Skip to main content
Log in

Error bounds for mixed integer linear optimization problems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We introduce computable a priori and a posteriori error bounds for optimality and feasibility of a point generated as the rounding of an optimal point of the LP relaxation of a mixed integer linear optimization problem. Treating the mesh size of integer vectors as a parameter allows us to study the effect of different “granularities” in the discrete variables on the error bounds. Our analysis mainly bases on a global error bound for mixed integer linear problems constructed via a so-called grid relaxation retract. Relations to proximity results, the integer rounding property, and binary analytic problems are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Auslender, A., Crouzeix, J.-P.: Global regularity theorems. Math. Oper. Res. 13, 243–253 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baum, S.P., Trotter Jr. L.E.: Integer rounding for polymatroid and branching optimization problems. SIAM J. Algebraic Discrete Methods 2, 416–425 (1981)

  3. Bergthaller, C., Singer, I.: The distance to a polyhedron. Linear Algebra Appl. 169, 111–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  5. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, É.: Sensitivity theorems in integer linear programming. Math. Program. 34, 251–264 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng, S.: Computable error bounds for convex inequality systems in reflexive Banach Spaces. SIAM J. Optim. 7, 274279 (1997)

    Article  Google Scholar 

  7. Eisenbrand, F., Hähnle, N., Pálvölgyi, D., Shmonin, G.: Testing additive integrality gaps. Math. Program. 141, 257–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds) 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art. Springer, Berlin (2010)

  9. Giles, F.R., Orlin, J.B.: Verifying total dual integrality. Manuscript (1981)

  10. Granot, F., Skorin-Kapov, J.: Some proximity and sensitivity results in quadratic integer programming. Math. Program. 47, 259–268 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  12. Güler, O., Hoffman, A.J., Rothblum, U.G.: Approximations to solutions to systems of linear inequalities. SIAM J. Matrix Anal. Appl. 16, 688–696 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research. McGraw-Hill, New York (2005)

    Google Scholar 

  14. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand. 49, 263–265 (1952)

    Article  Google Scholar 

  15. Klatte, D.: Eine Bemerkung zur parametrischen quadratischen Optimierung. Seminarbericht Nr. 50, Sektion Mathematik der Humboldt-Universität zu Berlin, pp. 174–185 (1983)

  16. Klatte, D., Thiere, G.: Error bounds for solutions of linear equations and inequalities. Math. Methods Oper. Res. 41, 191–214 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lewis, A.S., Pang, J.-S.: Error bounds for convex inequality systems. In: Crouzeix, J.P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, pp. 75–110. Kluwer Academic Publishers, Boston (1996)

    Google Scholar 

  18. Li, G.: Global error bounds for piecewise convex polynomials. Math. Program. 137, 3764 (2013)

    Article  Google Scholar 

  19. Li, G., Mordukhovich, B.S., Pham, T.S.: New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors. Math. Program. doi:10.1007/s10107-014-0806-9

  20. Li, W.: The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program. Linear Algebra Appl. 187, 15–40 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, W.: Sharp Lipschitz constants for basic optimal solutions and basic feasible solutions of linear programs. SIAM J. Control Optim. 32, 140–153 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luo, X.D., Luo, Z.Q.: Extension of Hoffman’s error bound to polynomial systems. SIAM J. Optim. 4, 383–392 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luo, Z.Q., Pang, J.S.: Error bounds for analytic systems and their applications. Math. Program. 67, 1–28 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mangasarian, O.L.: A condition number for differentiable convex inequalities. Math. Oper. Res. 10, 175–179 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mangasarian, O.L., Shiau, T.H.: Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems. SIAM J. Control Optim. 25, 583–595 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ralphs, T., Hassanzadeh, A.: On the value function of a mixed integer linear optimization problem and an algorithm for its construction. COR@L Technical Report 14T–004 (2014)

  27. Robinson, S.M.: An application of error bounds for convex programming in a linear space. SIAM J. Control Optim. 13, 271–273 (1975)

    Article  MATH  Google Scholar 

  28. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

    Google Scholar 

  29. Zalinescu, C.: Sharp estimates for Hoffman’s constant for systems of linear inequalities and equalities. SIAM J. Optim. 14, 517–533 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the anonymous referees for their precise and substantial remarks, and to Immanuel Bomze, Peter Gritzmann and Guoyin Li for helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Stein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stein, O. Error bounds for mixed integer linear optimization problems. Math. Program. 156, 101–123 (2016). https://doi.org/10.1007/s10107-015-0872-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0872-7

Keywords

Mathematics Subject Classification

Navigation