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Abstract We propose a bundle method for minimizing nonsmooth conuextfons that
combines both the level and the proximal stabilizations.stvlaundle algorithms use a
cutting-plane model of the objective function to formul@esubproblem whose solution
gives the next iterate. Proximal bundle methods employ tbéahin the objective function
of the subproblem, while level methods put the model in tHgsablem’s constraints. The
proposed algorithm defines new iterates by solving a sulgmolhat employs the model
in both the objective function and in the constraints. Oneaathge when compared to the
proximal approach is that the level set constraint provigesrtain Lagrange multiplier,
which is used to update the proximal parameter in a novel grankie also show that in
the case of inexact function and subgradient evaluatiomsdditional procedure needs to
be performed by our variant to deal with inexactness (as sggbdo the proximal bundle
methods that require special modifications). Numericakegrpents on almost one thousand
instances of different types of problems are presented eperiments show that the dou-
bly stabilized bundle method inherits useful features eflével and the proximal versions,
and compares favorably to both of them.
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1 Introduction

In this work, we are interested in solving problems of therfor

inf . ;
= Xg;f(x), (@B)]
where f : 0" — 0 is a nonsmooth convex function am@l C 0" is a nonempty convex
and closed set, typically polyhedral. As is widely accepthd most efficient optimization
techniques to solve such problems are the bundle methafs[¥5, Chap. XIV], [5, Part
Il], and the analytic-center cutting-plane methods, ¢12,13]. All bundle methods make
use of the following three ingredients:

(i) aconvex modef, of f (usually, fy is a cutting-plane approximation satisfyifig< f);
(ii) a stability centerxg (some previous iterate, usually the “best” point generdtgdhe
iterative process so far);
(i) a certain algorithmic parameter updated at each fi@na(proximal, level, or trust-
region, depending on the variant of the method).

The new iteratexc. 1 of a bundle method depends on the above three ingredientsewvh
organization defines different methods. The main classetharproximal, level, and trust-
region. We next discuss some details of the proximal and \@r@nts, as these are the two
strategies relevant for our developments. The simplifietteptual versions can be stated
as follows.

Proximal bundle method e.g., [16,20, 10, 24],
s 1 R
Xei1 = argmln{ fk(x)+2—rk|x—xk|2: xe 36”}, 2)

wherety > 0 is the proximal parameter.
Level bundle method e.g., [19,17,6,22],

Xgi1 i= arg min{%|x—>‘<k\2: ka(x) </tlx, XE 3{} , 3)

where/y € 0 is the level parameter.

As is well known, for the same modé] and the same stability centey, dne can find the
proximal and level parameterg and/, such that the two versions above generate the same
next iteratexc, 1 (i.e., for some choice of parameters, the solution of thepmalidlems (2)
and (3) is the same). In this (formal, theoretical) senséwbepproaches can be considered
equivalent. Details of the implementation and practicafggenance can be quite different,
however. In particular, because the parameters are upbgtsilategies specific to each of
the methods, and the corresponding rules are not relatetidieect way.

Itis worth to mention that updating the stability centgin’item (ii) above is mandatory
for (at least the most standard) versions of proximal bumdéhods, but it may not be
necessary for level methods. In some variants of level nusttome can update at each
iteration [19, 9], or keepy "= X fixed for all iterations [3] (in which casg toes not have the
role of the “best” point computed so far). See also [17, 6p4Marious rules to manage the
stability centerx in level methods.

It should be stressed that the choice of the paranmtierthe proximal variant is quite
a delicate task. Although the simplest choige= 7 > O (for all k) is enough to prove the-
oretical convergence, it is well understood that for pdtefficiencyty must be properly
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updated along iterations. We refer to [16] and [20] for sormatsgies that usually work
well in practice. However, the former has some heuristituiess, while the latter (based on
guasi-Newton formulas) is designed for unconstrainedlprob and needs some safeguards
to fit the general convergence theory. Also, it was noticedhdunumerical experimenta-
tion in [26] that for constrained problems the rule of [20fdmot work as well as for the
unconstrained.

Continuing the discussion of choosing parameters, a fixaal farametefy is not pos-
sible, of course, as this may give infeasible subproblesB@t there exist strategies that
managely by simple explicit calculations (whether the problem is em&trained or con-
strained), and which are theoretically justified. As a sotrevmore costly but very efficient
option, the level parametég can be adjusted by solving a linear program (when the feasi-
ble set2” is polyhedral, and is either bounded or there is a known Ideend f'°" for the
optimal valuef™); see [19,9] and (17) below.

Overall, there seems to be a consensus that for solving streamed problems proximal
bundle methods are very good choices, although the updailedgfor 1 is somewhat of
an issue (at least from the viewpoint of combining theory effitiency). On the other
hand, there is some evidence that for constrained probleves$ bundle methods might be
preferable. Also, strategies for updating the level patantg are readily available. Itis thus
appealing to try to combine the attractive features of bpitr@aches in a single algorithm
that performs for unconstrained (respectively, conseé@dimroblems as well as proximal
bundle methods (respectively, level bundle methods), ofb@aven better in some cases.
To this end, we propose what we calfiaubly stabilized bundle methathat combines both
proximal and level stabilizations in the same subprobleamely:

s 1 R v
Xei1 = arg mln{ fi(X) + 2—Tk|x—xk|2 : fe(X) < by, x€ 5&”} . (4)

We immediately comment that (4) can be reformulated as argtiagorogram (if.2" is
polyhedral), just like (2) or (3), with just one extra scat@und constraint compared to (2),
or one extra scalar variable and scalar bound constrainpaced to (3); see (8) below. The
dual for (4) is also very similar in structure to the duals2fdr (3). Thus, the subproblem
(4) is no harder (or at least, cannot be much harder) to soare(®) or (3). Moreover, it turns
out that the (unique) solution to problem (4) is also a solutb at least one of the problems
(2) or (3); see Lemma 1 below. This reveals that the proposettiad indeed combines the
proximal and the level approaches, “automatically” chngdietween the two at every step.
The advantages derived from (4) can be summarized as follows

— the level parametef is easily updated, and can take into account a lower boundTor
if it is available;

—the level constrainfk(x) < Iy provides:

—a Lagrange multiplier useful to update the proximal pateng;
— an additional useful stopping test, based on a certaimayity gap;

— the objective functiorf,(x) + 2—1'( X — |2 with proximal regularization allows for search-
ing for good pointsinside of the level set{x € 2" : fi(x) < ¢}, and not only on its
boundary, as the level method does.

(It should be noted here that proximal bundle methods caneadgloit known lower bounds

for finf by adding certain associated linearizations [11].)

Among other things, our new variant aims at taking advantdglee simplicity of man-
aging the level parametég to produce a simple and efficient rule to update the proximal
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parameteny. In particular, this update depends on whether or not thel lsnstraint is ac-
tive. In this sense, activity of this constraint (and theoagated Lagrange multiplier) can be
seen as a tool indicating when and how to updgt&urthermore, depending on the feasible
setZ" (for example if it is bounded), the management of the levehpeeter can provide a
lower bound forf™, giving an additional stopping test based on a certain agiiyngap. It
will be shown in Section 2 that the lower bound can be updateddomputationally cheap
way.

The idea to combine proximal and level bundle methods wassfiggested in [21] (giv-
ing some limited numerical experiment, without proof of eergence and without handling
inexact data). To the best of our knowledge, the only othedleitype method which em-
ploys some kind of double stabilization is [2], where theximmal and trust-region features
are present for piecewise quadratic modeld oHowever, the motivation for this and the
resulting algorithm are rather different from ours. Forrepée, the subproblems in [2] are
that of minimizing a quadratic function subjectdoadratic constraints

The rest of this paper is organized as follows. Section Déhices the doubly stabi-
lized bundle algorithm more formally. Section 3 is devotedénvergence analysis of the
method. Inexactness of the function and subgradient eahsis addressed in Section 4.
Section 5 contains numerical experiments comparing thegsed algorithm with: the prox-
imal bundle methods using the updating rulestfipbased on [16] and [20]; and the level
method given in [6]. A variety of different types of problerase used to validate our pro-
posal: the model unit-commitment problem in the energysetiwo-stage stochastic linear
programming, nonsmoothly-regularized maxima of quadratnctions, and some standard
nonsmooth optimization test problems. Finally, Sectioiivégsome concluding comments
and remarks.

Our notation is standard. For any poimty € 0", (x,y) stands for the Euclidean inner
product, and - | for the associated norm, i.ex| = 1/ (x,X). For a set2” C 0", we denote
by i2- its indicator function, i.e.iyz-(x) = 0 if x € 2 andiy (X) = 4o otherwise. For a
convex set?’, riZ" stands for its relative interior, ardy (x) for its normal cone at the
pointx, i.e., the se{y : (y,z—x) <0Vze 27} if xe 2" and the empty set otherwise. Given
a convex functionf, we denote its subdifferential at the poiby df(x) = {g: f(y) >
f(x)+(g,y—x) Vy}.

2 A doubly stabilized bundle method

The method generates a sequence of feasible iteates- 2". For each poingg an oracle
(black-box) is called to compute the function valéiex) and one arbitrary subgradient
Ok € 0 f(x). With this information, the method creates the linearati

fie(X) 1= () + (G, X— i) < F(X), (5)

where the inequality holds by the definition of the subgnatld f. At iterationk, a poly-
hedralcutting-planemodel of f is available:

fi(x) := max f;(x) < f(x), (6)
IS/

where the se8y may index some of the Iinearizatiorﬁ_g j <k, of the form in (5), but also

affine functions obtained as certain convex combinatiorssiof previous linearizations (the

so-called aggregate linearizations, defined below). N (6) implies that the inequality
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in (6) holds for such a construction. Some additional (séatdconditions on the model
f will be imposed further below, when needed. Note finally thatur notationZ, simply
enumerates the affine functions comprisﬁagand thusy need not be a subsetff, ... k}
even thoughf, is, of course, built with information computed on those jwes iterations.
In particular, the aggregate linearization mentioned abmay be indexed by somge¢
{1,...,k} (this gives some notational convenience; for example, waatchave to worry
about assigning to an aggregate linearization an indeadyreaken by the “usual” previous
cutting plane).

Let X be the current stability center (the best past iterate),leinzﬁ be a nonnegative
scalar representing how much we aim to reduce the va(dig) at the current iteration.
Define the corresponding level parameter by

= F(R) — VL.

Then the level set associated with the mofjednd the paramete, is given by

Xk = {xe 2 : fix) <}, (7)

which is polyhedral ifZ" is polyhedral.
We first observe that in the standard (via slack variable)rrefilation of the doubly
stabilized subproblem (4) given by

min {r+%\x—>€k\2: fi(X) <, fil(X) < b, x e 5&”},
k

(x,r)egntl

the first constraint must be active at the solutidp(X) = r), as otherwise the term in
the objective can be reduced maintaining feasibility (wite samex part of the solution).
This observation implies that the solution to the latterbtem, and thus to (4), can be
alternatively obtained by solving the simpler

min {r+%|x—>‘<k|2: ka(x)gr,rgék,xe%}. (8)
k

(x,r)egntl

We now state some properties of the minimixgr; in (4), or equivalently of the part
of the solution in (8).

Proposition 1 If Xy # 0 then problen{4) has the unique solutionx;.

In addition, if 2 is polyhedral orri 2" N{x € O": fi(x) < £} # O then there exist
Ski1 € 0ﬂ((xk+1) and ho1 € Ng-(Xr1) = dig (Xci1), and (scalar) Lagrange multipliers
LUk > 1and Ay > 0 such that

~ N A 1 .
Xer1 =R — TGk, With Gk =sci1+ Ehml, He = Ak+1 and Ag(fe(Xr1) —€k) =0. (9)

In addition, for all xe 2" theaggregate linearization

() = fulXers) + (G- —Xrn)  satisfies 200 < fu) < f0.  (10)
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Proof The existence and uniqueness of solutipny to (4) follow from the assumption that
the problem is feasible and the fact that its objective fiamcis strongly convex.

Next, under the stated assumptions, combining the resaits[fL5] (specifically, Thm. 1.1.1
on p. 293, Prop. 5.3.1 and Remark 5.3.2 on p. 139, Prop. 2122 808), the optimality
conditions for (8) assert that there exigt> 0 andAx > 0 such that

1 R .
Oe o (X1 — ) + MO fie(Mier 1) + Nz (Xier1),

0=1—pi+A

e fic(Xer1) =) =0, A(rier — ) =0.
In particular, i = 1+ A > 1 and thusrg, 1 = fx(Xci1), and there exissi 1 € 9 fie(Xc1)
andhy;1 € Ng (X1) such that

R R 1
Xier1 = R — T MiSier 1+ M 1) = K — Tiekli (S 1 + m hii1),

which completes the proof of all the relations in (9).
To show (10), note that for al € .2 it holds that

_ . 1 .
) = fe(Xicr1) + (Sep1, X—Xip1) + m<hk+17X—Xk+1> < f(x) < (%),

where the first inequality follows from the facts tisat1 € 0 fic(Xci1) andhi,1 € N (Xp1)-

O

The next result shows that the solutirn ; of the doubly stabilized problem (4) solves
at least one of the “singly” stabilized problems: the proirt2) or the level (3).

Lemmal For 1y > 0 and ¢ € O, let . € O" and % € 0" be the (unique) solutions of
problems(2) and (3), respectively. Let 1 € 0" be the unique solution of proble®).
Then it holds that

wherepy is the Lagrange multiplier defined in Proposition 1.

Proof Let ux = 1. Similarly to the proof of Proposition 1, writing the opfatity conditions
for (4) with p = 1 gives

1 A 3
Oe ™ (%1 —Ri) + 0 T(Xer1) + N (i)

which shows thak, ; satisfies the optimality condition for (2). Since the sauos of the
respective problems are unique, it holds that = x{.

If i > 1 thenA, > 0, and hence(xc.1) = 4 by (9). Clearly, the solutiorxﬁ of (3) is
also the unique solution of

min{(wr%\xff(k\zz fe(X) <, x € %} (11)
k

Observe that the optimal value of (11) is bounded below byptenal value of the problem
(4), due to the level constrairdf > ka(x). As the solutionx, 1 of (4) is feasible in (11)
and achieves this lower bound (sinGe= f{k(Xk+1)), it follows thatxy.1 solves (11). Since
problems (11) and (4) have unique solutions, it holds that = xﬁ.

O
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According to Lemma 1, we shall catk., a proximal iterateif p = 1, and otherwise
(uk > 1), we shall call it alevel iterate Similarly, an iterationk will be referred to as a
proximal or a level iteration. It is thus clear that eachdtem of the doubly stabilized
algorithm makes either a step of the associated proximadilbumethod, or of the level
method. At every iteration, the algorithm makes this chaictomatically.

We now define th@redicted decreasey the modelf, by

Vi = f(%) — fk(Xei1) > 0, (12)

where the inequality follows fromy_ 1 being the solution of (4) via

e 1 .
f(R) = fi(R) = fXirn) + z—n(\xkﬂ—xk\z-

As discussed in [23], to define the predicted decrease dudhére are alternatives other
than (12). We have chosen (12) because of its direct commegiith the level parametéy,
established in (15) below.

Once the iteratey . ; is computed, the oracle provides the new function vl 1).
As is usual in bundle methods, we shall change the stabiéityer when the new iterate
gives sufficient descent with respect to the predicted oaendly, when

f (1) < F (%) —mevg, (13)

wherem¢ € (0,1). Accordingly, each iteration results either
- in adescent stevhen (13) holds, in which casg i5 moved tax ., 1; or
- in anull stepwhen (13) does not hold, and the stability center is maisthin

We next provide useful connections between the predicte@edee\/ﬁ = (%) — b
related to the level parametéy, the predicted decreasp = f (%) — fk(x1) related to the
solution of (4) and thus to the proximal parametgrand the aggregate linearization error
given by _

&= (&) — fE(Re) - (14)

We also establish a key relation that would be the basis ferstibsequent convergence
analysis.

Proposition 2 It holds that
& >0, &+ Tk|G? =V > T(R) — b=V, (15)
V\ihere U is the Lagrange multiplier defined in Proposition 1. Moreove Ly > 1 then
k :F\I/Jﬁrlthermore, for all xe 2" it holds that
f (%) + (G, X— %) — & < F(%). (16)
(In other words i is &-subgradient of the essential objectie+i4-) at %.)

Proof The fact thaieg > 0 follows directly from (10). To show (15), note that

& = F(R) — FA(R)
= (%) — (Fe(Xer1) + (G Kk — X))
= Vi — (G, Rk — X 1)
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where the last equality follows from (9). In addition, singg1 is feasible in (4), we have
that fi(Xcr1) < & = f(%) — vk, which impliesvi < V{. This completes the proof of (15).
(Recall also that ifux > 1 thenAg > 0, in which case (9) implieska(xkﬂ) = /x, SO that
vi=v0)

The relation (16) follows from the fact thgg iS é&.-subgradient of the essential objective
atXy, which is verified as follows. Using again (10), for gl 2" it holds that

f(x) > f2(x)

= fiXira) + (G X— X 1)
F(R) = (F (%) — fuOer1)) + (G X — %) + (G R — Xir1)
f(Ri) — Vi + (G- X— Ri) + Tkl Gl 2,

and (16) follows taking into account (15). ad

The relation (16) motivates one of the alternative stopp@sgs for our algorithm, which
is in the spirit of standard bundle methods: stop the algoritvhen bothdy| ande; are small
enough, i.e., an approximate optimality condition holds.

We now state the algorithm in full detail, and then commensome of its ingredients.

DOUBLY STABILIZED BUNDLE ALGORITHM

Step 0 (initialization) Choose parameters gm; € (0,1), and stopping tolerances
Tolp,Tole, Tolg > 0. Given x € 2, setX; < xi. Compute {x1) and g € Jf(xy).
If a lower bound PV for " is available, set y/< (1—my)(f(%)— fl°); otherwise,
set O <+ —o0 and choose > 0. ChooS€rmin > 0, T1 > Tmin and set k= 1.
Step 1 (first stopping testpet the optimality gap by < (%) — fl'(o"".
If Ay < Toly, Stop. Returri and f(Xy).
Step 2 (trial point finding) Define the level parameter ty < f(X«) —vﬁ.
Step 2.1(feasibility detection)If the level seKy defined by(7) is detected to be empty,
set O < ¢, Vi, + (1—my) (f (%) — fl°) and go back to Step 1.
Step 2.2(next iterate)Solve(8) to obtain (xx.1,rk+1) and a Lagrange multiplieig
associated to the level constrainky £x. Setpy < A+ 1, Vi < F(R) — e, Gk
(R — Xt 1)/ Tkl and & < VE — Tk |G 2.
Step 3 (second stopping tesif) & < Tole and |Gk| < Tolg, stop. Returk and f(X).
Step 4 (oracle call)Compute fXc;1) and g1 € 9 f (X 1).
Step 5 (descent tesFhoose £ € [floW, fin].
If (13)holds, declare a descent step; otherwise a null step.
Step 5.1(descent stepfetki 1 < Xk 1, Tki1 ¢ Tkk and
Viq e min{v, (1—my)(F (81) — 9% .
Choose a moded, 1 satisfyingfy 1(-) < f(-).
Step 5.2(null step)Setky;1 + X and choosay. 1 € [Tmin, Tk
If i > 1 (level iterate), setjy, , < myvi; otherwise set}y, , + V.
Choose a modei; 1 satisfyingmax{ fi;1(-), f2(-)} < fra(-) < F().
Step 6 (loop) Set k< k+ 1 and go back to Step 1.

Some comments are in order.
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(a) Observe that the lower bourféo"" is updated either when the level $&t is empty in
Step 2.1, or in Step 5. In the second case, it is explicit {4t < ™. In the first case,
Xk = 0 means thafy < fi(x) < f(x) for all x€ 2. And since the update set§" « 4,
it again holds thaf\°¥ < . Therefore,fl° < " for all k, and if the algorithm stops
at Step 1, we have that

Tola > f(R) — fO > f(%) — £,

i.e.,X is aTolx-approximate solution to problem (1).

Note that when the level s&y is empty, the update rules in the pass through Step 2.1
and back through Step 1, decrease the optimalityAyapy the factor of(1 —my).

A simple update of the lower bound in Step (8% « fjoV.

(b) To identify if the level set is empty, the most natural mimbly to proceed as usual
with solving (4) and let the solver return with the infeabtpiflag. Note that this is not a
wasteful computation, as it leads to adjusting the levedupeater as well as improving the
lower boundfl'(o"". Alternatively, to detect infeasibility we can solve thedar program (if
Z is a polyhedron)

mins s.t. fj(x)+s<V]je %, xe Z,s>0.

If its optimal value is positive theK = 0.

(c) If one prefers to avoid infeasible level s&ts then when%" is bounded orfl'(o"" is finite,
it is enough to updatél'f"" in Step 5 as follows, solving the linear program:

setfid < minr sit. fi(x) <rvje %, f<r,xe 2, red.  (17)

This strategy is especially effective when solving LP istoat expensive relative to other
tasks of the algorithm (in particular, the oracle compotag).

(d) If 27 is unbounded, the level s&j can be nonempty for ak, and f,'("W will never be
updated (for example, for problem (1) wift{x) = e* and 2"~ = [0, +)). In that case,
the algorithm will not stop at Step 1, unless the initial lovi®und f{o‘” is within the
Tolx-tolerance off 1,

(e) Step 5 increases the proximal parametesnly after descent steps resulting from level
iterations i > 1). On the other handy can be decreased only after null steps. A simple
rule used in the numerical experiments of Section 5 is

Tkt < max{ Tmin, Tkvli/vli} ’

which decreases the proximal parameter only after nulkstegulting from proximal iter-
ations {; > v(k is only possible whempy = 1, see Proposition 2). In this manner, the level
parametery and the multiplier indicate how to update the proximal parametigerThis
is precisely the novel strategy to manage proximal parameteposed in this work.

(f) If at Step 2 (for allk) the rule, = (%) — Vi is replaced by = +oo, Algorithm 2
becomes a proximal bundle algorithm (all iterations arecipnal iterations).

(g) The QP formulation of subproblem (8) is given by

. 1 o e i
min {r+?|x7xk|2: fi(x)<rvje'%k’r<€k’xegg}.
k

(x,r)eqntl

It can be seen that (i2" = O") its dual has the number of variables equal to the number
of cutting-planes in the bundle.
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To keep the size of this QP (or of its dual) manageable, thebeurof elements in the
bundle (the cardinality of the se#y) should be kept bounded, without impairing con-
vergence. For this, the usual aggregation techniques afpab bundle can be employed
here. After a serious step, the only requirement is that tbeainshould be below the ob-
jective function (which means that elements from the burndie be deleted arbitrarily);
this is reflected in Step 5.1 of Algorithm 2. During a sequeoiceonsecutive nulls steps,
the modelf, can be composed of as few as only two cutting planes, comelspgp to the
new linearizatiorfy 1 and the aggregate linearizatiéf (or any number of cutting planes,
as long as these two are included). This is reflected in thicehad the model specified
in Step 5.2 of Algorithm 2. If the next model contains all tiveehrizations for which the
constraintfj(x) < r of the above QP is active at its soluti@xx;1,r+1), then there is no
need to include the aggregate linearizatign

3 Convergence analysis

Convergence analysis of the doubly stabilized bundle neklias to account for all the pos-
sible combinations of level and proximal steps, whethel oudescent, and the possibility
of empty level sets. To that end, we consider the followirrgéhpossible cases:
— The level setXy are empty infinitely many times;
— The above does not happen, and infinitely many descentateggnerated;
— In the same situation, finitely many descent steps are gester

In what follows, we assume th@ibl, = Tole = Tolg = 0 and that Algorithm 2 does
not stop. (If the algorithm stops for zero tolerance in Stefhén the last descent step is,
by comment (a) above, a solution to the problem. The samelusion holds, by (16),
if the method stops for zero tolerances in Step 3.) As a bgymbof our convergence
analysis, it would also follow that if the stopping rules gaeters are positive then the
method terminates in a finite number of iterations, with gorapriate approximate solution.

Lemma 2 Suppose the level sE is empty infinitely many times.
Thend, — 0, { f (%)} — ", and every cluster point of the sequerd@g} (if any exists)
is a solution to problen(l); or the lastX is a solution if this sequence is finite.

Proof It follows by Step 2 that for alk after the firstX, = 0 is encountered, we have
f|'<°"" > —oo and thusdy < +. Also, by Steps 2 and 5{( < (1—nmy)Ax. Thus,

f(Re) — le= (%) — (F(R) — Vi) = Vie < (1—my) 4,

which shows that iXy = 0 at iteratiork, then the updatét'(‘)"" «+ lx decreases the optimality
gap 4 by a factor of at leastl — my). Hence, if this happens infinitely many times, we
have thatA, — 0. Moreover, as no level set can be emptyff = —co, in the case under
consideratiorf ™ > —co. We can then writé = f (%) — fl° > f (&) — f", which implies
the assertion adx — 0. a

From now on, we consider the case whign 0 for all k large enough. Clearly, without
loss of generality, we can simply assume tiatZ 0 for all k.

Analysis in the case of infinitely many descent steps esagnfollows the theory for
proximal bundle methods; in particular the argument in gt} be readily applied.
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Lemma 3 Suppose Algorithm 2 generates infinitely many descent.steps

Then{f(%)} — f"" and every cluster point of the sequenick} (if any exist) is a
solution to problen(l).

In addition, if the solution set of1) is nonempty and the sequengg L} is bounded
above (for example, this is the case when there are finitelyyntevel iterations) then the
sequenceg X} converges to a solution ).

Proof Let {%;} be the subsequence p} such thak(j) corresponds to thg-th descent
step. Defing(j) = k(j + 1) — 1. Recalling (13), (15) and Prop. 2, we then have an iterative
sequence satisfying, for gll> 1, the relations

Xi+1) = ) — T Hi Gy Gih) € Gy (F+12) (R, Tig) Hij) = Tmin,

F(Riy) = F Rejrn) = Me (&) + Ty Higy) Gy 12)-
We are thus in the setting of tleesubgradient method with an additional descent condition
along the iterations. The announced convergence propéatiew from [7].

For the last assertion, recall that can increase only on descent steps resulting from
level iterations (in the case @fi > 1). Thus, if the number of such iterations is finite, the
sequence LT } is bounded above. Then, [7, Prop. 2.2] witttherein replaced by 1y can
be invoked to obtain the stated assertion. O

Now we consider the last case, whenis eventually fixed and the last descent step is
followed by an infinite number of null steps (note also thathiis case the level sel§, are
nonempty).

Lemma 4 Suppose there exists an indexk1 such that the descent tg48) is not satisfied
for all k > k.

Then there is an infinite number of level iterations, and tst tescent iterat&, is a
solution to problenl).

Proof Note that the sequen({e/ﬁ} is nonincreasing. L&t be the set of indicek such that
Uk > 1 (level iterations), and so according to Step 5.2 of AIgi;rlrn'tZ,vﬁ+l = mgvf;. We then
have that the values M} only reduce on indices iK and do not change otherwise.

Suppose first thaf is a finite set. Then, by Proposition 2, there exists an index k;
such thay = 1, Ak = 0 andvy = v, > 0 for all k > kp. Thus, by (15),

Vi >V, >0 forall k> ks (18)

Moreover, by Lemma 1, all such iterations are proximal tieres. Hence, all iterations of
Algorithm 2 indexed by > k, can be considered as those of the classical proximal bundle
method applied to the same problem. It then follows from [[CBap. XV, Thm. 3.2.4] that

Vi — 0, in contradiction with (18).

Hence,K must have infinitely many indices. But then the vaIuesrﬁo&re reduced by
the factor ofmy infinitely many times, so tha{tvﬁ} — 0 ask — . Since fork € K it holds
thatvy = vﬁ (c.f. Proposition 2), we conclude thft } — 0 askK 3 k — 0. As Ty > Tyyin > 0
andpy > 1, it follows from (15) that

& —0and|g| -0 asK>k— o, (29)

As i is &-subgradient of the essential objective+i4-) atX,, (19) implies thaig, is a
solution to (1). This completes the proof. ad
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Summarizing Lemmas 2-4, we state the following convergeroperties of Algo-
rithm 2.

Theorem 1 If for the sequence generated by Algorithm 2 it holds faat %, for all k > kg,
then%y, is a solution to(1). Otherwise{ (%)} — " as k— w, and every cluster point
of {%} (if any exist) is a solution to problerfl). In addition, if the solution set of1) is
nonempty, and an infinite number of descent steps is gexesateng which the number of
level iterations is finite, then the sequer@g} converges to a solution dfL).

An interesting question is whether the level bundle methiogger worst-case complex-
ity (when compared to the proximal versions) extends to théoly stabilized algorithm. At
this time, we conjecture this is probably not the case, agttiees not seem to be a way to
estimate the number of proximal iterations between leeghtions.

We finish this section by considering a more general stratégyanaging the level
parameter, which we found useful in our numerical experiméedote that Step 5.2 of Al-
gorithm 2 reduces the predicted decreqisiw a factor ofm; on null level iterationsfy > 1),
and keeps it unchanged on null proximal ones. Decreaz,{ir’ugmplies increasing the level
parametery (Step 2 in Algorithm 2). The idea is that it may be sometime=fulso keep
i fixed for some null level iterations, because this can leadfeasible level sets which,
in turn, leads to updating the lower bourfgb]"" thus decreasing the optimality gdR. The
idea itself can be implemented in a number of different wé&ys.example, by decreasing
vﬁ after some fixed number of consecutive null steps. Note, hervéhat the argument in
Lemma 4 would not apply (because not all null level iteraaioeduca/ﬁ, which is an im-
portant ingredient in the proof). Thus the implementatibawdd be such that convergence
can still be justified by other tools.

3.1 Managing the level parameter

Consider an additional paramelgfax > 1 as input for the algorithm, and replace the update
rule forvﬁ in Step 5.2 of Algorithm 2 by the following:

If L > Umax SEIVE, 1 ¢ MyVi; otherwise set ; V. (20)

Note thatumax = 1 recovers the original formulation of Algorithm 2. The pzmiervﬁ
remains fixed for null level iterations that result in a npuligr p not large enough; when it
is sufficiently Iarge,vﬁ is decreased and the level paraméigis increased. The motivation
for keepingvﬁ fixed on some iterations is outlined above. The reason foaui:pglvﬁ when
Uk > Hmax > 1 has to do with using [6, Thm. 3.7] to show convergence in treesponding
case. Additionally, an intuition as to why it is reasonalblattthe update ofﬁ depends on
L can be derived from Lemma 7 below. The arguments in the probémma 7 (it is not
important that it considers the more general case with icteata) show that if/ﬁ is fixed
over a sequence of null steps thanis increasing (tends te« if the sequence is continued
infinitely). Thus, if umax is large enough, the rule (20) is likely to keﬁjfixed, but only for
some iterations so that the parameter is eventually updated

As the modified rule (20) plays a role only on null steps, toifyeconvergence of
this version of the algorithm we only have to consider theeagken all the level sets are
nonempty and there is a finite number of descent steps, li.égrations from some point
on are null steps. Apart from the conditigmax > 1, we need the following stronger (but
not at all restrictive from the practical viewpoint) condit on managing the bundle during
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null steps. Letp(k) be the last proximal iteration performed up to iteratiorChoosefy, 1
to satisfy

max{ ficr1(-): F0), Forg () Filig (O} < fleea () < £, (21)

In particular, ifk is a null proximal iteration, thep(k) = k and the above rule is the same
as for usual proximal bundle methods, [10, 7]. However, (ff¢rs from standard rules in
the case of null level steps: during null level iteration®imation about the last proximal
iteration is kept in the bundle.

If there are infinitely many null proximal iterations, thegatithm can be interpreted
as a proximal bundle method in the case of a finite number afeffessteps followed by
null steps, with level iterates seen as merely enrichingciitting-plane model. In par-
ticular, the key conditions (4.7)—(4.9) in [7] are satisfi@bnvergence then follows from
[15][Chap. XV, Thm. 3.2.4]; see also [7] and [23].

On the other hand, if there are only finitely many proximaftdtesns, the algorithm
becomes essentially a level bundle method in the case ofta finmber of descent steps
followed by null steps. In this case, [6, Thm. 3.7] provides &ssertion on convergence (we
note that for this it is important thatymax > 1, becauséy in [6] is required to be bounded
by someAmax > 0, and we havey = Ax+ 1 in (9)).

4 Handling inexact data

In various real-world applications, the objective funotiand/or its subgradient can be too
costly (sometimes, impossible) to compute. This is padity true whenf is given by
some optimization problem, e.gf(x) = maxcu ¢ (U,X), as in numerical experiments in
Section 5.2 for example. In such situations, approximalgegmust be used.

Various inexact bundle methods that use approximate fomethd subgradient evalua-
tions have been studied in [14,27,18,24,23]. The natutihgds to assume that, given any
x € 0", the oracle provides some approximate valfies 0 andgy € 0" of the objective
function and its subgradient, respectively, such that

fx=f(x) —nx and
{ f(-) = e+ (gx- — %) — NS, (22)

whereny € O andny > 0 are some unknown but uniformly bounded errors. Specificall
there exist) > 0 andn? > 0 such that

Nk <n and nd<n? forallxe 2. (23)

Remark 1Assumptions (22) and (23) are also present in [18] and [1gyTare weaker
than the assumptions employed by the level bundle methags gn [22], which require
n? =0, and further the boungd to be known, controllable, and asymptotically vanishing
in a suitable sense. Thus, the ingredients of our analysisecaing level iterations are
certainly applicable to the setting of [22], and lead to newaufts under the weaker oracle
assumptions. On the other hand, using stronger assump#iahs able to compute exact
solutions, rather than inexact as in our case.

In [1], nonlinearly constrained problems are considerelictvrequire the use of non-
static merit functions (specifically, of improvement fupais as in [26]). Thus, even consid-
ering level iterations only, [1] is very different from ousge. Also, [1] requires boundedness
of the feasible sef2” for convergence analysis, and in fact for convergencefifdedre are
examples which show that the method therein can fail for unded.2").
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With given oracle information, the inexact linearizatidnfaat iterationk is defined accord-
ingly by _

fk(X) = Ty + (G X=X (< F(X)+n9),
and the inexact moddi is then defined as in (6). However, because of the inexagtmess

now have the weaker properfy(-) < f(-)+n9. The predicted decrease must now employ
only the available (inexact) information; the countergdr(12) is thus given by

Vi = T — ficXera)
and the level parameter is
{ = fg — Vi foragivenv > 0.

Solving the doubly stabilized bundle subproblem (4) foritiexact modelfy, the direc-
tion of changegk and the aggregate linearizatidfl are defined exactly as before, i.e., by
(9) and (10), respectively. The aggregate linearizatiooreés now given by

& =g, — fF2(%).

The first observation is that, unlike in the exact case (t€t8)), the aggregate linearization
erroré can be negative due to inaccuracy in the data. However, tfiveoracle assumptions
(22), the following lower bound holds:

8> (%) —n—TA%) = F(’) —n — (f(&) +n% = —(n+n9). (24)

Most inexact proximal bundle methods work the following wigythe proximal setting
the predicted decrease has the fofm= & + 1¢|dk|? (recall Proposition 2, where the prox-
imal method corresponds o = 1). Thenv} < 0 means thag"is too negative (the oracle
error is excessive). In such a case, the descent test

fren < fre — MV, (25)

mimicking (13), is not meaningful. The methods in [18, 24,@&al with this situation using
the following simple idea. To maks positive (whergy # 0), the strategy is then to increase
the proximal parameter, and solve again the QP with the same mofielo get another
candidatex ;. This procedure, calledoise attenuatiofil8], ensures that:

(i) the predicted decreas is always nonnegative before testing for descent;

(i) if the noise is persistently excessive (an infinite n@nbf noise attenuation steps is
required) then the associated parameter is driven to infiwtiich ensures in turn thaj ~
tends to zero.

With exact oracles, the predicted decregsean be seen as an optimality measure: if the
proximal parametery > 0 is bounded away from zero, (15) ensures that

Vi=0 < § =0 andgi=0.

The above is no longer true for inexact oracles. For the prakiversion (corresponding to
LUk = 1 above), one has the following (much weaker) relation:
<0 = wl6>< & (<n+n?).

It then holds that
(n+n9
Tk '

|G|? <
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And this is where the property (ii) above comes into play. iswge thaty goes to zero in
the case of excessive oracle errors, [18] drieto infinity. In principle, a similar strategy
can be implemented in Algorithm 2. However, this clearly base disadvantages. To start
with, the QP has to be solved again with the same mégdahd (sharply) increased prox-
parameter, to obtain another candidate;. And this may need to be done more than once
consecutively. Also, it may eventually turn out that thisrease of the prox-parameter is
harmful, or at least unnecessary in some sense (note thatdhe only heuristic rules for
this update). It turns out that the doubly stabilized mettioes not require such procedures
to ensure thagy always tends to zero. Instead of “manually” increasipgthe algorithm
controls the steps automatically and properly via the pligtis py (as is revealed by the
analysis in Lemma 7 below). This is an interesting, and tledesirable property. Another
interesting feature of the doubly stabilized method is thapredicted decreasgis always
positive, i.e., property (i) above holds true. To that endt fiote that ifvﬁ becomes nonpos-
itive at some iteratiok due to the updates in Steps 2 and 5 of Algorithm 2, then so thees t
inexact optimality gagk in Step 1 and the algorithm stops immediately (and it can ba se
that an appropriate approximate solution is obtained). 8vetbus consider thaﬁ > 0 for

all k. Then the same argument as that in Proposition 2 shows that

VE = 8+ T |Gk]? = g — =V >0 Vk. (26)

Therefore, a descent test like (25) is always meaningfdikeirfor the proximal bundle
approach with inexact data. In conclusion, our doubly $itaddl method does not require
the noise attenuation modification to handle inexact dagptoperty (i) is automatic, while
the assertion of (ii) is obtained as a consequence of theitdgos behavior (the iterates it
generates) rather than driving some parameter to extrelmes/hy “brute-force”.

In what follows, we consider Algorithm 2 with the change ofat@n in thatfy, refers to
the inexact model with the data satisfying (22) and (23).0kdingly, f (%) in Algorithm 2
is replaced byfy,, etc. The quantities|, ¢k and € are as defined in this section above.
Finally, for the current inexact setting the bundle managgnnule given in (21) becomes

max{ fic.1(-), (), Fpig+a()s T (D} < Fya () < F()+1n, @7)

wherep(k) once again stands for the last proximal iteration perforonetb iteratiork.
As standard in inexact proximal bundle methods, the lizedion errorey is declared
not too negative when the inequality

& > —MeTic |G| (28)

holds for some parametet € (0,1). This inequality, together with a paramei@hax > 1,
is employed to updamf; in Step 5.2 of Algorithm 2 as follows:

If e > pmax and (28) holds, sef_ , < myvi; otherwise set}, ; « Vi. (29)

Since our method does not use noise attenuation, we canmieirthe results from
[18] and [23] for the case of infinitely many proximal itexais. For the case of finitely
many proximal iterations, we cannot invoke previous rasaitinexact level bundle methods
either; see comments in Remark 1. Therefore, convergeradgsaslargerly independent of
previous literature is in order (although, naturally, a fagredients would be familiar). First
note that if the oracle errors do not vanish in the limit, ofics® only approximate solutions
to (1) can be expected in general. This is natural, and sinulg27, 18,24, 23].
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4.1 Convergence analysis for the inexact case

We can proceed as in Proposition 1 to show ﬂ_fa(k) < fy(x) for all x e 2. Since by the
inexact oracle definition (22) we have that-) < f(-) +n9for all j € %, we conclude that
for all x € 2" it holds that

F(x)+n9 > fiu(¥) > FA(X) = fe(Xer1) + (G X— X 1) (30)
= fa — (fae — ficXier 1) + (G X— Re) + (G, R — Xir1)
= i, — Vi + (G X— Re) + Tkt 6>
= o — &+ (G x— %) (31)
> fg = Vit (G X—Re) - (32)

Note also that as in the exact Casd‘,’k-(b(k+l) =l (which holds ifu > 1), then in (26)
we have thatj = V{.
As in Section 3, we consider separately the same three possibes.

Lemma5 Suppose the level sEi is empty infinitely many times.
ThenAy — 0, _
lim f5, < finf 4 ng, (33)
—»00

and every cluster point of the sequer@g} (if any exist) is & n + n9)-approximate solution
to problem(1), or the lastk is a (n + n9)-approximate solution if this sequence is finite.

Proof Recall that in the case under consideratféy > —co. The same argument as that of
Lemma 2 shows thaty — 0. Also, on the iterations in question we have that fk(x) for

all x € 2, and thus the update in Step 2 and (30) ensurefff8it< f" +n9. As {fg, } is
decreasing and bounded below (sirfé® > —cw), we conclude that

H Aiinf7g<- . _ flowy _ _
fim B~ 17— < fim (5~ 7 = Jm 4 =0,

which gives (33).
Now letX be any cluster point of%}, and let{%, } be a subsequence convergingxto ~
asj — . Then

f'nf+ng>]|mof)zkj :|Im(f()A<kJ)*'7>2kJ)2f()~()*’7» (34)

joo
which establishes the last assertion. O

Consider now the case whekg # 0 for all k large enough, and there is an infinite
number of descent steps (for which (25) holds).

Lemma 6 Suppose Algorithm 2 generates infinitely many descent.steps
Then(33) holds and every cluster point of the sequefwg (if any exist) is an +n9)-
approximate solution to probleii).

Proof Let {%;} be the subsequence ¥} such thak(j) corresponds to thg-th descent
step, and defing j) = k(j +1) — 1. It follows from (25) that{ fy, ; } is decreasing and either
{fz,} — —o, in which case (22), (23) imply thdtf (%j))} — —c and the conclusions
are obvious, or the limit O{f)zk(j)} is finite. In the second case (25) implies that

lim v{< =0

J7eo
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Letx € 2" be arbitrary. Using (32) and the fact thqt;y = X(j), we then obtain that
R+ — X% = iy =12+ (T Higi) 218 12 23i5) High) (Giciy - X — Ry
< gy = X2+ (Tigo) Hich)) 216y 12 2Ty ki) (F () + 19— o Vi)

Suppose that (33) does not hold. Then there éxis0 andX'e 2" such thatka(j) >
f(X)+n9+tfor all j. Taking j large enough so thalf(j) <t/2, and choosing =X in the
chain of inequalities above, we obtain that

R+ =K1 < i) — K2 = Tig it
j
< & —% -ty Tighi
=1
< Ry = K% = jt Tmin,

where we used the fact thatuk > 1« > Tmin. The above gives a contradiction whgns .
We conclude that (33) holds. The last assertion then followshe same argument as in
Lemma 5. ad

We now consider the case of finitely many descent steps, hdtketel seXy nonempty
(for all k large enough).

Lemma 7 Suppose that for Algorithm 2, with the additional bundle agement rul€27)
and Step 5 employin@9) with umax > 1, there exists an index k= 1 such that the descent
test(25) is not satisfied for all k> kj.

Then the last descent iterakg, is a (n +nY)-approximate solution to probleif).

Proof The sequenc@vﬁ} is monotone and when its elements decrease, they decrease by
fixed fractionme € (0,1). Thus eithen — 0 orvi, = v/ > 0 for all k large enough.

Consider first the case aﬁ — 0. Then by rule (29) there exists an infinite index ket
such thafu, > pmax and the inequality (28) is valid fdce K. For such indices, it then holds
that

0< (1 me) Tmin|Gk|? < (1— me) Tk |6k < & + kil k> = Vi = vk, (35)

where the last equality follows from Proposition 2, because- Umax > 1 for allk € K. It
follows from (35) that

TulklG|? — 0, Gc—0, & —0 asK>k— co.

Now passing onto the limitin (31) &> k — c, withx € 2 fixed but arbitrary anel= X,
fixed, implies the assertion.

We now consider the second cagg:= V' > 0 for all k > ko.

Suppose first that there exists an infinite subsequence bprodimal steps g = 1),
indexed by{k(j)}. “lgnoring” the possible null level steps inbetween, we cansider the
sequencgXj) } as that generated by the proximal bundle method, where tdelrsatisfies,
by the rule (27), the key conditions

max{ fij) (), fidjy _2()} < i) < F()+n?, for k(j) <i<k(j+1)—1.
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Of specific importance here is the relation fef k(j 4+ 1) — 1, which shows that on consecu-
tive null proximal steps the model satisfies the conditiohgcy, together wit{ 7y ; } being
nonincreasing, guarantee the following property of thexact) proximal bundle method:

0> Ilmsup( ka(j) — flk(J),l(Xk(J))) . (36)

jovoo

(See [23, Theorem 6.4] and/or [18, Lemma 3.3 and Section) 1] the other hand, as the
descent condition (25) does not hold,

Fsy = Tiii—1 (i) > Frg, = MiViy 1= )1 (X)) = (L=mi)Vigj g = (1— m¢)V' >0,
which gives a contradiction with (36).

Therefore, in the case under consideration, there can anlg finite number of null
proximal steps. Hence, all iterations indexedky ks are of the null level type, and it holds
that i > 1, Ak > 0, % = &, Vi, = V' > 0 andy = ¢ for all k > ks.

Note that

0> fiXira) = 81 (i) = o140 + (G2, Xer1 — X)-
By Proposition 1, ady_; > 0 it holds thatka,l(xk) = /. Hence, & (§k_1,%+1— X, and
sincexX— xx = Tx_1Mk_10k_1, it holds that
02> (R— X Xier1 — Xi)-

It then follows that

cr1 =R 2 =R+ X1 — 3 (37)
Note that 5 _

€2 fi(icr1) = (i) = T (G Xier1 — X -

Using the Cauchy-Schwarz inequality, we obtain that
|G| X1 —Xi| = fx — €. (38)
Since this is a null step, it holds that
fy > fr—mevi_q,

and since itis a level step,Ll = vﬁfl =v{>0. Using further the definitioA = fg — Vi, we
conclude that
fy.— £ > (1—me)V' > 0.

In view of (38) and the last inequality above, it holds thgt# 0 and we obtain that

‘ng| - |ng‘
Using now (37), it follows that
2
|xk+1—ﬁ|2>|xk—ﬁ|2+((1mﬂ) . (39)
Xk

If the sequencéxc} were to be bounded, there would exist a cons@nt 0 such that
|gx, | < C for all k (by boundedness of tresubdifferential on bounded sets and (22), (23)).
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But then (39) would mean that the monotone sequeie— X|2} is increasing at every
iteration by a fixed positive quantity(1— m¢)v‘/C)?, and thus{x} cannot be bounded.
Hence,{xc} is unbounded. Sinc@x, — %|?} is monotone by (39), it follows thak, — X| —
+00 ask — oo,

We next show that limsyp,., tx = +. Suppose the contrary, i.e., that there exists
[ > 0 such thapy < i for all k. As {7} is nonincreasing fok > ks andv{ = vi, = V¢, using
(24) we have that

TkgHV' > TV, = Tk + (Tihke) |Gk |2 X
> —TiH(N +N9) + X1 — X2,

in contradicton withx, —X| — 4. Hence, limsup.,,, tk = +©o.
In the case under consideration, by rule (29) of Algorithng2x —meTii|Gk|? for all
k > ks. In particular, limsup._,., & < 0. Also, using again (24), frore, < —meTiuk|Gk|? it
follows that ( 9)
n+n -
—— > Me| Q|-
TminHk 10
As limsup._,., Uk = 400, this implies that liminf_.. |G| = 0. Now fixing an arbitraryx €
Z, and passing onto the limit in (31) along a subsequence fatwhe last relation above
holds (taking also into account that in the case under ceralibne; < 0), concludes the
proof. ad

Combining all the cases considered above, we conclude logiog.

Theorem 2 If Algorithm 2 (with the additional rule$29) and (27)) generates a sequence
such that® = X, for all k > ki, then%, is a (n + n9Y)-approximate solution t¢1). Oth-
erwise,(33) holds and every cluster point of the sequefigg (if any exist) is a(n + nY)-
approximate solution to probleli).

The analysis above also shows that in all the cases efiher 0 or there exists a sub-
sequenc& C {1,2,...} such that limsup.y_,. & < 0 and linksk_« |G| = 0. This means
that, for positive tolerances, some stopping rule in Aldpon 2 is eventually satisfied (at
which time an appropriate approximate solution is obtained

5 Numerical results

In this section we report computational experiments orediifit types of problems: two-
stage stochastic linear programming, nonsmoothly-regeld maxima of quadratic func-
tions, the model unit-commitment problem in the energy@eend some standard nons-
mooth test problems (about 1000 instances overall). We aoartpe following four solvers:

— PBM-1 - proximal bundle method using a rule to updatbased on [16];

— PBM-2 - proximal bundle method using a rule to updatbased on [20];

— LBM - level bundle method of [6];

— DSBM - doubly stabilized bundle method (the algorithm disa in this article).

The runs were performed on a computer with Intel(R) Core(Ti$hi3110M CPU @
2.40, 4G (RAM), under Windows 8, 64 Bits. The QPs (and also) viRse solved by the
MOSEK 7 toolbox for MATLAB (attp://www.mosek.com/). The MATLAB version is
R2012a.
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Our analysis of the outcomes reports success or failure{iteether a stopping test was
eventually satisfied or the maximal number of iterations reashed), the number of oracle
calls (here, the same as number of iterations), and CPU tineerhination. We also compare
the quality of solutions obtained at termination. To get eduorther insight, we report the
numbers of descent steps for all the solvers, the number pfyelavel sets encountered
for LBM and DSBM, and for DSBM which has various possibil&ie the number of level
iterations and which stopping criterion triggered terntima

We start with describing some details of implementatiomsing, and stopping rules of
the algorithms in question.

5.1 Implementations, tuning the parameters, and stoppitegia

Many parameters need to be set for the solvers: the constattief descent tests € (0,1)
in (13) (used in all four solvers), the constamt € (0, 1) for adjusting the level parameter
(for LBM and DSBM), and some further parameters for updatipion the proximal solvers
PBM-1, PBM2 and DSBM.

Some specific parameters of each solver are listed below.

5.1.1 The level bundle algorithm LBM

The algorithm is as described in [6]. The initial predictetkase is given b% =f(x1) —
f1(X), wherex'is the solution of the QP (2) witk = 1 andT; given. When a lower bound
f,:("W for tlhe optimal value ™ is found, the subsequent iterations solve the LP (17) totepda
foW to f,o%.

“ As irlﬁt%\e rule (20), the LBM method of [6] employs the parameigay > 0. For this
solver, we need to set mainly the parameters umax and 11 (the latter defines/l’ as ex-
plained above).

5.1.2 The proximal bundle solvers PBM-1 and PBM-2

The rule to update the prox-parametgiis as follows: leta > 1 andty,, > 0 be two given
parameters, antt,, be an auxiliary prox-parameter at iteratiofdifferent for PBM-1 and
PBM-2).
— If null step, setric 1 « min{ 1, max{t&,. T/a, Tmin} }
— If descent step:
— if more than five consecutive descent stepsr§§t<— ar
— setTi 1 < min{t¥,,, 105 }.
In PBM-1 [16], one sets

k

aux

o, (14 LB T0R01)).

T
Yk

In PBM-2 [20], one sets

(O — Gk> X1 — Xk>)

T T (1+ |01 — Ok

under some safeguards [20, Section 4.2].
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The essential parameters to tune in the updates above afeand 1,,. Parameters
taken as 10 and 2 in the setting »f could also be tuned, but we use here their standard
values.

5.1.3 The doubly stabilized DSBM solver

This is Algorithm 2 employing rule (20) in Step 5. The initjadedicted decrease is given
byv’i =f(xq) — fl(i), wherexis the solution of the QP (2) (the same as for LBM). When a
lower boundf|'<OW for the optimal valuef " is found, the subsequent iteration solves the LP
(17) to updatef®" to f/%% (the same as in LBM).

The essential parameters to tune in the updates aboye,agemy, 71 and Tmin.

5.1.4 Tuning the parameters

The parameters were tuned for each problem class sepafkdalgcide on the “best” set-
tings of parameters, we first ran each solver on represeata$tances (a subset of about
10%) of each considered family of problems, with varioussifdle combinations of the
solvers’ parameters.

— Setting the stopping tolerancd3epending on the solver, the tolerances involved in stop-
ping tests areTole for the aggregate errag, Tolg for the norm of the aggregate sub-
gradientgy and Tol, for the optimality gapAx. As it is natural to have the optimality
measuresy andA of the same magnitude, we Sefle = Tolg = Tol. On the other hand,
|6k| is a dimension-dependent measure, which can be differerseoly we performed
the following steps for each class of problems:

— first, the sample of problems was solved by Algorithm 2 with $topping test <
108 (checking also thatyis small enough at termination);

— atthe last iteratiok; of the given method on problemwe performed a linear regres-
sion on the datdé& } and{|dx |} to estimate the best constgmt> 0 that minimizes
the mean square errgy (p& — |Gk )%

— given tolerancdol for & andAy, we then seTolg := pTol.

In the final experiments reported, the solvers terminateeif the number of oracle calls
reaches 1000 (considered a failure) or when

& < Tol and |G < Tolg, Of A< Tol with Tol = (1+|f)10°8.  (40)

Here, f is a good approximation of the optimal val@ié, obtained by running one solver
in advance, and the stopping tolerances are set as desabibed. The last stopping test,
based on the optimality gap, is employed only by the solv@&siland DSBM.

— Setting the initial prox-parameteAs mentioned, all the solvers employ an initial prox-
parameter; (solvers LBM and DSBM useg; to define\/l’). For each class of problems we
testedr; € {1, 5, 10}.

— Lower bound for the prox-parametéixcept for solver LBM: T € {1076, 1075, 1073},

—Parameter a to updatey during null stepsOnly for solvers PBM-1 and PBM-2a €
{2,4,5}.

— Level parameter m Only for solvers LBM and DSBMmy, € {0.2, 0.5, 0.7}.

— Descent parameter mAll solvers:m; € {0.1, 0.5, 0.7}.

— Parametermax in (20). Only for solvers LBM and DSBMpmax € {1, 5, 10}.
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As expected, the standard choiog = 0.1 for the descent test proved adequate for all
the solvers. Another adequate choice Wwagsyx = 5. Other parameters take different values
depending on the class of problems, as shown below.

In all the solvers, all linearizations are kept in the modefilthe bundle reaches its
maximal allowed size, which was set at 334 (approximateby/tbird of the maximum num-
ber of iterations). When the maximal allowed size is reactieg solvers eliminate inactive
linearizations, if any exist. If there are no inactive lineations, the bundle is compressed:
the two “less active” linearizations (with the smallest kagge multipliers) are replaced by
the latestfy..1 and by the aggregate linearizatiff.

5.2 Two-stage stochastic linear programming problems

We consider ten families of problems availabla&tp: //web.uni-corvinus.hu/~ ideak1/
kut_en.htm, by I. Deak. They result in convex linearly-constrainechsimooth problems,
of the form (1). Specifically,

f(x):= (c,x}+_ipiQ(x,hi) and 2 :={xe0l: Ax=b},

where

Q(x,h) = min (q,y) s.t. Tx+Wy=Hh;

in
yeD™2
is the recourse function corresponding to ittt scenarich; € 0™ with probability p; >
0 W and T above are matrices of appropriate dimensionsy, 0", matrix A € OmMx"
and vectorb € 0™ are such that the se?” is bounded. We consider twenty instances

corresponding to scenarios
N € {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}.

The best configuration found for the parameters is the faligwPBM-1 and PBM-2:
71 = 10, Tmin = 10 % anda= 2; LBM: 11 = 10, andm, = 0.2; DSBM: 71 = 1, Tyin = 106
andm, = 0.2. All the solvers employed the toleranckslg = 100Tol andTol as in (40).

Table 1 shows the total number of oracle calls and CPU timesdieing (successively)
all the twenty instances of each of the 10 problems (in t@&@Q) by the four methods.
DSBM is the fastest solver, followed by LBM. There were nduegs in this benchmark.

PBM-1 | PBM-2 | LBM DSBM
CPU Time (m) 139 118 86 84

# Oracle calls 18007 15168 | 10521 | 11125
# Descent stepg 4030 4234 4638 4649
# Level steps 0 0 10521 | 3643

Table 1 Total number of oracle calls and CPU time: sum over 200 in&sn

DSBM solver stopped by the relative optimality gap in 93%ha& instances, whereas LBM
in around 96%.

Optimality measures are reported in Table 2, for a subséteinstances. Ideally, both
measures/(1+|f|) anddy/(1+|f|), or the measurdy/(1+|f|), should be zero. Table
2 presents the number of digits of accuracy for these qisshtior instance, the number
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&/(1+f]) G/ (1+]F)) A/ (1+[F])
n PBM-1 | PBM-2 | LBM DSBM PBM-1 | PBM-2 | LBM DSBM LBM DSBM

5 09 09 08 08 13 10 08 08 09 09
10 09 09 08 09 13 10 06 10 09 08
15 09 09 08 06 13 11 05 05 09 09
20 09 09 09 09 13 09 06 08 09 08
25 09 09 09 07 14 10 04 06 09 09
30 09 09 09 06 13 07 05 05 09 09
35 09 09 13 08 12 09 05 06 09 09
40 09 10 08 08 14 08 06 10 09 10
45 09 09 08 07 08 08 06 05 09 09
50 09 09 08 08 11 08 07 09 09 08
55 09 09 08 08 10 08 06 08 09 09
60 09 09 09 09 08 07 06 07 09 08
65 09 08 10 08 08 07 05 07 09 09
70 08 09 09 07 07 08 05 06 09 09
75 09 09 10 09 08 07 06 08 09 08
80 09 09 09 09 12 08 06 09 09 09
85 09 09 09 09 11 07 08 07 09 08
90 09 09 08 08 11 09 06 07 09 09
95 10 07 09 09 08 08 07 06 08 09
100 09 08 10 08 08 07 05 07 09 09

Table 2 Comparison of the optimality measures: digits of accuracy

09 for &/(1+ |f|) means that the quantity in question has the vailig %, with some
ce (1, 10).

In Figure 1 we give performance profiles [8] of the four sodvever the 200 instances.
The top graphic considers the number of oracle calls (itara}, and the bottom one con-
siders the CPU time. For example, let the criterion be CP\& tifor each algorithm, we
plot the proportion of problems that it solved within a facté the time required by the best
algorithm. In other words, denoting lty(p) the time spent by solvesto solve problenp
and byt*(p) the best time for the same problem among all the solvers, rihygoption of
problems solved bg within a factory is

__number of problem such thats(p) < yt*(p)
N total number of problems '

a(y)

Therefore, the valugxs(1) gives the probability of the solvesto be the best by a given
criterion. Furthermore, unlessp) = « (which means that solvesfailed to solve problem
p), it follows that lim,_.., @(y) = 1. Thus, the higher is the line, the better is the solver (by
this criterion).

We conclude from Figure 1 that among the four solvers, LBMldess oracle calls (and
CPU time) in approximately 60% (58%) of the 200 differentamses, followed by DSBM
(40%) that was better than both solvers PBM-1 and PBM-2.

5.3 RandMaxQuad problems

In this subsection we consider a family of randomly generateblems of the form (1) with
the objective function given by

fx) = i:T%O{(QiX, X)+(6i%) } +alxs and f(x) = max {{Qxx)+(aX) } +aXe,
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Fig. 1 Performance profile: 200 instances of two-stage stochpsildems.

whereQ; € 0™ " andg; € 0" are randomly generate@; being symmetric positive semidef-
inite,i = 1,...,10. The problem’s dimensiamvaries according to

n e {10, 20,30, 40, 50, 60, 70,80, 90, 100, 150, 200, 250, 300, 500} .

Parameteo runs through the values € {0.1,0.5,1}. Two settings were considered for the
feasible set2” in (1): 2" = 0" (unconstrained setting) an@” = {x € 07 : 3 ;x=1}
(simplex setting). In total, 708 different instances ofkgemn (1) were obtained by using
different seeds for the MATLAB random number generator: 854onstrained and 354
constrained.

5.3.1 Unconstraine®@andMazQuad: 354 instances

The best configurations found for the parameters were: PBM-% 1, Tmin = 107 and
a=5; PBM-2:1y = 1, Tmin = 10 8 anda=2; LBM: 11 = 1, andm, = 0.2; DSBM: 11 = 1,
Tmin = 108 andm, = 0.2. Tolerances were set @sly = 1000ro1, with Tol given in (40).
Among other information, Table 3 shows the total number ofJGne (in minutes)
and oracles calls required to solve all the 354 unconstiaimgtances. Notice that the less

PBM-1 | PBM-2 LBM DSBM
CPU Time (m) 302 154 462 143
# Oracle calls 121155 | 80261 | 202922 | 77741
# Descent steps 14320 18324 15786 19237
# Level steps 0 0 202922 | 58452
# Empty level sets 0 0 143 106
% Failure 2 1 25 0

Table 3 Total number of oracle calls and CPU time: sum over 354 in&sn

demanding with respect to oracle calls and CPU time is the MSBIver, followed by
PBM-2. Table 3 also shows that around 75% of the DSBM itenativere of the level type.

Table 4 presents optimality measures at termination foln satver on some instances.
DSBM stopped by the relative optimality gap in 29% of the amstes, whereas LBM trig-
gered this additional stopping test in 38%.
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&/(1+f]) G/ (1+]F)) A/ (1+[F])
n PBM-1 | PBM-2 | LBM DSBM PBM-1 | PBM-2 | LBM DSBM LBM DSBM
10 09 09 09 09 08 06 05 05 09 09
20 09 09 09 09 06 06 05 05 09 09
30 09 09 09 10 06 06 05 06 09 -
40 09 09 09 09 06 06 06 06 - -
50 09 09 09 09 06 06 06 06 - -
60 09 09 09 10 06 06 06 06 - -
70 09 09 09 09 06 06 06 06 - -
80 09 09 09 09 06 06 06 06 - -
90 09 09 09 09 06 06 06 06 - -
100 09 09 09 09 06 06 06 06 - -
150 09 10 07 09 06 06 06 05 - -
200 09 09 o7* 09 06 06 05* 06 - -
250 08 09 06* 09 06 06 05* 06 - -
300 09 09 06* 09 06 06 04* 06 - -
500 10 09 05* 09 06 06 05* 06 - -

Table 4 Comparison of the optimality measures: digits of accurétynfjeans failure; “-” means thaf"("w =
700)_

Figure 2 gives performance profiles [8] of the four solverero®54 instances of the
unconstraine®andMaxQuad problem.

Oracle Calls

0.8

= 0.6
¥

0.4

0.2

Fig. 2 Performance profile of the four solvers over 354 instanceémofuad.

We observe that DSBM required less oracle calls in appradipad8% of the 354
instances, followed by PBM-2 and PBM-1 (around 40% and 1@4pectively). Besides,
DSBM is more robust in terms of oracle calls: it achieggy) = 1 for lower values ofy.
For this type of problems, both PBM-1 and PBM-2 are more rothen LBM, that failed
to satisfy the stopping test in around 25% of the instancesggorted in Table 3.

5.3.2 Constraine®andMazQuad. 354 instances

We now consider problems with the same 354 objective funstidut constrained on a
simplex. The employed solver parameters are the followRBM-1: Ty = 1, Tyin = 1073
anda="5; PBM-2: 171 = 1, Tmin = 10°° anda = 2; LBM: 11 = 1, andm, = 0.7; DSBM:



26 de Oliveira and Solodov

T1 =1, Tmin = 10-% andm, = 0.7. Tolerances were set @slg = 1000rol1, with Tol given
in (40).

Table 5 shows the total number of oracle calls, CPU time,afgssteps and level steps
required to solve all the constrained instances. We obskatehe solvers LBM and DSBM
are much more effective on the constrained problems than-BBkd PBM-2. Around 45%

PBM-1 | PBM-2 | LBM DSBM
CPU Time (m) 319 309 35 31
# Oracle calls 110495 | 103494 | 35892 | 31617
# Descent steps 11206 11599 | 15586 | 11263
# Level steps 0 0 35892 | 14607
# Empty level sets 0 0 355 358
% Failure 2 0 0 0

Table 5 Total number of oracle calls and CPU time: sum over 354 ig&sn

of the DSBM iterations were of the level type.

LBM triggered the optimality gap stopping test in 62% of thetances, while DSBM
in 72%. Note that these percentages were smaller for thenstr@ined instances: 38% and
29%, respectively. Table 6 reports (for some selectedrigsts) the optimality measures at
the last iteration.

&/(1+]1]) G/ (1+F)) A/ (1+][f])

n PBM-1 | PBM-2 | LBM DSBM PBM-1 | PBM-2 | LBM DSBM LBM DSBM
10 09 10 09 09 15 09 05 06 09 08
20 09 09 09 09 07 06 05 05 09 09
30 09 09 09 09 06 06 05 05 09 09
40 09 09 09 09 10 06 05 05 09 09
50 09 07 09 09 09 06 05 05 09 09
60 09 09 09 09 06 06 05 05 09 09
70 09 09 09 09 07 06 05 05 09 09
80 09 09 09 09 06 06 05 05 09 09
90 09 09 09 09 06 06 05 06 09 08
100 09 09 09 09 06 05 05 05 09 09
150 09 09 09 09 06 06 06 06 08 08
200 09 09 09 09 06 06 07 06 08 08
250 09 09 09 09 06 06 06 06 08 08
300 09 09 09 09 06 06 06 06 08 08
500 07 09 09 09 06 06 06 06 08 08

Table 6 Comparison of the optimality measures: digits of accuracy

Performance profiles of the four solvers on these 354 canstignstances are presented
in Figure 3. Among the considered solvers, we notice that $8both the fastest and the
most robust one, followed by LBM.

5.4 Unit-commitment energy problems

In this subsection we consider a unit-commitment problemafpower system operation
model with four power plants. For each given pointan oracle must solve four mixed-
integer linear programming problems to comptit®) andg € J f(x). The feasible set for
this problem is the positive orthart” = 0" . In our configuration, the problem’s dimension
ranges im € {12,24,36,48 60} . The electricity demands for the unit-commitment problem
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Fig. 3 Performance profile of the four solvers over 354 instanceon$trainediaxQuad.

were chosen randomly, using 10 different seeds for the ranadamber generator. In total,
50 instances of the problem were considered.

The employed solver parameters are the following: PBM;%= 10, Tmin = 108 and
a=2;PBM-2:1y = 1, Tmin = 10 % anda=4; LBM: 11 = 1, andm, = 0.7; DSBM: 11 = 1,
Tmin = 1078 andm, = 0.2. Tolerances were set @sly = Tol, with Tol given in (40).

In this battery of problems, all the runs were successtil, & stopping test was satisfied
before the maximal number of iterations was reached. Talsleows the total number of
oracle calls and CPU times required to stop the four solwasall instances of the problem.

PBM-1 | PBM-2 | LBM DSBM
CPU Time (m) 78 69 91 77
# Oracle calls 4540 4050 3976 3087
# Descent steps 1052 1381 2274 1526
# Level steps 0 0 3976 1807
# Empty level sets 0 0 50 50

Table 7 Total number of oracle calls and CPU times: sum over 50 icg&n

PBM-2 was the fasted solver on these problems, followed bBNdSDSBM terminated
by the optimality gap in 98% of the instances, whereas LBMG#9Moreover, around 58%
of the DSBM’s iterations were of the level type. In Table 8 wegent (for some instances)
the optimality measures at the last iteration.

&/(1+]f) G/ (1+|f]) A/ (1+]E])
n_|[PBM-I | PBM-2 [ LBM | DSBM || PBM-1 | PBM-2 | LBM | DSBM || LBM | DSBM
12 11 10 09 05 11 10 08 05 09 10
24 12 09 09 06 12 11 06 06 09 09
36 09 09 09 07 10 10 08 06 09 09
48 09 09 09 08 11 09 08 09 09 09
60 09 09 09 06 11 10 07 06 09 09

Table 8 Comparison of the optimality measures: digits of accuracy
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Figure 4 gives performance profiles of the four solvers o@inStances of the problem.

Oracle Calls
T
——PBM-1
—+—PBM-2
- -'LBM
‘ ‘ ‘ 111 DSBM
25 3 35 4
v
CPU Time
T
——PBM-1
—+—PBM-2
- -'LBM
‘ ‘ ‘ 111 DSBM
25 3 35 4

Fig. 4 Performance profile of the four solvers over 40 instances.

We observe that DSBM required less oracle calls in approein®0% of cases, while
PBM-2 was the fastest solver in 20% of the instances.

5.5 Classical unconstrained nonsmooth test problems

In this subsection we consider some typical functions farsmeooth optimization bench-
marking, such adaxQuad [5, p. 153],TR48 [15, p. 21, Vol. ll] and others. All the problems
are unconstrained and have known optimal values. We ref@bjdor more information on
these test problems.

Tables 9-10 report on results obtained by the four solvetkisrtype of problems, using
default dimensions and starting points.

# oracle calls CPU time in seconds
Problem LBM PBM-1 PBM-2 DSBM LBM PBM-1 PBM-2 DSBM
TR48 260 157 127 139 30.399 9.986 6.873 8.669
MaxQuad 78 231 111 96 4.834 16.767 5.074 3.595
Ury 65 64 58 60 3.361 2.224 1.981 2.214
CPS 183 63 83 65 31.812 | 1.910 2.794 2.546
TiltedMax 50 14 18 15 2.285 0.434 0.601 0.461
Check 50 61 72 44 2.954 1.913 2.818 1.803
NK 58 62 81 61 2.938 1.754 2.543 3.053
Sum 744 652 550 480 78.583 | 34.988 | 22.684 | 22.341

Table 9 Total number of oracle calls and CPU time.

Table 10 shows the true optimal value of each problem (col@iffipand the number of
digits of accuracy in the differenc(X) — "' for the four solvers at termination, whexés™
the obtained solution.

We can conclude from Table 10 that the quality of solutiontioied by the doubly
stabilized method is as good as the other solvers.



Doubly stabilized bundle method 29

Problem LBM PBM-1 | PBM-2 | DSBM fmr
TR48 1 5 3 3 -638565
MaxQuad 6 9 9 7 -0.84140833459641]
Ury 4 4 5 5 500
CPS 8 7 9 7 0
TiltedMax 8 9 7 9 0

Table 10 Digits of accuracy in the differenci(g) — fi"",

6 Concluding remarks

We proposed a new algorithm for nonsmooth convex mininoraitalled doubly stabilized
bundle method. It combines the level and proximal staliiire in a single subproblem,
and at each iteration automatically “chooses” between zipiad and a level step. The aim
is to take advantage of good properties of both, dependirteproblem at hand, and also
use the simplicity of updating the level parameter to predacsimple and efficient rule to
update the proximal parameter, thus speeding up the ogtiimizprocess. In addition, the
method provides a useful stopping test based on the optynggp.

The algorithm appears to perform well in computation, aglastd in Section 5, where
almost one thousand instances of various types of probleens wonsidered. Numerical
results show that the proposed method compares favoratiybeth the proximal and level
bundle methods.

The new doubly stabilized algorithm can also handle inexesd of data in a natural
way, without introducing special modifications to the itera procedure (such as noise at-
tenuation).
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