prof. McMullen.

We now state the celebrated Venkov-Alexandrov-McMullen theorem on translative tilings.

Theorem B.4. (Venkov-Alexandrov-McMullen; see [Gru07, Theorem 32.2].) Let P be a
compact convex set with nonempty interior that translatively tiles Rn. Then the following
assertions hold:

(a) P is a centrally symmetric polytope.

(b) All facets of P are centrally symmetric.

(c) Every belt of P is either length 4 or 6.

Proof of Theorem 6.2. We only need to consider the case n ≥ 3. The assertion follows directly
from Theorem B.4 (assertions (a) and (b)) and Theorem B.3.
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