Skip to main content
Log in

Exploiting symmetry in copositive programs via semidefinite hierarchies

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Copositive programming is a relative young field which has evolved into a highly active research area in mathematical optimization. An important line of research is to use semidefinite programming to approximate conic programming over the copositive cone. Two major drawbacks of this approach are the rapid growth in size of the resulting semidefinite programs, and the lack of information about the quality of the semidefinite programming approximations. These drawbacks are an inevitable consequence of the intractability of the generic problems that such approaches attempt to solve. To address such drawbacks, we develop customized solution approaches for highly symmetric copositive programs, which arise naturally in several contexts. For instance, symmetry properties of combinatorial problems are typically inherited when they are addressed via copositive programming. As a result we are able to compute new bounds for crossing number instances in complete bipartite graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arima, N., Kim, S., Kojima. M.: A quadratically constrained quadratic optimization model for completely positive cone programming. Technical Report B-468, Dept. of Math. and Comp. Sciences, Tokyo Institute of Technology (2012). http://www.optimization-online.org/DB_FILE/2012/09/3600

  2. Bachoc, C., Gijswijt, D., Schrijver, A., Vallentin, F.: Invariant semidefinite programs. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, vol. 166, pp. 219–269. Springer, New York (2012)

  3. Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite programming. J. Am. Math. Soc. 21, 909–924 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bai, Y.-Q., de Klerk, E., Pasechnik, D.V., Sotirov, R.: Exploiting group symmetry in truss topology optimization. Optim. Eng. 10(3), 331–349 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bai, L., Mitchell, J.E., Pang, J.: On QPCCs, QCQPs and copositive programs. Technical report, Rensselaer Polytechnic Institute (2012). http://eaton.math.rpi.edu/faculty/Mitchell/papers/QCQP_QPCC.html

  6. Bomze, I.M.: Copositive optimization—recent developments and applications. Eur. J. Oper. Res. 216, 509–520 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bomze, I.M., Dür, M., de Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)

    Article  MATH  Google Scholar 

  8. Bomze, I.M., Frommlet, F., Locatelli, M.: Copositivity cuts for improving SDP bounds on the clique number. Math. Program. 124, 13–32 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bomze, I.M., Jarre, F.: A note on Burer’s copositive representation of mixed-binary QPs. Optim. Lett. 4(3), 465–472 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bomze, I.M., Jarre, F., Rendl, F.: Quadratic factorization heuristics for copositive programming. Math. Program. Comput. 3(1), 37–57 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bomze, I.M., de Klerk, E.: Solving standard quadratic optimization problems via semidefinite and copositive programming. J. Glob. Optim. 24(2), 163–185 (2002)

    Article  MATH  Google Scholar 

  12. Bundfuss, S.: Copositive Matrices, Copositive Programming, and Applications. PhD thesis, TU Darmstadt (2009)

  13. Bundfuss, S., Dür, M.: Algorithmic copositive detection by simplicial partition. Linear Algebra Appl. 428, 1511–1523 (2009)

    Article  Google Scholar 

  14. Bundfuss, S., Dür, M.: An adaptive linear approximation algorithm for copositive programs. SIAM J. Optim. 20, 30–53 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. A 120(2), 479–495 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Burer, S., Dong, H.: Representing quadratically constrained quadratic programs as generalized copositive programs. Oper. Res. Lett. 40(3), 203–206 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely positive programming. Math. Program. Comput. 4(1), 33–52 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dobre, C.: Semidefinite programming approaches for structured combinatorial optimization problems. PhD-thesis. Tilburg University, The Netherlands (2011)

  19. Dong, H.: Symmetric tensor approximation hierarchies for the completely positive cone. SIAM J. Optim. 23(3), 1850–1866 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dong, H., Anstreicher, K.: Separating doubly nonnegative and completely positive matrices. Math. Program. 137, 131–153 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dukanovic, I., Rendl, F.: Copositive programming motivated bounds on the stability and the chromatic numbers. Math. Program. 121(2), 249–268 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dür, M.: Copositive programming—a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, Berlin (2010)

    Chapter  Google Scholar 

  23. Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192, 95–128 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gijswijt, D., Schrijver, A., Tanaka, H.: New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming. J. Comb. Theory Ser. A 113, 1719–1731 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gvozdenović, N., Laurent, M.: The operator \(\psi \) for the chromatic number of a graph. SIAM J. Optim. 19(2), 572–591 (2008). N

    Article  MATH  MathSciNet  Google Scholar 

  26. Gvozdenović, N., Laurent, M.: Computing semidefinite programming lower bounds for the (fractional) chromatic number via block-diagonalization. SIAM J. Optim. 19(2), 592–615 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kanno, Y., Ohsaki, M., Murota, K., Katoh, N.: Group symmetry in interior-point methods for semidefinite program. Optim. Eng. 2(3), 293–320 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kleitman, D.J.: The crossing number of \(K_{5, n}\). J. Comb. Theory 9, 315–323 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  29. de Klerk, E.: Exploiting special structure in semidefinite programming: a survey of theory and applications. Eur. J. Oper. Res. 201(1), 1–10 (2010)

    Article  MATH  Google Scholar 

  30. de Klerk, E., Maharry, J., Pasechnik, D.V., Richter, B., Salazar, G.: Improved bounds for the crossing numbers of \(K_{m, n}\) and \(K_n\). SIAM J. Discrete Math. 20, 189–202 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. de Klerk, E., Dobre, C.: A comparison of lower bounds for the symmetric circulant traveling salseman problem. Discrete Appl. Math 159(16), 1815–1826 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. de Klerk, E., Dobre, C., Pasechnik, D.V.: Numerical block diagonalization of matrix \(*\)-algebras with application to semidefinite programming. Math. Program. B 129, 91–111 (2011)

    Article  MATH  Google Scholar 

  33. de Klerk, E., Dobre, C., Pasechnik, D.V., Sotirov, R.: On semidefinite programming relaxations of maximum k-section. Math. Program. B 136(2), 253–278 (2012)

    Article  MATH  Google Scholar 

  34. de Klerk, E., Laurent, M., Parrilo, P.A.: A PTAS for the minimization of polynomials of fixed degree over the simplex. Theor. Comput. Sci. 361(2–3), 210–225 (2006)

    Article  MATH  Google Scholar 

  35. de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12, 875–892 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. de Klerk, E., Pasechnik, D.V., Schrijver, A.: Reduction of symmetric semidefinite programs using the regular *-representation. Math. Program. B 109(2–3), 613–624 (2007)

    Article  MATH  Google Scholar 

  37. de Klerk, E., Pasechnik, D.V., Sotirov, R.: On semidefinite programming relaxations of the traveling salesman problem. SIAM J. Optim. 19(4), 1559–1573 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. de Klerk, E., E.-Nagy, M., Sotirov, R., Truetsch, U.: Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems. Eur. J. Oper. Res. 233(3), 488–499 (2014)

    Article  Google Scholar 

  39. de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem. Math. Program. Ser. A 122(2), 225–246 (2010)

    Article  MATH  Google Scholar 

  40. Lasserre, J.: Global optimization problems with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Laurent, M.: Strengthened semidefinite bounds for codes. Math. Program. 109(2–3), 239–261 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Lfberg, J.: YALMIP : a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004)

  43. Mittelmann, H.D., Vallentin, F.: High-accuracy semidefinite programming bounds for kissing number. Exp. Math. 19(2), 175–179 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  44. Murota, K., Kanno, Y., Kojima, M., Kojima, S.: A numerical algorithm for block-diagonal decomposition of matrix *-algebras with application to semidefinite programming. Jpn. J. Ind. Appl. Math. 27(1), 125–160 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Natarajan, K., Teo, C.P., Zheng, Z.: Mixed 0–1 linear programs under objective uncertainty: a completely positive representation. Oper. Res. 59(3), 713–728 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  46. Parrilo, P.: Structured Semidefinite programming and Algebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology, Pasadena, CA, USA (2000)

  47. Peña, J., Vera, J.C., Zuluaga, L.F.: LMI approximations for cones of positive semidefinite forms. SIAM J. Optim. 16(4), 1076–1091 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  48. Peña, J., Vera, J.C., Zuluaga, L.F.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18(1), 87–105 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  49. Peña, J., Vera, J.C., Zuluaga, L.F.: Completely positive reformulations for polynomial optimization. Math. Program. Ser. B 1–27 (2014). doi:10.1007/s10107-014-0822-9

  50. Peña, J., Vera, J.C., Zuluaga, L.F.: Personal Comunication

  51. Pólya, G.: Uber positive Darstellung von Polynomen. Vierteljschr. Naturforsch. Ges. Zürich 73, 141–145 (1928)

    Google Scholar 

  52. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discrete Optim. 6, 231–241 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  53. Povh, J., Rendl, F.: A copositive programming approach to graph partitioning. SIAM J. Optim. 18, 223–241 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  54. Riener, C., Theobald, T., Andrén, L.J., Lasserre, J.B.: Exploiting symmetries in SDP relaxations for polynomial optimization. Math. Oper. Res. 38(1), 122–141 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  55. Quist, A.J., de Klerk, E., Roos, C., Terlaky, T.: Copositive relaxation for general quadratic programming. Optim. Methods Softw. 9, 185–208 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  56. Schrijver, A.: A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inf. Theory 25, 425–429 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  57. Schrijver, A.: New code upper bounds from the Terwilliger algebra. IEEE Trans. Inf. Theory 51, 2859–2866 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  58. Sotirov, R., de Klerk, E.: A new library of structured semidefinite programming instances. Optim. Methods Softw. 24(6), 959–971 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  59. Sponsel, J., Bundfuss, S., Dür, M.: An improved algorithm to test copositivity. J. Glob. Optim. 52(3), 537–551 (2012)

    Article  MATH  Google Scholar 

  60. Turán, P.: A note of welcome. J. Graph Theory. 1, 7–9 (1977)

    Article  Google Scholar 

  61. Tutuncu, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. Ser. B 95, 189–217 (2003)

    Article  MathSciNet  Google Scholar 

  62. Vallentin, F.: Symmetry in semidefinite programs. Linear Algebra Appl. 430(1), 360–369 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  63. Woodall, D.R.: Cyclic-order graphs and Zarankiewicz’s crossing number conjecture. J. Graph Theory 17, 657–671 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  64. Zarankiewicz, K.: On a problem of P. Turán concerning graphs. Fund. Math. 41, 137–145 (1954)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Vera.

Additional information

Cristian Dobre: This work was initiated while affiliated with the Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, The Netherlands. Supported from the Netherlands Organisation for Scientific Research (NWO) through grant no. 639.033.907.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobre, C., Vera, J. Exploiting symmetry in copositive programs via semidefinite hierarchies. Math. Program. 151, 659–680 (2015). https://doi.org/10.1007/s10107-015-0879-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0879-0

Mathematics Subject Classification

Navigation