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Abstract Let f(x) = xTAx + 2aTx + c and h(x) = xTBx + 2bTx + d be
two quadratic functions having symmetric matrices A and B. The S-lemma
with equality asks when the unsolvability of the system f(x) < 0, h(x) = 0
implies the existence of a real number µ such that f(x) + µh(x) ≥ 0, ∀x ∈
Rn. The problem is much harder than the inequality version which asserts
that, under Slater condition, f(x) < 0, h(x) ≤ 0 is unsolvable if and only
if f(x) + µh(x) ≥ 0, ∀x ∈ Rn for some µ ≥ 0. In this paper, we show
that the S-lemma with equality does not hold only when the matrix A has
exactly one negative eigenvalue and h(x) is a non-constant linear function
(B = 0, b 6= 0). As an application, we can globally solve inf{f(x) : h(x) = 0}
as well as the two-sided generalized trust region subproblem inf{f(x) : l ≤
h(x) ≤ u} without any condition. Moreover, the convexity of the joint nu-
merical range {(f(x), h1(x), . . . , hp(x)) : x ∈ Rn} where f is a (possibly non-
convex) quadratic function and h1(x), . . . , hp(x) are affine functions can be
characterized using the newly developed S-lemma with equality.
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1 Introduction

Let f(x) = xTAx + 2aTx+ c and h(x) = xTBx + 2bTx + d be two quadratic
functions having symmetric matrices A and B. In 1971, Yakubovich [36,37]
proved a fundamental result, which we call the classical S-lemma in this paper.
It asserts that, given any pair of quadratic functions (f, h), if h(x) ≤ 0 satisfies
Slater’s condition, namely, there is an x ∈ Rn such that h(x) < 0, the following
two statements are always equivalent:

(S1) (∀x ∈ Rn) h(x) ≤ 0 =⇒ f(x) ≥ 0.
(S2) There exists a µ ≥ 0 such that f(x) + µh(x) ≥ 0, ∀x ∈ Rn.

In the following, let us denote the equivalence by (S1)∼(S2) to mean that both
statements are true or false synchronously.

Notice that (S2) trivially implies (S1), but the other way around from (S1)
to (S2) is not so obvious. Yakubovich’s proof (see also [27]) had to rely on
(i) a homogenization scheme which transforms the nonhomogeneous system
of (S1) and (S2) into homogeneous ones; (ii) if f and h are quadratic forms,
the joint numerical range {(f(x), h(x)) : x ∈ Rn} is convex [9]; and (iii)
Slater’s condition for applying the separation theorem to provide the existence
of µ ≥ 0.

The classical S-lemma is a powerful tool especially in control theory and
robust optimization. See recent surveys in [8,27]. It is a form of the celebrated
Farkas lemma [19]. It can be applied to solve and show the hidden convexity
of the quadratic programming with a single quadratic inequality constraint
(QP1QC) under Slater’s condition. The connection is easily illustrated by

v(QP1QC) = inf
x∈Rn

{f(x) : h(x) ≤ 0}

= sup
λ∈R

{
λ :
{
x ∈ Rn|f(x) < λ, h(x) ≤ 0

}
= ∅
}

= sup
λ∈R

{λ : (∃µ ≥ 0) f(x)− λ+ µh(x) ≥ 0, ∀x ∈ Rn} (1)

= sup
λ∈R,µ≥0

{
λ :

[
A+ µB a+ µb
aT + µbT c+ µd− λ

]
� 0

}
(2)

where v(·) is the optimal value of problem (·) and the notation X � 0 implies
thatX is positive semidefinite. Notice that the key step (1) is due to (S1)∼(S2),
and the SDP result in (2) shows the hidden convexity of (QP1QC).

The classical S-lemma has several forms of generalization. Jeyakuma et al.
in [21] extended Rn in (S1) and (S2) to any linear manifold. The result was
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applied to characterize the global optimality of (QP1QC) equipped with addi-
tional linear equality constraints. When three quadratic functions are consid-
ered, under the assumption that there exists a positive definite matrix pencil of
the three quadratic functions, Jeyakuma et al. in [21] also gave a type of alter-
native theorem involving only strict inequalities. Generalizations of the classi-
cal S-lemma having two or more different h’s are referred to as S-procedure. See
[8,27] for a survey. Particularly, Fradkov and Yakubovich [13] proved that the
strong duality holds for nonconvex quadratic optimization with two quadratic
constraints in complex variables [3]. Jeyakumar et al. in [20] proved that, in the
absence of Slater’s condition but assuming that {x : h(x) ≤ 0} 6= ∅, (S1)∼(S2)
cannot be true for all f ’s. However, (f, g) still satisfies a weaker equivalence
(S1)∼(Sr2), the so-called regularized S-lemma below:

(S1) (∀x ∈ Rn) h(x) ≤ 0 =⇒ f(x) ≥ 0.
(Sr2) (∀ǫ > 0) (∃λǫ ≥ 0) (∀x ∈ Rn) f(x) + λǫh(x) + ǫ(xTx+ 1) ≥ 0.

It is weaker because (S2) implies (Sr2) by letting λǫ = µ ≥ 0, ∀ǫ > 0.
This paper studies the S-lemma with equality. In the formality, it replaces

h ≤ 0 in (S1) by h = 0 and µ ≥ 0 in (S2) by µ ∈ R. It asks, for what pairs of
(f, h) the following two statements are equivalent (i.e. (E1)∼(E2)):

(E1) (∀x ∈ Rn) h(x) = 0 =⇒ f(x) ≥ 0.
(E2) There exists a µ ∈ R such that f(x) + µh(x) ≥ 0, ∀x ∈ Rn.

With the replacement, (S1) is relaxed to (E1) whereas (S2) is relaxed to (E2).
Though it is easy to see that (E1)∼(E2) does not always hold, yet it is by
no means trivial to characterize conditions that (f, h) should satisfy to make
(E1)∼(E2) correct. This is going to be the main theme of this paper.

To begin with the discussion, we always assume that {x : h(x) = 0} 6= ∅.
In literature, the first variant of the S-lemma with equality was proposed by
Finsler [12] in 1937 for the homogeneous system. Different proofs of Finsler’s
Theorem can be found in [14,24]. It states that the statement

(∀x ∈ Rn, x 6= 0) xTBx = 0 =⇒ xTAx > 0 (3)

is true if and only if there exists a µ ∈ R such that A + µB ≻ 0. However,
from the simple example that f(x1, x2) = x1x2, h(x1, x2) = −x2

1, we see that
h(x1, x2) = −x2

1 = 0 implies that f(x1, x2) = 0 so (E1) is true but (3) is
not valid. Finsler’s Theorem then asserts that there is no µ ∈ R such that
A+ µB ≻ 0, but, indeed, there is no µ ∈ R such that f(x) + µh(x) = x1x2 −
µx2

1 ≥ 0, ∀x ∈ Rn. Thus (E2) is false and (E1)6∼(E2). The example shows that
the equivalence of (E1) and (E2) is in general not true, even just for a simple
homogeneous system by a slight generalization from Finsler’s Theorem. We
notice that in this example h(x1, x2) = −x2

1 ≤ 0 satisfies Slater’s condition so
that (S1)∼(S2). It does not satisfy the following “two-side” Slater’s condition
though.

Assumption 1 h(x) takes both positive and negative values, i.e., there are
x′, x′′ ∈ Rn such that h(x′) < 0 < h(x′′).
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Assumption 1 is obviously stricter than the usual Slater’s condition. How-
ever, even when it is imposed, (E1)∼(E2) may still be invalid. For example, let
f(x1, x2) = x2

1 − x2
2, h(x1, x2) = x2 where h(x1, x2) = x2 satisfies Assumption

1. We can check that h(x1, x2) = x2 = 0 implies that f(x1, 0) = x2
1 ≥ 0, but

there is still no µ ∈ R such that f + µh = x2
1 − x2

2 + µx2 ≥ 0, ∀x1, x2 ∈ R.
So (E1)6∼(E2). However, since h satisfies Slater’s condition, there must be
(S1)∼(S2). A simple verification shows that “h(x1, x2) = x2 ≤ 0 ; f(x1, x2) =
x2
1 − x2

2 ≥ 0” so that both (S1) and (S2) are false in this case.

There were several attempts trying to establish some affirmative results for
(E1)∼(E2), but they all came with an incomplete sufficient condition. Analo-
gous to the role of Slater’s condition in (S1)∼(S2), all sufficient conditions for
(E1)∼(E2) are subject to Assumption 1. In literature, those sufficient condi-
tions are

S-Condition 1([27]): h(x) is strictly concave (or strictly convex).

S-Condition 2([3], Thm. A.2): There is an η ∈ R such that A � ηB.

S-Condition 3([33], Corollary 6): h(x) is homogeneous.

S-Condition 4([25]): h(0) = 0 and there exists ζ ∈ X = {x ∈ Rn : h(x) = 0}
such that

(∀x ∈ Rn) xTBx = 0 =⇒ (Bζ + b)Tx = 0. (4)

We defer the discussion about the relations among S-Conditions 1 - 4 to Ap-
pendix for readers who are interested, but consider the following example,
which shows that none of S-Conditions 1 - 4 can become necessary.

Let f(x1, x2) = −x2
1 − x2

2, h(x1, x2) = x2. We check that h(x1, x2) = x2

satisfies Assumption 1. For (E1), h(x1, x2) = x2 = 0 does not imply that
f(x1, 0) = −x2

1 ≥ 0, ∀x1 ∈ R. For (E2), there is no µ ∈ R such that f + µh =
−x2

1−x2
2+µx2 ≥ 0, ∀x1, x2 ∈ R. Since both (E1) and (E2) are false, (E1)∼(E2)

in this example. However, this affirmative example cannot be characterized by
either S-Condition above. We can verify that h is not strictly convex (concave);
since B = 0, A ≺ 0, there is no η ∈ R such that A � ηB; h = 0 is a hyperplane
so it is not homogeneous; finally h(0) = 0, but due to B = 0, b 6= 0, S-
Condition 4 does not hold.

From the above discussion, we learn that (E1)∼(E2) is a much harder prob-
lem than the classical S-lemma (S1)∼(S2). No attempt has been successfully
made so far. Our approach is to beak down the problem into several cases,
each of which encompasses a unique algebraic and/or geometrical feature of
(f, h) for easy analysis. We found that, when h(x) takes both positive and
negative values, the statement (E1) (i.e. infh(x)=0 f(x) ≥ 0 holds) nearly im-
plies that there is a scalar µ to adjust the size and/or the direction of h such
that the linear combination f(x) + µh(x) becomes convex with an attainable
minimum (on the entire Rn, not just on h(x) = 0). The only exception is when
h(x) = 0 is a “flat” n− 1 dimensional hyperplane on which f is convex while
on the remaining dimension (complement to h(x) = 0) f becomes concave.
If described in the algebraic way, under Assumption 1, if B 6= 0, there must
be (E1)∼(E2). The only type of examples that can have (E1)6∼(E2) is when,
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and only when B = 0, b 6= 0, the matrix A has exactly one negative eigen-
value, and the matrix in (17) is positive semi-definite. The result explains why
f(x1, x2) = −x2

1 − x2
2, h(x1, x2) = x2 gets an affirmative result (the matrix A

has two negative eigenvalues), while f(x1, x2) = x2
1 − x2

2, h(x1, x2) = x2 gets
a negative assertion (B = 0, bT = (0, 1/2), A has exactly one negative eigen-
value, and the matrix in (17) is Diag(1, 0) � 0). Theorem 3 in Section 3 gives
the complete statement as well as the proof for the S-lemma with equality to
hold under Assumption 1, whereas the characterization of the theorem when
Assumption 1 fails will be treated in Section 2.

Now we turn to the applications of the S-lemma with equality. The impor-
tance of the S-lemma with equality was not understood by us until we even-
tually realized from [25] that it is the key to solve the following long-standing
interval bounded generalized trust region subproblem (studied in [29] by Pong
and Wolkowicz and also by many other researchers)

(GTRS) inf f(x)

s.t. l ≤ h(x) ≤ u. (5)

If f(x) is convex and the optimal solution to the unconstraint problem min
x∈Rn

f(x)

happens to be feasible to (5) (by checking whether ∇f(x) = 0, l ≤ h(x) ≤ u
has a solution), then the optimal value v(GTRS) = min

x∈Rn
f(x). Otherwise, the

optimal solution is located at one of the two boundaries:

v(GTRS) = min

{
inf

h(x)=l
f(x), inf

h(x)=u
f(x)

}
.

It reduces (GTRS) to

(QP1EQC) inf f(x)

s.t. h(x) = 0.

With the same idea for solving (QP1QC) by applying the classical S-lemma
in (1)-(2), (QP1EQC) can be similarly proved to have the strong duality by
the S-lemma with equality. We also discuss when (QP1EQC) becomes un-
bounded below, and give a necessary and sufficient condition to character-
ize when (QP1EQC) is attainable. As a consequence, both (QP1EQC) and
(GTRS) are completely analyzed.

We remark that (QP1EQC) itself has many interesting applications, in-
cluding the double well potential optimization problem [10,35], the time of
arrival geolocation problem [15] and unbiased least squares optimization for
system identification [26]. In particular, the double well potential model came
from numerical approximations to the generalized Ginzburg-Landau function-
als [18]. It minimizes the following special type of multi-variate polynomial of
degree 4:

min
x∈Rn

1

2

(
1

2
‖Qx− c‖2 − d

)2

+
1

2
xTAx− aTx
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where Q 6= 0 is an m × n matrix. We can reformulate it as an example of
(QP1EQC):

(DWP) minx∈Rn,z∈R

1

2
z2 +

1

2
xTAx− aTx

s.t.
1

2
‖Qx− c‖2 − d− z = 0.

In the constraint function, the variable z does not have a second order term, so
it is not strictly concave (or strictly convex). When A has a negative eigenvalue
whose eigenvector is not in the range of QTQ, there is no η ∈ R such that
A � ηQTQ. Moreover, (DWP) is in general non-homogeneous. Finally, the
model obviously fails an equivalent statement of S-Condition 4 in (64), which
we derive in Appendix. In other words, none of the existing results leads a
complete answer to (DWP).

Finally in Section 5, by applying the S-lemma with equality, we obtain
a necessary and sufficient description for the convexity of the joint numer-
ical range S = {(f(x), h1(x), . . . , hp(x)) : x ∈ Rn} where h1, . . . , hp are all
affine functions. Dines in 1941 [9] showed that the joint numerical range
M = {(f(x), h(x)) : x ∈ Rn} is a convex subset in R2 when f and h
are quadratic forms. Dines’ theorem later became a major machinery for
Yakubovich to prove the famous classical S-lemma in 1971. However, it has
been shown by Polyak in 1998 [28] that Dines’ result is in general not true
even when one of f and h is affine. Beck [2] has shown that, when f is strictly
convex and p ≤ n−1, S is closed and convex, but S is non-convex when p = n
and h1, h2, . . . , hn have linearly independent normals. Our necessary and suffi-
cient conditions for S being convex cover Polyak’s counterexample and Beck’s
result as special cases.

Below we highlight a list of main contributions in the paper.

– When Assumption 1 fails, Theorem 1 characterizes the necessary and suf-
ficient conditions under which (E1) ∼ (E2). (Sect. 2)

– When Assumption 1 fails, Theorem 2 gives a “regularized S-lemma with
equality” (E1) ∼ (Er

2). The classical regularized S-lemma (S1)∼(Sr2) by
Jeyakumar et al. in [20] is shown to be a direct consequence of (E1) ∼ (Er

2).
(Sect. 2)

– When Assumption 1 holds, Theorem 3 characterizes the necessary and
sufficient conditions under which (E1) ∼ (E2). (Sect. 3)

– As an application of Theorem 3, under Slater’s condition, the classical S-
lemma (S1)∼(S2) is shown to be a direct consequence of (E1) ∼ (E2). (Sect.
3)

– As an application of Theorem 3, problems (QP1EQC) as well as (GTRS)
are completely solved without any condition. (Sect. 4)

– As an application of Theorem 3, Beck’s result [2] about the convexity of
S = {(f(x), h1(x), . . . , hp(x)) : x ∈ Rn} with f being strictly convex and
h′
is being affine can be now generalized to any quadratic function f in

Theorem 9. (Sect. 5)
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– The most general version of the “regularized S-lemma with equality” is
given in Corollary 1 without any condition. (Sect. 3)

Throughout the paper, we always assume that {x ∈ Rn : h(x) = 0} 6= ∅.
Notation A � (�)B denotes that the matrix A − B is positive (negative)
semidefinite. A ≻ (≺)B means that the matrix A − B is positive (negative)
definite. Sn

+ represents the space of all n × n positive semidefinite symmetric
matrices. A • B = Tr(ABT ) =

∑n
i,j=1 aijbij stands for the standard inner

product of two symmetric matrices A,B. The null and range space of B is
denoted by N (B) and R(B), respectively; and B+ is the Moore-Penrose gen-
eralized inverse of B. Denote by In the identity matrix of dimension n; and
by Diag(a) the diagonal matrix with a being its diagonal vector. The nota-
tion v(·) denotes the optimal value of a particularly mentioned optimization
problem (·).

2 The S-lemma with equality when Assumption 1 fails

We observe that Assumption 1 is violated and {x ∈ Rn : h(x) = 0} 6= ∅ if and
only if

min
x

h(x) = 0 or max
x

h(x) = 0.

Namely, h is convex(concave) and the set {x : h(x) = 0} consists of all the
minimizers (maximizers) of h(x) such that

{x : h(x) = 0} = {x : min
x

(max
x

)h(x) = 0} = {−B+b+ Zy : y ∈ Rm} (6)

where Z ∈ Rn×m is a matrix basis of N (B), and

min
x

(max
x

)h(x) = (−B+b+ Zy)TB(−B+b+ Zy) + 2bT (−B+b+ Zy) + d

= −bTB+b+ d = 0.

We then investigate (E1)∼(E2) under the following property:

Proposition 1 Assumption 1 is violated if and only if

B � (�) 0, b ∈ R(B) and − bTB+b+ d = 0. (7)

We first discuss the special case that both f and h are homogeneous (i.e.,
a = c = b = d = 0), while the non-homogeneous case will be proved using the
homogeneous result.

Suppose h is homogeneous. Then, (7) is reduced to B � (�) 0 and (6)
becomes h(x) = 0 ⇐⇒ x = Zy. Therefore,

(E1) ⇐⇒ f(Zy) ≥ 0, ∀y.

Suppose f is also homogeneous. Then,

(homogeneous) (E1) ⇐⇒ ZTAZ � 0. (8)
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On the other hand, when f and h are quadratic forms,

(homogeneous) (E2) ⇐⇒ (∃µ ∈ R) A+ µB � 0. (9)

Therefore, suppose Assumption 1 is violated and both f and h are quadratic
forms, homogeneous version of (E1)∼(E2) is the same as (8)∼(9).

Since (9) trivially implies (8), it is sufficient to show that (8) implies (9).
When B ≻ 0, A + µB ≻ 0 for any sufficiently large µ, so (9) is trivially true.
We let B � 0 but not definite, i.e., Z 6= 0. Then there are two possibilities:

(a) Suppose ZTAZ ≻ 0. For xTBx = 0, we have x = Zy for some y 6= 0 and
xTAx = yTZTAZy > 0. In other words, the system

xTAx ≤ 0, xTBx = 0, x 6= 0,

has no solution. By Finsler’s Theorem, (9) must be true.
(b) Suppose ZTAZ � 0 but not definite. Anstreicher and Wright [1] proved in

2000 that (8) is equivalent to (9) if and only if N (ZTAZ) = N (ZTA2Z).

In summary, if f, h are homogeneous and either h(x) ≥ 0 or h(x) ≤ 0,
the S-lemma with equality holds for one of the following three situations: (i)
B ≻ (≺) 0; (ii) B � (�) 0 and ZTAZ ≻ 0; and (iii) B � (�) 0, ZTAZ � 0
and N (ZTAZ) = N (ZTA2Z). Notice that, in Introduction, we have seen
(E1)6∼(E2) for the example f(x1, x2) = x1x2, h(x1, x2) = −x2

1. The reason
now is clear that B � 0, ZTAZ = 0, N (ZTAZ) = R, but N (ZTA2Z) = {0}.

For nonhomogeneous f and h, we first have the following proposition.

Proposition 2 Suppose Assumption 1 is violated and f, h are nonhomoge-
neous. Then,

(E1) ⇐⇒ W = Z̃T ÃZ̃ =

[
ZTAZ ZTa− ZTAB+b

aTZ − bTB+AZ bTB+AB+b− 2aTB+b+ c

]
� 0,

(10)
where Z is a matrix basis of N (B), and

Z̃ =

[
Z 0
0 1

]
, Ã =

[
A a−AB+b

aT − bTB+AT bTB+AB+b− 2aTB+b+ c

]
. (11)

Proof. Since f is non-homogeneous and Assumption 1 fails, we have

inf
h(x)=0

f(x) = f(−B+b+ Zy)

= (−B+b+ Zy)TA(−B+b+ Zy) + 2aT (−B+b+ Zy) + c

=

[
y
1

]T
W

[
y
1

]
≥ 0, ∀y ∈ Rm

where W is defined in (10). Then, the matrix W is positive semi-definite since,
for any γ 6= 0,

[
y
γ

]T
W

[
y
γ

]
= γ2

[
y/γ
1

]T
W

[
y/γ
1

]
≥ 0, ∀y ∈ Rm;



S-Lemma with Equality 9

and also for γ = 0,

[
y
0

]T
W

[
y
0

]
= lim

γ→0

[
y
γ

]T
W

[
y
γ

]
≥ 0, ∀y ∈ Rm.

�

Notice that (10) is the homogeneous representation for the nonhomoge-

neous inequality f(−B+b+ Zy) ≥ 0 by lifting one more dimension to Ã. The
next result is the main theorem of this section.

Theorem 1 Suppose Assumption 1 is violated and the same notations as in
Proposition 2 are adopted. Then, (E1) ∼ (E2) if and only if one of the following
conditions is satisfied:

(a) Z̃T ÃZ̃ ≻ 0;

(b) Z̃T ÃZ̃ � 0 and N (Z̃T ÃZ̃) = N (Z̃T Ã2Z̃).

Proof. Since Assumption 1 fails, by (7), we have d = bTB+b. Then,

(∃µ ∈ R) f(x) + µh(x) ≥ 0, ∀x ∈ Rn ⇐⇒
[
A a
aT c

]
+ µ

[
B b
bT bTB+b

]
� 0.

Using the invertible matrix

[
I 0

−bTB+ 1

]
to homogenize h, we obtain

(E2) ⇐⇒ (∃µ ∈ R)

[
A a
aT c

]
+ µ

[
B b
bT bTB+b

]
� 0

⇐⇒ (∃µ ∈ R)

[
I 0

−bTB+ 1

] [
A a
aT c

] [
I −B+b
0 1

]
+ µ

[
B 0
0 0

]
� 0

⇐⇒ (∃µ ∈ R) Ã+ µ

[
B 0
0 0

]
� 0

where Ã was defined in (11). Let B̃ =

[
B 0
0 0

]
� 0. Notice that it is not

definite and Z̃ =

[
Z 0
0 1

]
the basis matrix for the null space of B̃. By applying

the homogeneous version (8)∼(9) to Ã and B̃, the conclusion of the theorem
follows immediately. �

Recall that, the classical S-lemma (S1) ∼ (S2) relies on Slater’s condi-
tion. When the condition is absent, the regularized S-lemma (S1) ∼ (Sr2) is
a substitute for (S1) ∼ (S2) ([20]). Following the similar idea and as a direct
consequence of Theorem 1, we can also formulate the following regularized
version of S-lemma with equality in the absence of Assumption 1:

Theorem 2 Suppose Assumption 1 is violated. Then, the following two state-
ments are equivalent:

(E1) (∀x ∈ Rn) h(x) = 0 =⇒ f(x) ≥ 0.
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(Er
2) (∀ǫ > 0)(∃λǫ)(∀x ∈ Rn) f(x) + λǫh(x) + ǫ(xTx+ 1) ≥ 0.

Proof. Since (Er
2) =⇒ (E1) is trivial by letting ǫ → 0, it is sufficient to prove

the converse. To this end, for all ǫ > 0, consider fǫ(x) = f(x) + ǫ(xTx + 1) =
xT (A+ ǫI)x+ 2aTx+ (c+ ǫ) and h(x). By (E1), we first have

(∀ǫ > 0)(∀x ∈ Rn) h(x) = 0 =⇒ f(x) ≥ 0 =⇒ fǫ(x) ≥ 0. (12)

Secondly, from Proposition 2, (E1) also implies that W � 0 in (10). Then, due
to ZTZ = I and ZTB+ = 0, there is

[
ZT (A+ ǫI)Z ZTa− ZT (A+ ǫI)B+b

aTZ − bTB+ (A+ ǫI)Z bTB+(A+ ǫI)B+b− 2aTB+b + (c+ ǫ)

]

=

[
ZTAZ ZTa− ZTAB+b

aTZ − bTB+AZ bTB+AB+b− 2aTB+b+ c

]
+ ǫ

[
I 0
0 ‖B+b‖2 + 1

]
≻ 0.

In other words, Case (a) in Theorem 1 holds for fǫ(x) and h(x). The S-lemma
with equality for the pair fǫ(x) and h(x) thus implies that, from (12), there
must be an associated λǫ ∈ R for any ǫ > 0 such that

fǫ(x) + λǫh(x) = f(x) + λǫh(x) + ǫ(xTx+ 1) ≥ 0, ∀x ∈ Rn,

which proves the theorem. �

Theorem 2 generalizes the regularized S-lemma. Consider ĥ(x, z) = h(x)+

z2 = 0. Assume that h(x) ≤ 0 fails Slater’s condition. Then, ĥ(x, z) = h(x) +
z2 ≥ 0, ∀x ∈ Rn, ∀z ∈ R fails Assumption 1. Since (S1) can be equivalently
rephrased as

(∀x ∈ Rn, ∀z ∈ R) ĥ(x, z) = h(x) + z2 = 0 =⇒ f̂(x, z) = f(x) ≥ 0, (13)

we can apply Theorem 2 to (f̂ , ĥ) and obtain

(∀ǫ > 0)(∃λǫ)(∀x ∈ Rn, ∀z ∈ R) f(x) +λǫ(h(x) + z2) + ǫ(xTx+1) ≥ 0. (14)

Let z → ∞ in (14), we have λǫ ≥ 0 for all ǫ > 0. The validity of (Sr2), and
hence (S1) ∼ (Sr2), is concluded from setting z = 0 in (14).

The original proof of the regularized S-lemma in [20], based on Brickman’s
theorem [6] and Mart́ınez-Legaz’s result [23], is a bit tedious. Our argument
by applying Theorem 2 can be viewed as a direct consequence of Finsler’s
Theorem [12], which is more direct and simple.

3 The S-lemma with equality when Assumption 1 holds

Throughout this section, we always assume that h takes both positive and
negative values (Assumption 1). It is frequent to consider the homogenized
version by introducing a new variable t ∈ R as follows:

f̃(x, t) = xTAx+ 2taTx+ ct2,

h̃(x, t) = xTBx+ 2tbTx+ dt2.
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If t 6= 0, (E2) implies that

(∃µ ∈ R)(∀x ∈ Rn) f̃(x, t) + µh̃(x, t) = t2
(
f
(x
t

)
+ µh

(x
t

))
≥ 0.

For t = 0, there is

(∃µ ∈ R)(∀x ∈ Rn) f̃(x, 0) + µh̃(x, 0) = lim
t→0

f̃(x, t) + µh̃(x, t) ≥ 0.

Consequently, the validity of (E2) implies that of its homogenized version

(Ẽ2) (∃µ ∈ R)(∀x ∈ Rn, ∀t ∈ R) f̃(x, t) + µh̃(x, t) ≥ 0,

and vice versa (by setting t = 1). So we have (E2)∼(Ẽ2). On the other hand,
by the S-lemma with equality for a homogeneous quadratic system under As-
sumption 1 and S-Condition 3, (Ẽ2)∼(Ẽ1) below:

(Ẽ1) (∀x ∈ Rn, ∀t ∈ R) xTBx+2tbTx+dt2 = 0 ⇒ xTAx+2taTx+ct2 ≥ 0.

Comparing (Ẽ1) with (E1), we only know they are equivalent when t 6= 0, by
rewriting

(∀x ∈ Rn, t 6= 0) xTBx+ 2tbTx+ dt2 = 0 =⇒ xTAx+ 2taTx+ ct2 ≥ 0 (15)

as

(∀x ∈ Rn)
(x
t

)T
B
(x
t

)
+2bT

(x
t

)
+d = 0 =⇒

(x
t

)T
A
(x
t

)
+2aT

(x
t

)
+c ≥ 0.

Therefore, if we are to argue that (E1)∼(E2), it amounts to finding conditions

under which (E1) =⇒ (Ẽ1) for t = 0. That is, we need conditions for the
following compound statement to hold:

{
(E1) : inf

h(x)=0
f(x) ≥ 0

}
=⇒

{
(∀x ∈ Rn) xTBx = 0 =⇒ xTAx ≥ 0

}
. (16)

We now present and prove the necessary and sufficient conditions for the
S-lemma with equality to be valid.

Theorem 3 Under Assumption 1 that h(x) takes both positive and negative
values, the S-lemma with equality holds except that A has exactly one negative
eigenvalue, B = 0, b 6= 0 and

[
V TAV V T (Ax0 + a)

(xT
0 A+ aT )V f(x0)

]
� 0, (17)

where x0 = − d
2bT b

b, V ∈ Rn×(n−1) is the matrix basis of N (b).
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Proof. The statement of the theorem is the same as (E1)6∼(E2) if, and only
if B = 0, b 6= 0, A has exactly one negative eigenvalue and (17) holds. The
proof is organized in the following sequence:

(Sufficiency) Suppose B = 0, b 6= 0, A has exactly one negative eigenvalue
and (17) holds. We show that (16) is a false statement. That is, (E1)6∼(E2).

(Necessity) Suppose (16) is a false statement such that (E1) is true but

(∀x ∈ Rn) xTBx = 0 =⇒ xTAx ≥ 0 (18)

fails. Through a case-by-case analysis (cases (a), (b), (c-1), (c-2) and (c-3)
below), we show that there must be B = 0. Once this is obtained, it follows
immediately that b 6= 0, (17) holds, and A has exactly one negative eigenvalue.

(Proof for sufficiency) From B = 0, b 6= 0, we observe that the set {x ∈
Rn : h(x) = 0} is a linear variety of n− 1 dimension

{x ∈ Rn : h(x) = 0} = {x0 + V y : y ∈ Rn−1} (19)

with x0 = − d
2bT b

b being a particular solution of h(x) = 0 and V is a matrix
basis of N (b). Then, (E1) becomes an unconstrained minimization problem

inf
y∈Rn−1

{
f(x0 + V y) = f(x0) + 2(xT

0 A+ aT )V y + yTV TAV y
}
≥ 0 (20)

where “≥ 0” comes from (17). That is, (E1) is true. However, from B = 0 and
A 6� 0, we know (18) is wrong so that (E1)6∼(E2) and the sufficiency is proved.

(Proof for necessity) We defer the proof for B = 0 to later discussions but
first assume that it is true. We show that, when B = 0, (E1) is true and (18)
fails, it follows immediately that b 6= 0, (17) holds, and A has exactly one
negative eigenvalue.

Since h(x) takes both positive and negative values,B = 0 implies that b 6= 0
and then the set {x ∈ Rn : h(x) = 0} is the n − 1 dimensional linear variety
(19). Since (E1) is true, we obtain (20), which gives (17) and V TAV � 0. As
B = 0 and (18) fails, we have A 6� 0. Then, the matrix A must have exactly
one negative eigenvalue.

In the remaining part of the necessity proof, we show B = 0 by contra-
diction. That is, we are going to argue that “if B 6= 0 and (18) fails, then
inf

h(x)=0
f(x) = −∞ (so (E1) fails too).”

Since (18) fails, there is a v ∈ Rn such that

vTBv = 0, vTAv < 0. (21)

This v is to be utilized to construct a curve {y + α(y)v : y ∈ Rn, α(y) ∈ R}
on {x : h(x) = 0} upon which f is unbounded below.

For this purpose, we derive the following formulae.

h(y + α(y)v) = (y + α(y)v)TB(y + α(y)v) + 2bT (y + α(y)v) + d

= h(y) + 2yT (Bv)α(y) + 2(bT v)α(y); (22)
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and

f(y + α(y)v) = (y + α(y)v)TA(y + α(y)v) + 2aT (y + α(y)v) + c

= f(y) + 2yT (Av)α(y) + 2(aT v)α(y) + (vTAv)(α(y))2 . (23)

From (22), we can construct {y+α(y)v : y ∈ Rn, α(y) ∈ R} on {x : h(x) =
0} in different ways based on three cases: Case (a) for bTv = 0; Case (b) for
bT v 6= 0, Bv = 0 and Case (c) for bT v 6= 0, Bv 6= 0. For convenience, we may
assume d = 0, i.e., h(0) = 0. If this is not the case, we choose a nonzero vector
x′ ∈ Rn such that h(x′) = 0 and then translate the origin there.

(a) Suppose bT v = 0. In this case, we choose y = 0 and let α(y) be any real
number α in (22). Due to h(0) = 0, it is easy to see that h(αv) = 0 for all
α. Therefore, the set {x : h(x) = 0} contains a straight line {αv : α ∈ R}
which goes through the origin in the direction of v. The values of f on this
line can be easily read from (23) to have

inf
α

{
f(αv) = c+ 2(aT v)α+ (vTAv)α2

}
= −∞

where vTAv < 0 due to (21). Therefore, we have inf
h(x)=0

f(x) = −∞.

(b) Suppose Bv = 0 and bT v 6= 0. For any y ∈ Rn, let

α(y) = − h(y)

2bTv
.

Then, y + α(y)v satisfies h(y + α(y)v) = h(y) + 2(bT v)α(y) = 0. Since
B 6= 0, there is an eigenvector u 6= 0 corresponding to a nonzero eigenvalue
σ of B, i.e., Bu = σu. Consider y to be the line {γu : γ ∈ R} spanned by
u. Then, Γ = {γu + α(γu)v : γ ∈ R} is a curve on {x : h(x) = 0}. The
values of f on Γ can be verified to be unbounded below by

inf
γ∈R

{f(γu+ α(γu)v)}

= inf
γ∈R

{
f(γu)− 2(γAu+ a)T v

h(γu)

2bTv
+ vTAv

h2(γu)

(2bT v)2

}

= −∞

since the coefficient vTAv
(2bT v)2 < 0 and h2(γu) = (σγ2‖u‖2 + 2γbTu)2 is a

polynomial of degree 4 in γ whereas f(γu) is only of degree 2 and γh(γu)
is of degree 3.

(c) Suppose Bv 6= 0 and bT v 6= 0. In this case, B is indefinite; otherwise
B � (�) 0, vTBv = 0 would imply that Bv = 0. Without loss of generality,
assume that B is diagonal after performing the eigenvalue decomposition
on B. We also assume that B = Diag(Bii) where

Bii =





1, i ∈ I,
−1, i ∈ J,
0, i ∈ {1, 2, . . . , n} \ (I ∪ J).
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It will soon be clear that only the signs of the entries matter. Since B is
indefinite, both I and J are non-empty, i.e., #I ≥ 1 and #J ≥ 1. It follows
that the rank of B is at least 2. When Rank(B) = 2, the homogeneous
quadratic surface xTBx = 0 is the union of two vertical-like hyperplanes
(a type of cylindroid in geometry), which will be dealt with separately.
When Rank(B) = 3, xTBx = 0 is a second order cone (a double circular
cone). When Rank(B) > 3, it is sure that xTBx = 0 is not the union of
hyperplanes since there is at least one three-dimensional second order cone
embedded as a cross section.

(c-1) Suppose Rank(B) ≥ 3. We assume that I = {i1, i2, . . . , im} and J =
{j1, j2, . . . , jk} with m ≥ 2, k ≥ 1. We first claim that it is always
possible to choose one v such that vTBv = 0, vTAv < 0 and v2i 6= v2j
for some i ∈ I and j ∈ J . If the vector v satisfying (21) does not meet
the requirement, namely v2i = v2j for all i ∈ I and j ∈ J , we can perturb
v by ǫw where ǫ > 0 is a sufficiently small constant; and

wi =

{
1, i ∈ {i2, j1}
0, o.w.

Then, Bw = 0; (v + ǫw)TB(v + ǫw) = 0; (v + ǫw)TA(v + ǫw) < 0; and
(vi1 + ǫwi1)

2 = v2i1 6= (vj1 + ǫ)2 = (vj1 + ǫwj1)
2. So we can assume that

vTBv = 0, vTAv < 0, Bv 6= 0, bT v 6= 0 and v2i1 6= v2j1 .
Define a straight line

xβ = β(vj1 )e1 + β(vi1)e2, ∀β ∈ R. (24)

Since xT
βBv = 0, ∀β ∈ R, the line xβ and the vector v are conjugate

with respect to B. By defining

α(xβ) = −h(xβ)

2bT v
,

and by the conjugacy, we see from (22) that

h(xβ + α(xβ)v) = h(xβ) + 2(bT v)α(xβ) = 0

and xβ + αv is a curve on h(x) = 0 upon which f(x) is unbounded
below as

inf
h(xβ+αv)=0

{
f(xβ + αv) = f(xβ) + 2(Axβ + a)T vα+ vTAvα2

}

= inf
β∈R

{
f(xβ)− 2(Axβ + a)T v

h(xβ)

2bTv
+ vTAv

h2(xβ)

(2bT v)2

}

= −∞,

where the coefficient vTAv
(2bT v)2 < 0 and due to (vj1)

2 − (vi1 )
2 6= 0,

h2(xβ) =
(
β2(vj1 )

2 − β2(vi1 )
2 + 2βbi1vj1 + 2βbj1vi1

)2
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is a polynomial of degree 4 in β whereas f(xβ) is only of degree 2
and βh(xβ) is of degree 3. Finally, we remark that when the diagonal
elements of B are not just 0, 1,−1, the line xβ defined in (24) can be
adjusted through the linear combination of e1 and e2 to maintain the
conjugacy to v and the rest of the proof follows immediately.

(c-2) Suppose Rank(B) = 2 with B11 = 1, B22 = −1 and Bii = 0, for i ≥ 3.

In this subcase (c-2), we handle b̃ = (b3, . . . , bn)
T 6= 0 whereas leaving

b̃ = 0 to (c-3) next. Since xTBx = 0 is the union of two cylindroid

hyperplanes and b̃ 6= 0, we show that there is an oblique cross section
of h(x) = 0, which contains a straight line in the direction of v for any
v satisfying (21) and Bv 6= 0. Since it must be v21 = v22 6= 0, the line
has a formula

l(t) =




0
y
z̃


+ tv, t ∈ R and h(l(t)) = 0

where

y =
bT v

v2
; z̃ =

( b
T v
v2

)2 − 2b2(b
T v)

v2

2b̃T b̃
b̃.

Denoting xT
0 = (0, y, z̃T ) and substituting l(t) in f(x) yields

f(x0 + tv) = (vTAv)t2 + 2(xT
0 Av + aT v)t+ f(x0),

which tends to −∞ as |t| −→ ∞ due to vTAv < 0.
(c-3) Suppose that Rank(B) = 2 with B11 = 1, B22 = −1, Bii = 0, for i ≥ 3

and b̃ = 0. Then, the optimization problem inf
h(x)=0

f(x) is unconstrained

in the last n− 2 variables. Denote

A =

[
A1 A2

AT
2 A3

]

where A1 ∈ R2×2. Let A3 = UTΣU be the eigenvalue decomposition
with U orthogonal and Σ = Diag(σi). The Moore-Penrose generalized
inverse of A3 is A+

3 = UTΣ+U , where Σ+ = Diag(σ−1
i ) when σi 6= 0

and 0−1 = 0. Define

W =

[
I2 −A2A

+
3

0 U

]
.

Then we have

W

[
A1 A2

AT
2 A3

]
WT =

[
Â1 0
0 Σ

]
, WBWT =



1 0 0
0 −1 0
0 0 0n−2


 = B

where Â1 = A1 −A2A
+
3 A

T
2 . Introducing the coordinate change

(
z
y

)
= W−Tx;

(
âz
ây

)
= Wa; b̂ =

(
b̂1
b̂2

)
= Wb
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where z ∈ R2, y ∈ Rn−2 yields

inf
h(x)=0

f(x) = inf zT Â1z + 2âTz z + yTΣy + 2âTy y + c (25)

s.t. zT
[
1 0
0 −1

]
z + 2b̂T z = 0, z ∈ R2, y ∈ Rn−2.

Obviously, due to Bii = 0, i ≥ 3 and b̃ = (b3, b4, . . . , bn) = 0, the
variable y is unconstrained. If there is some σi < 0 (in which case
A3 6� 0); or some σi = 0 but (ây)i 6= 0 (in which case at least one of the
two columns of AT

2 is not in the range of A3), the problem infh(x)=0 f(x)
is surely −∞. Therefore, we only have to concentrate on the case that,
for all i ∈ {3, 4, . . . , n}, either σi > 0 or σi = (ây)i = 0. That is, the
function

yTΣy + 2âTy y + c

is a convex sum-of-squares quadratic with no pure linear terms, which
has a global optimal solution y∗ = −Σ+ãy. Substituting y∗ into (25),
it reduces to the following quadratic optimization problem with two
variables:

inf
h(x)=0

f(x) = inf
z∈R2

zT Â1z + 2âTz z − âTy Σ
+ây + c (26)

s.t. zT
[
1 0
0 −1

]
z + 2b̂T z = 0. (27)

Notice that the equation (27) can be used to solve either z1 or z2. To

see this, we first suppose that |̂b1| ≥ |̂b2|. By introducing

δ =

√
b̂21 − b̂22 − b̂1, ẑ1 = z1 − δ, ẑ2 = z2 − b̂2,

we obtain a new expression for (27):

z21 − z22 + 2b̂1z1 + 2b̂2z2 = ẑ21 − ẑ22 + 2(̂b1 + δ)ẑ1 (28)

in which there is no linear term of ẑ2. Similarly for |̂b1| < |̂b2|, we can
eliminate the linear term of ẑ1 by letting

δ =

√
b̂22 − b̂21 + b̂2, ẑ1 = z1 + b̂1, ẑ2 = z2 − δ. (29)

We also notice that the transformation (28) or (29) only affect the linear

term âz of (26) but not the second order term Â1. Consequently, we

may assume |̂b1| ≥ |̂b2| = 0 so that (27) can be solved as

z2 = ±
√
z21 + 2b̂1z1. (30)
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Denote Â1 =

[
â11 â12
â12 â22

]
and substitute (30) into (26). It becomes

inf
h(x)=0

f(x) ≤ inf
|z1|≫1

{
â11z

2
1 ± 2â12z1

√
z21 + 2b̂1z1 + â22(z

2
1 + 2b̂1z1)

+2(âz)1z1 ± 2(âz)2

√
z21 + 2b̂1z1 − âTy Σ

+ây + c

}

= inf
|z1|≫1

{
(â11 − 2|â12|+ â22) z

2
1 +O(z1)

}

It remains to show, due to vTBv = 0, vTAv < 0, Bv 6= 0 and that we
are in the case Σ � 0, the leading term â11 − 2|â12|+ â22 < 0. We first
perform the coordinate change v̂ = W−T v to give

vTBv = 0 =⇒ v̂T



1 0 0
0 −1 0
0 0 0n−2


 v̂ = 0 =⇒ v̂21 = v̂22 ; (31)

vTAv < 0 =⇒ v̂T
[
Â1 0
0 Σ

]
v̂ < 0 =⇒

[
v̂1
v̂2

]T
Ã1

[
v̂1
v̂2

]
< 0. (32)

Moveover, Bv 6= 0 implies that BWT v̂ = Bv̂ 6= 0, i.e., either v̂1 6= 0 or
v̂2 6= 0. From (31), it must be v̂1 = v̂2 6= 0 or v̂1 = −v̂2 6= 0. It follows
from (32) that one of the following equations holds:

â11 + â22 + 2â12 < 0, for v̂1 = v̂2;

â11 + â22 − 2â12 < 0, for v̂1 = −v̂2.

Combining together, we have â11 + â22 < 2|â12|. The final subcase and
the entire proof of the theorem is thus complete.

�

Theorem 3 generalizes the classical S-lemma (S1)∼(S2) under Slater’s con-

dition. First, like (13), we rewrite (S1) in terms of ĥ(x, z) = h(x) + z2 and

f̂(x, z) = f(x). Let x be a Slater point of h(x) ≤ 0. Then, Assumption 1 can
be easily checked to hold by

ĥ(x, 0) = h(x) < 0, ĥ(x, 1− h(x)) = h(x) + (1− h(x))2 > 0.

Moreover, ĥ(x, z) has a non-zero Hessian that ∇2ĥ 6= 0. By Theorem 3,

(∃µ ∈ R)(∀x ∈ Rn, ∀z ∈ R) f(x) + µĥ(x, z) = f(x) + µh(x) + µz2 ≥ 0. (33)

Then, µ ≥ 0 follows from z → ∞ and setting z = 0 in (33) yields (S2).
Therefore, under Slater’s condition, (S1) implies (S2) by Theorem 3.

Finally, when Assumption 1 holds but B = 0, the S-lemma with equal-
ity could possibly fail. In that case, we can formulate a modified version of
regularized S-lemma.
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Theorem 4 Suppose that Assumption 1 holds but B = 0. The statement

h(x) = 0 =⇒ f(x) ≥ 0, ∀x ∈ Rn (34)

is true if and only if

(∀ǫ > 0)(∃λǫ)(∀x ∈ Rn) f(x) + λǫ(h(x))
2 + ǫ(xTx+ 1) ≥ 0, (35)

Proof. It is sufficient to prove (34) implies (35). First, (34) implies that

(h(x))2 = 0 =⇒ f(x) ≥ 0, ∀x ∈ Rn.

Since Assumption 1 cannot hold for h2, we apply Theorem 2 to (f, h2) and
complete the proof. �

Theorems 2, 3 and 4 can be packed together to yield the following regular-
ized S-lemma with equality.

Corollary 1 The statement

h(x) = 0 =⇒ f(x) ≥ 0, ∀x ∈ Rn

is true if and only if

(∀ǫ > 0)(∃λǫ)(∀x ∈ Rn) f(x) + λǫ(h(x))
φ(B) + ǫ(xTx+ 1) ≥ 0,

where

φ(B) =

{
1, if B 6= 0,
2, if B = 0.

4 Application to solve (QP1EQC)

Moré in 1993 published an early result on the saddle point optimality condition
for (QP1EQC) under mild conditions [24]. It states:

Theorem 5 ([24], Thm 3.2) Under Assumption 1 and B 6= 0, a vector x∗

is a global minimizer of (QP1EQC) if and only if h(x∗) = 0 and there is a
multiplier µ∗ ∈ R such that the Kuhn-Tucker condition

Ax∗ + a+ µ∗(Bx∗ + b) = 0 (36)

is satisfied with the second order condition A+ µ∗B � 0.

However, (36) may not always have a pair of solution (x∗, λ∗) since (QP1EQC)
could be unbounded below or have an unattainable optimal value. Even when
the problem has an attainable minimum, algorithmic approach for computing
(x∗, λ∗) from (36) often required strong conditions such as the existence of
a positive definite matrix pencil A + µB ≻ 0 (also known as the dual Slater
condition), e.g. [24,29,31,38]. The dual Slater condition is not practical since it
is stricter than the two matrices A and B being simultaneously diagonalizable
via congruence (SDC) [16]. By the S-lemma with equality, we can now solve
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(QP1EQC) directly by the standard SDP relaxation (because it is tight) and
a rank-one decomposition procedure (if necessary) without resorting to the
Kuhn-Tucker condition (36) and without any assumption. We also analyze
(QP1EQC) when it is unbounded below; or is unattainable.

In fact, when B = 0, the constraint is just 2bTx+d = 0. When Assumption
1 fails, there must be B � (�)0 so that the constraint is reduced to the first
order condition Bx+b = 0. By the null space representation of 2bTx+d = 0 or
Bx+ b = 0, (QP1EQC) becomes an unconstrained problem. It would then be
either unbounded below or a convex unconstrained problem with an attainable
optimal solution.

Now it remains to consider (QP1EQC) for B 6= 0 and under Assumption 1.
Applying the S-lemma with equality (Theorem 3), we can recast (QP1EQC)
as the following semidefinite programming problems (SDP):

v(QP1EQC) = sup
s∈R

{s : {x ∈ Rn|f(x)− s < 0, h(x) = 0} = ∅} (37)

= sup
s∈R

{s : (∃µ ∈ R) f(x)− s+ µh(x) ≥ 0, ∀x ∈ Rn} (38)

= sup
s,µ∈R

{
s :

[
A+ µB a+ µb
aT + µbT c+ µd− s

]
� 0

}
(39)

≤ inf
X∈Sn

+

{[
A a
aT c

]
•X :

[
B b
bT d

]
•X = 0, Xn+1,n+1 = 1

}
(40)

≤ inf
x∈Rn

{[
A a
aT c

]
•
([

x
1

] [
x
1

]T)
:

[
B b
bT d

]
•
([

x
1

] [
x
1

]T)
= 0

}

= v(QP1EQC). (41)

Note that (38) is equivalent to the Lagrangian dual of (QP1EQC)

(LD) sup
µ∈R

{
inf

x∈Rn
L(x, µ) := f(x) + µh(x)

}
. (42)

The equation (39) is the SDP reformulation of (42) which is known as Shor
relaxation scheme [30]. The inequality (40) follows from the conic weak duality.
Eventually, all inequalities above become equalities and they prove the strong
duality (no duality gap between (QP1EQC) and its Lagrange dual), as well as
the tight SDP relaxation.

The strong duality result (37)-(41) does not rely on the existence of an
optimal solution x∗ to (QP1EQC) and thus it is more general than Theorem 5.
It is possible that the strong duality holds like v(QP1EQC) = v(LD) = −∞ for
an unbounded (QP1EQC). When v(QP1EQC) = −∞, the SDP reformulation
(39) of the Lagrange dual (LD) is surely infeasible. The converse is also true.
When v(QP1EQC) > −∞, by the S-lemma with equality, there is some µ ∈ R
such that f(x)−v(QP1EQC)+µh(x) ≥ 0, ∀x ∈ Rn. The dual must be feasible.

Moreover, when v(QP1EQC) > −∞, due to the tight SDP relaxation (40),
an optimal solution x∗ of (QP1EQC) can be found if, and only if the primal
SDP relaxation (40) attains the optimal solution at some X∗ ∈ Sn

+. Then we
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can employ the standard rank-one decomposition procedure [32] to generate
a rank-one solution out of X∗ for (QP1EQC). Notice that the strong duality
(37)-(41) does not warrant (QP1EQC) and its primal SDP relaxation (40) an
attainable optimal solution though.

We will show in Theorem 6 that, when v(QP1EQC) = v(LD) > −∞, the
dual SDP (39) is not only feasible but the value v(LD) is always attainable.
Moreover, the primal problem (QP1EQC) is unattainable if and only if its
dual feasible set is a single point set {(v(QP1EQC), µ∗)} at which either (43)
or (44) happens. We first prove a lemma for the dual attainment property.

Lemma 1 Under Assumption 1 and B 6= 0, if (QP1EQC) has an optimal
solution x∗, then the dual SDP (39) also has an optimal solution (s∗, µ∗) such
that the primal-dual pair (x∗, µ∗) satisfies the Kuhn-Tucker condition (36).

Proof. Let x∗ be an optimal solution of (QP1EQC). According to Theorem
5, there is a µ∗ such that A+ µ∗B � 0, a+ µ∗b ∈ R(A+ µ∗B) and thus

x∗ = argmin f(x) + µ∗h(x).

Let s∗ = f(x∗) + µ∗h(x∗) = f(x∗). Since s∗ ≤ f(x) + µ∗h(x), ∀x ∈ Rn,
the pair (s∗, µ∗) is dual feasible to (39) (or to (38)). Suppose (s, µ) is any
dual feasible pair such that s ≤ f(x) + µh(x), ∀x ∈ Rn. There must also be
A+ µB � 0, a+ µb ∈ R(A+ µB) and x(µ) = −(A+ µB)+(a+ µb) such that

s ≤ inf{f(x) + µh(x) : x ∈ Rn}
= f(x(µ)) + µh(x(µ))

≤ f(x∗) + µh(x∗)

= f(x∗)

= s∗.

Therefore, the dual SDP (39) has an optimal solution (s∗, µ∗) and the primal-
dual pair (x∗, µ∗) satisfies the Kuhn-Tucker condition (36). �

Theorem 6 Under Assumption 1, B 6= 0 and v(QP1EQC) > −∞, the dual
SDP (39) always has an optimal solution (s∗, µ∗). Moreover, the infimum of
(QP1EQC) is unattainable when, and only when the dual SDP (39) possesses
a unique feasible µ∗; and at µ∗ the two functions f(x), h(x) together satisfy

either V TBV � 0, h(y0)− (By0 + b)TV (V TBV )+V T (By0 + b) > 0, (43)

or V TBV � 0, h(y0)− (By0 + b)TV (V TBV )+V T (By0 + b) < 0, (44)

where y0 = −(A+ µ∗B)+(a+ µ∗b), V is the matrix basis of N (A+ µ∗B).

Proof. Since v(QP1EQC) > −∞, there is some µ ∈ R such that f(x) −
v(QP1EQC) + µh(x) ≥ 0, ∀x ∈ Rn. It is clear that such an µ satisfies

{
A+ µB � 0,
a+ µb ∈ R(A+ µB).
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We first consider that the matrix pencil I�(A,B) = {µ : A+ µB � 0} is a
single-point set {µ∗}. Then, any dual feasible (s, µ∗) must satisfy

s ≤ inf{f(x) + µ∗h(x) : x ∈ Rn} = f(x(µ∗)) + µ∗h(x(µ∗))

where x(µ∗) = −(A + µ∗B)+(a + µ∗b). Then, (s∗, µ∗) with s∗ = f(x(µ∗)) +
µ∗h(x(µ∗)) is the dual optimal solution. Obviously, s∗ = v(QP1EQC). More-
over, when I�(A,B) = {µ∗}, all the Kuhn-Tucker points of (36) can be com-
pletely specified by

x∗(y) = −(A+ µ∗B)+(a+ µ∗b) + V y = y0 + V y, ∀y.

Observe that

h(x∗(y)) = h(y0 + V y) = yT (V TBV )y + 2(yT0 BV + bTV )y + h(y0).

In case of (43), h(x) restricted on the set of Kuhn-Tucker points is convex and

min
y

h(x∗(y)) = h(y0)− (By0 + b)TV (V TBV )+V T (By0 + b) > 0.

It indicates that the quadratic equation h (x∗(y)) = 0 has no solution. By
Theorem 5, (QP1EQC) cannot have an optimal solution. Since v(QP1EQC) >
−∞, it is unattainable. The other case (44) can be analogously argued.

Next, we show that, if v(QP1EQC) > −∞ and I�(A,B) is not a single-
point set, an optimal solution to (QP1EQC) can be constructed. Then, by
Lemma 1, we can conclude that the dual SDP (39) is always attained when
v(QP1EQC) > −∞. First, by an argument in the proof of Theorem 5.1 in
[24], I�(A,B) is an interval with an interior point. Denote by

I�(A,B) = [µmin, µmax], µmin < µmax

whereas it is possible that µmin = −∞ and µmax = +∞. Since I�(A,B) is an
interval with a non-empty interior, by Theorem 3 (b) in [17], we have

N (A + µB) = N (A) ∩ N (B), ∀µ ∈ (µmin, µmax).

Let V ∈ Rn×r be the basis matrix of N (A) ∩N (B) and U ∈ Rn×(n−r) be the
orthonormal complementary subspace of V . Then we have

[
UT

V T

]
(A+ µB) [U V ] =

[
UTAU + µUTBU 0

0 0

]
, ∀µ ∈ (µmin, µmax).

Let u ∈ Rn−r. By A + µB � 0, (uTUT )(A + µB)(Uu) = 0 if and only if
(A + µB)(Uu) = 0. Since U is the orthogonal complement of V , it must be
u = 0. In other words.

UTAU + µUTBU ≻ 0, ∀µ ∈ (µmin, µmax). (45)
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With the [U V ]n×n coordinate change and the notation 0m×r for the m × r
zero matrix; 0n for the n−dimensional zero vector, we can recast the dual SDP
(39) as

sup



s ∈ R :



UT 0n−r

V T 0r
0Tn 1



[
A+ µB a+ µb
aT + µbT c+ µd− s

] [
U V 0n

0Tn−r 0Tr 1

]
� 0





= sup



s ∈ R :



UTAU + µUTBU 0(n−r)×r UT (a+ µb)

0r×(n−r) 0r×r V T (a+ µb)
(a+ µb)TU (a+ µb)TV c+ µd− s


 � 0





= sup

{
s ∈ R : V T (a+ µb) = 0,

[
UTAU + µUTBU UT (a+ µb)

(a+ µb)TU c+ µd− s

]
� 0

}
.(46)

Since v(QP1EQC) > −∞, the dual SDP (39) is feasible. By (45), it implies
that (46) admits a strict feasible point (µ, s) that satisfies the positive semi-
definite constraint. By writing down the conic dual of (46):

(UD) inf
Y,z

[
UTAU UTa
aTU c

]
• Y + aTV z

s.t.

[
UTBU UT b
bTU d

]
• Y + bTV z = 0,

Yn−r+1,n−r+1 = 1, Y ∈ Sn−r+1
+ ,

and by the strong duality theorem, there must be

v(QP1EQC) = v(LD) = v(Prob(46)) = v(UD) > −∞.

In particular, (UD) can be attained at an optimal solution, say (Y ∗, z∗). Let

Y ∗ =

[
Y ∗
(n−r)×(n−r) Y ∗

{1:n−r},n−r+1

Y ∗T
{1:n−r},n−r+1 Y ∗

n−r+1,n−r+1

]

where Y ∗
{1:n−r},n−r+1 = (Y ∗

1,n−r+1, Y
∗
2,n−r+1, · · · , Y ∗

n−r,n−r+1)
T . Then, define

X∗ =

[
U V 0n

0Tn−r 0Tr 1

]


Y ∗
(n−r)×(n−r) 0(n−r)×r Y ∗

{1:n−r},n−r+1

0r×(n−r)
1
4z

∗z∗T 1
2z

∗

Y ∗T
{1:n−r},n−r+1

1
2z

∗T 1





UT 0n−r

V T 0r
0Tn 1


 � 0.

We can verify that

[
B b
bT d

]
•X∗ = 0, X∗

n+1,n+1 = 1,

and
[
A a
aT c

]
•X∗ =

[
UTAU UTa
aTU c

]
• Y ∗ + aTV z∗ = v(UD) = v(QP1EQC).
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In other words, X∗ is an optimal solution of the primal SDP (40). Employ-
ing the standard rank-one decomposition procedure [32], we have shown that
(QP1EQC) is attained. The proof is complete. �

The following example is provided to illustrate the idea of Theorem 6.

Example 1 Consider

inf x2
1

s.t. x1x2 − 1 = 0,

where a = b = (0, 0)T , c = 0, d = −1 and

A =

[
1 0
0 0

]
, B =

[
0 0.5
0.5 0

]
.

The graph of the objective function is a paraboloid by extending the parabola
z = x2

1 parallel along the x2 direction. The constraint is a hyperbola upon which
there are a pair of traces on z = x2

1, both asymptotically approaching 0 from
the positive territory. Then, v(QP1EQC) = 0 but is unattainable.

The primal SDP (40) is

inf



1 0 0
0 0 0
0 0 0


 •X

s.t.




0 0.5 0
0.5 0 0
0 0 −1


 •X = 0,

X3,3 = 1, X � 0.

Define

X(ǫ) =



ǫ 1 0
1 1

ǫ
0

0 0 1


 .

Then X(ǫ) is a feasible solution of the primal SDP (40) for any ǫ > 0. The
corresponding objective value is ǫ. Since limǫ→0 X(ǫ) does not have a limit, the
optimal value of the primal SDP is 0, but unattainable.

The dual SDP (39) is

sup s

s.t.




1 0.5µ 0
0.5µ 0 0
0 0 −µ− s


 � 0.

Obviously, µ∗ = 0 is the only feasible dual solution, which forces s ≤ 0. Then,
the dual optimal value is 0, confirming the strong duality; and the dual optimal
solution is (s∗, µ∗) = (0, 0), confirming that the dual must be attainable if the
problem is bounded from below.
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Moreover, we can verify that

N (A+ µ∗B) = N (A) = span{(0, 1)T}

such that V = (0, 1)T . A direct computation shows

y0 = −(A+ µ∗B)+(a+ µ∗b) = (0, 0)T ; V TBV = 0,

and hence

h(y0 + V y) = h(y0)− (By0 + b)TV (V TBV )+V T (By0 + b) = −1,

which confirms (44) that none of the Kuhn-Tucker points are feasible.

Finally, we consider the interval bounded generalized trust region subprob-
lem (GTRS), which is to deal with inf{f(x) : l ≤ h(x) ≤ u, x ∈ Rn}. Jeyaku-
mar et al. [21] studied (GTRS) using Polyak’s result [28] (see also Theorem
7 in Section 5). They assumed that h is homogeneous and strictly convex.
Pong and Wolkowicz [29] proved the strong duality based on the the following
assumptions:

1. B 6= 0.
2. (GTRS) is feasible.
3. The following relative interior constraint qualification holds

(RICQ) l < B • X̂ + 2bT x̂+ d < u, for some X̂ ≻ x̂x̂T .

4. (GTRS) is bounded below.
5. The dual problem of (GTRS) is feasible.

Very recently, Wang and Xia [34] showed that Assumption 3 above in [29]
can be equivalently rephrased as a simple “strict feasibility” assumption that
there exists an x ∈ Rn such that l < h(x) < u. Hence Assumption 2 in [29]
is redundant. In addition, Assumption 4 naturally implies Assumption 5 by
a similar result from Theorem 6 in this section. This has also been done in
[34] by Wang and Xia. Indeed, based on the S-lemma with equality from an
earlier arXiv version of this paper, they established the S-lemma with interval
bounds. Under the strict feasibility assumption, the following two statements
are equivalent ((I1)∼(I2)):

(I1) l ≤ h(x) ≤ u =⇒ f(x) ≥ 0, ∀x ∈ Rn.
(I2) (∃ µ ∈ R) f(x) + µ−(h(x) − u) + µ+(l − h(x)) ≥ 0, ∀x ∈ Rn where

µ+ = max{µ, 0}, µ− = −min{µ, 0}.
except for the special case where A has exactly one negative eigenvalue, B = 0,
b 6= 0 and there exists a ν ≥ 0 such that




V TAV 1
2bT b

V TAb V Ta
1

2bT b
bTAV bTAb

(2bT b)2
+ ν aT b

2bT b
− ν

2 (l + u− 2d)

aTV aT b
2bT b

− ν
2 (l + u− 2d) c+ ν(l − d)(u − d)


 � 0, (47)
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with V ∈ Rn×(n−1) being the matrix basis of N (b).
In summary, (GTRS) is now completely answered by the S-lemma with

equality. When the strict feasibility holds and B 6= 0, (GTRS) has a tight
SDP relaxation (the SDP formulation can be read in [29,34]). In that case, if
v(GTRS) > −∞ and attainable, an optimal solution can be found by solving
the SDP relaxation followed by a typical rank-one decomposition procedure.
Otherwise, when (GTRS) fails to satisfy the strict feasibility or has B = 0, h(x)
reduces to be linear. Then, (GTRS) would be either a convex unconstrained op-
timization problem with its optimal solution residing in the interval l ≤ h(x) ≤
u; or can be determined by v(GTRS) = min

{
infh(x)=l f(x), infh(x)=u f(x)

}
.

Since h(x) = l (or h(x) = u) can be replaced by a system of linear equa-
tions, each of both becomes an unconstrained problem and could either be
unbounded below or has an attainable optimal solution.

5 Application to Convexity of Joint Numerical Range

Dines in 1941 proved a fundamental but somehow surprising result in classical
mathematical analysis that the joint numerical range M = {(f(x), h(x)) : x ∈
Rn} ⊆ R2 is convex when f and h are quadratic forms [9]. He explained in
the same paper that the observation on the convexity of M was motivated by
Finsler’s theorem (S-lemma) [12] in 1937 because “it asserts the existence of
a supporting line of the map M which has contact with M only at (0, 0). This
suggests that the theorem is related to the theory of convex sets.” Dines also
described the shape of M to be either the entire x-y plane or an angular sector
of angle less than π, provided f, h have no common zero except x = 0.

Since then, the progress has been slow. Extension of Dines’ result to the
2D image of nonhomogeneous functions f and h occurred much later in 1998
due to Polyak [28]. It may be stated as

Theorem 7 ([28]) Let f, h ∈ Rn be nonhomogeneous quadratic functions.
Suppose that n ≥ 2 and there exists µ ∈ R2 such that

µ1A+ µ2B ≻ 0.

Then the set M = {(f(x), h(x)) : x ∈ Rn} ⊆ R2 is closed and convex.

A counterexample was provided in the same paper [28] to show that the
joint numerical rangeM is in general nonconvex for nonhomogeneous quadratic
functions. Dines’ theorem even fails when one of f and h is an affine function.

Example 2 ([28]) Consider the following two quadratic functions in R2

f(x) = 2x2
1 − x2

2, h(x) = x1 + x2.

Then we can verify that

M = {(f(x), h(x)) : x ∈ Rn} = {(y1, y2) ∈ R2 : y1 ≥ −2y22}

which is nonconvex.
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In 2007, Beck [2] studied the convexity of the image of mappings comprised
of a strictly convex quadratic function and a set of affine functions.

Theorem 8 ([2]) Let hi(x) = 2bTi x+ di for i = 1, . . . , p, where bi ∈ Rn, di ∈
R. Suppose A ≻ 0. When p ≤ n− 1, the set

S = {(f(x), h1(x), . . . , hp(x)) : x ∈ Rn} ⊆ Rp+1 (48)

is closed and convex. Besides, when p = n and b1, . . . , bn are linearly indepen-
dent, S is nonconvex.

It happens that the newly developed S-lemma with equality can be used
to give a theorem on the convexity of jointly numerical range S, sufficiently
strong to cover both Example 2 and Theorem 8. Namely, we are able to say
something similar to what Dines had done in [9], from the S-lemma with
equality (cf. Finsler’s theorem) to the convexity of S (cf. M).

Theorem 9 Suppose hi(x) = 2bTi x+di for i = 1, . . . , p, where bi ∈ Rn, di ∈ R.
Let P = [b1, b2, . . . , bp]

T and r = rank(P ). Then, the set S defined in (48) is
convex if and only if neither of the following two cases occurs:

(a) V TAV � 0, V Ta ∈ R(V TA) and WTAW has a negative eigenvalue;
(b) V TAV � 0, V Ta ∈ R(V TA) and WTAW has a positive eigenvalue,

where V ∈ Rn×(n−r) is the matrix basis of N (P ) and W ∈ Rn×(n−rank(V TA))

is the matrix basis of N (V TA).

Proof. Let u = (uf , uh1
, . . . , uhp

) and v = (vf , vh1
, . . . , vhp

) be any two distinct
points in S. That is, there exists xu, xv ∈ Rn and xu 6= xv such that

uf = f(xu), uhi
= hi(xu); vf = f(xv), vhi

= hi(xv), i = 1, . . . , p.

Then, S is nonconvex if and only if we cannot find xλ ∈ Rn such that

(f(xλ), h1(xλ), . . . , hp(xλ)) = (1− λ)u + λv, λ ∈ (0, 1).

Equivalently, the following system in terms of (xλ, λ) has no solution

f(xλ) = (1− λ)uf + λvf , (49)

hi(xλ) = (1 − λ)uhi
+ λvhi

, i = 1, . . . , p, (50)

λ ∈ (0, 1). (51)

Since h1, . . . , hp are affine, the equations (50) imply that

hi(xλ) = 2bTi xλ + di

= (1− λ)(2bTi xu + di) + λ(2bTi xv + di)

= 2bTi ((1 − λ)xu + λxv) + di, i = 1, 2, . . . , p

and thus xλ has to lie on the affine space:

xλ = (1 − λ)xu + λxv + V y, for some y ∈ Rn−r,
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where V ∈ Rn×(n−r) is the matrix basis of N
(
[b1, b2, . . . , bp]

T
)
. Substituting

xλ into (49), we obtain

f(xλ) = f ((1− λ)xu + λxv + V y)

= (1− λ)2xT
uAxu + λ2xT

v Axv + 2λ(1− λ)xT
uAxv + 2aT ((1 − λ)xu + λxv)

+yTV TAV y + 2 ((1− λ)xu + λxv)
T
AV y + 2aTV y + c. (52)

Equate (52) with

(1−λ)f(xu)+λf(xv) = (1−λ)(xT
uAxu)+λxT

v Axv+2aT ((1− λ)xu + λxv)+c

to yield

yTV TAV y + 2 ((1− λ)xu + λxv)
T
AV y + 2aTV y

= λ(1 − λ)(xT
uAxu + xT

v Axv − 2xT
uAxv).

This is a quadratic equation in variables (λ, y) ∈ R1+n−r. To simplify, let
δ = xT

uAxu + xT
v Axv − 2xT

uAxv = (xu − xv)
TA(xu − xv) and

G =

[
δ (xv − xu)

TAV
V TA(xv − xu) V TAV

]
, q =

[
−δ

2V T (Axu + a)

]
(53)

to obtain

g(λ, y) = δλ2 −
(
2(xu − xv)

TAV y + δ
)
λ+ yTV TAV y + 2xT

uAV y + 2aTV y

:=

[
λ
y

]T
G

[
λ
y

]
+ qT

[
λ
y

]
.

With all the settings, the joint numerical range S is not convex if and only
if the system (49)-(51) is unsolvable, which is equivalent to the system

λ2 − λ < 0, g(λ, y) = 0 (54)

having no solution.
We can show that, when (54) is unsolvable, g(λ, y) must take both positive

and negative values. Should such a claim fail, we would have

G � (�)0, q ∈ R (G) , qTG+q = 0. (55)

Since G � (�)0 implies that G+ � (�)0, qTG+q = 0 implies that G+q = 0.
Therefore,

q ∈ N (G+) = N (G).

However, from (55), we also known q ∈ R(G) and thus q = 0. By (53),

δ = 0, V T (Axu + a) = 0.

Since G � (�)0, all 2× 2 principal minors consisting of δ = 0 must have non-
negative determinants. Then, the first row (column) of G should be identically
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0. Namely, V TA(xv − xu) = 0. The function g is thus reduced to g(λ, y) =
yTV TAV y so that (54) would be trivially solvable. It is a contradiction.

Since Assumption 1 holds and since the quadratic term of the function
ϕ(λ, y) = λ2 − λ does not have exactly one negative eigenvalue, by the S-
lemma with equality, the statement (54) has no solution if and only if there is
a µ such that

λ2 − λ+ µg(λ, y) ≥ 0, ∀λ ∈ R, y ∈ Rn−r,

which has the following positive semi-definite formulation:



1 + µδ −µ(xu − xv)
TAV − 1

2 − 1
2µδ

−µV TA(xu − xv) µV TAV µV T (Axu + a)
− 1

2 − 1
2µδ µ(xT

uA+ aT )V 0


 � 0. (56)

By considering all 2 × 2 principal minors including the 0 element in (56), we
obtain

−1

2
− 1

2
µδ = 0, µV T (Axu + a) = 0, µV TA(xu − xv) = 0, µV TAV � 0.

Therefore, µ 6= 0, δ 6= 0 and

V Ta ∈ R(V TA), (57)

xu − xv ∈ N (V TA), (58)

−1

δ
V TAV � 0. (59)

Let W ∈ Rn×(n−rank(V TA)) be the matrix basis of N (V TA) and express (58)
as

xu − xv = Wz, for some z ∈ Rn−rank(V TA).

Then, (59) implies that

δ = (xu − xv)
TA(xu − xv) = zTWTAWz

{
< 0, if V TAV � 0,
> 0, if V TAV � 0,

which, together with (57), completes the proof. �

By Theorem 9, we can now confirm that the joint numerical range in Ex-
ample 2 is non-convex.

Example 3 Consider the nonconvex Example 2 where n = 2, p = 1:

A =

[
2 0
0 −1

]
, a =

[
0
0

]
, b =

[
1
2
1
2

]
.

Then we can compute

V =

[ √
2
2

−
√
2
2

]
, V TA =

[√
2

√
2
2

]
, W =

[ √
5
5

− 2
√
5

5

]
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and, by Case (a) in Theorem 9, M = {(2x2
1 − x2

2, x1 + x2) : (x1, x2) ∈ R2} is
nonconvex since

V TAV =
1

2
� 0, V Ta = 0 ∈ R(V TA), WTAW = −2

5
.

Next, we show that Theorem 9 implies Theorem 8 under A ≻ 0.

– Suppose p ≤ n− 1. We have

r = rank
(
[b1, b2, . . . , bp]

T
)
≤ n− 1. (60)

Then, rank(V ) = n− r ≥ 1. Since V is a basis matrix consisting of at least
one column and A ≻ 0, we have V TAV ≻ 0 and WTAW � 0. It follows
that neither Case (a) nor Case (b) in Theorem 9 holds. Therefore, the set
S defined in (48) is convex. We remark that the condition p ≤ n − 1 in
Theorem 8 can be improved to (60).

– Suppose p = n and b1, . . . , bn are linearly independent. We have r =
rank

(
[b1, b2, . . . , bp]

T
)
= n, and rank(V ) = 0, rank(W ) = n. Then,

V TAV = 0, V Ta ∈ R(V TA), WTAW ≻ 0.

By Case (b) in Theorem 9, the set S defined in (48) is nonconvex.

Finally in this section, we mention a weaker result than the convexity of
{(f(x), h1(x), . . . , hp(x)) : x ∈ Rn}, which asks for the convexity of

{(f(x), h1(x), . . . , hp(x)) : x ∈ Rn}+ Rp+1
+ , (61)

where f, h1, . . . , hp are nonhomogeneous quadratic functions and Rp+1
+ is the

nonnegative orthant of Rp+1. For the special case p = 1, Tuy and Tuan showed
that {(f(x), h1(x)) : x ∈ Rn} + R2

+ is always convex, see Corollary 10 of [33].
For a general p, suppose f(x), h1(x), . . . , hp(x) are homogeneous quadratic
functions and ∇2f(x),∇2h1(x), . . . ,∇2hp(x) are all Z-matrices (A real sym-
metric matrix A is called a Z-matrix if Aij ≤ 0 for all i 6= j), Jeyakumar et al.
[21] showed that

{(f(x), h1(x), . . . , hp(x)) : x ∈ Rn}+ intRp+1
+

is convex, where intRp+1
+ is the interior of Rp+1

+ . More recently, suppose h1(x)
is a strictly convex quadratic function, h2(x), . . . , hp(x) are affine linear func-
tions, for any nonhomogeneous quadratic function f(x), Jeyakumar and Li
[22] showed that the set (61) is convex under the dimension assumption:

dimN
(
∇2f(x)− λmin(∇2f(x))In

)
≥ dim span{∇h2(x), . . . ,∇hp(x)} + 1,

where dimL denotes the dimension of the subspace L and λmin(A) is the
minimal eigenvalue of the matrix A.

Since the convexity of S guarantees the convexity of S+Rp+1
+ , Theorem 9

trivially implies a new sufficient condition for the set (61).
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Corollary 2 Let f(x) = xTAx + 2aTx + c and hi(x) = 2bTi x + di for i =
1, . . . , p. Suppose neither Case (a) nor Case (b) in Theorem 9 occurs, the set
{(f(x), h1(x), . . . , hp(x)) : x ∈ Rn}+ Rp+1

+ is convex.

Moreover, when p = 1 and h1(x) is an affine function, with the help of Theorem
9, we can see how {(f(x), h1(x)) : x ∈ Rn} + R2

+ becomes convex in the case
that {(f(x), h1(x)) : x ∈ Rn} is nonconvex.

Corollary 3 Let f(x) = xTAx + 2aTx + c and h1(x) = 2bT1 x + d1. Suppose
S := {(f(x), h1(x)) : x ∈ Rn} is nonconvex. Then, exactly one of the following
cases happens:

(i) The set S contains a parametric curve C(t) = {(u(t), v(t)) : t ∈ R} satisfy-
ing lim

t→∞
u(t) = lim

t→∞
v(t) = −∞. It follows immediately that S +R2

+ = R2.

(ii) A = αb1b
T
1 for some α > 0. Consequently, S + R2

+ is convex.

Proof. Since S is nonconvex, by Theorem 9, either Case (a) or Case (b) occurs.
Suppose Case (a) in Theorem 9 happens. Then A has a negative eigenvalue.

Let z 6= 0 be the corresponding eigenvector, i.e., zTAz < 0. Then, bT1 z 6= 0.
Otherwise, bT1 z = 0 would imply that z ∈ R(V ). It would follow from V TAV �
0 that zTAz ≥ 0, which is a contradiction. Without loss of generality, we
assume that bT1 z < 0 and define the parametric curve

C(t) = {(u(t), v(t)) : u(t) = f(tz), v(t) = h1(tz), t ∈ R}.

Then, C(t) ⊂ S and

lim
t→∞

u(t) = lim
t→∞

f(tz) = lim
t→∞

t2zTAz + 2taT z + c = −∞; (62)

lim
t→∞

v(t) = lim
t→∞

h1(tz) = lim
t→∞

2t(bT1 z) + d1 = −∞, (63)

which shows that (i) holds.
Suppose Case (b) in Theorem 9 happens. We know A must have a positive

eigenvalue with z 6= 0 being the corresponding eigenvector. Since V TAV � 0
and zTAz > 0, there must be bT1 z 6= 0 and we again assume that bT1 z < 0. In
addition, if A also has a negative eigenvalue except for the positive one(s), by
the same argument as in (62)-(63), we conclude immediately that (i) holds.

Otherwise, when A � 0 but V TAV � 0, there exists a vector u such that
uTV TAV u < 0. By continuity, we can find a sufficiently small β > 0 such that
(V u+ βz)TA(V u+ βz) < 0. By defining the curve

C(t) = {(u(t), v(t)) : u(t) = f(t(V u+ βz)), v(t) = h1(t(V u+ βz)), t ∈ R},

we also see that (i) holds since

lim
t→∞

u(t)

= lim
t→∞

t2(V u+ βz)TA(V u+ βz) + 2taT (V u+ βz) + c

= −∞,
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and

lim
t→∞

v(t) = lim
t→∞

h1(t(V u+ βz)) = lim
t→∞

2tβ(bT1 z) + d1 = −∞.

Finally, it remains to show that A � 0 and V TAV = 0 lead to (ii). When
this happens, we have AV = 0. Since V is the matrix basis for the null space
of the 1× n matrix [bT1 ], A must be of rank one with the form A = αb1b

T
1 for

some α > 0. That is, (ii) holds. It follows from the convexity of f(x) and h1(x)
that S + R2

+ is convex. �

6 Concluding remarks

This paper is devoted to a completely new understanding toward the S-lemma
with equality. While the inequality version (S1)∼(S2) has been established
under Slater’s condition, it was not immediately clear whether the equal-
ity version (E1)∼(E2) could be a real obstacle. While the inequality version
(S1)∼(S2) has been widely used in many applications, the important conse-
quence of (E1)∼(E2), perhaps due to lack of an affirmative result, was not yet
visualized before. As (E1)∼(E2) is not true in general, we really need to get
down to the most subtle detail looking for a successful argument, many from
geometrical observations on quadratic manifolds. This complicated essence as
well as the poor accessibility to intuition make it hard to come out with an
easy-to-grasp intuitive proof. The long-standing interval bounded generalized
trust region subproblem (GTRS) has now been resolved thoroughly by the full
characterization of the quadratic programming with a single quadratic equality
constraint (QP1EQC). The relation between the S-lemma and the convexity of
joint numerical ranges is now further strengthened, indicating a step forward
to the duality theory for nonconvex optimization. We wish that the study can
sparkle new idea for solving the nonconvex quadratic optimization problem
with multiple constraints and polynomial optimization problems.

Appendix

We discuss the relations among S-Conditions 1,2,3 and 4. First, it is easy to
see that the definiteness of B implies A � ηB for some η. Therefore,

S-Condition 1 =⇒ S-Condition 2.

Moreover, when B is definite, xTBx = 0 if and only if x = 0 and thus

S-Condition 1 =⇒ S-Condition 4.

When h(x) is homogeneous, there is b = d = 0 so that h(0) = 0. By choosing
ζ = 0,

S-Condition 3 =⇒ S-Condition 4
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It is not difficult to verify that neither S-Condition 2 nor S-Condition 4 can
imply each other [25]. Consequently, neither S-Condition 2 nor S-Condition 4
is necessary for the S-lemma with equality.

We now show that the statement (4) in S-Condition 4 can be equivalently
simplified as {

b ∈ R(B), if B � 0 or B � 0,
Bζ + b = 0, otherwise.

(64)

Notice that (64) trivially implies (4), so it is sufficient to prove the converse.
Suppose B � 0 or B � 0. Then, xTBx = 0 ⇐⇒ Bx = 0 and (4) can be

recast as
Bx = 0 =⇒ bTx = 0, ∀x ∈ Rn,

which shows that b ∈ R(B).
Now assume that B is indefinite. We first rewrite (4) by

xTBx = 0 =⇒ xT (Bζ + b)(Bζ + b)Tx = 0, ∀x ∈ Rn.

Since (Bζ + b)(Bζ + b)T � 0, it is further equivalent to

xTBx = 0 =⇒ − xT (Bζ + b)(Bζ + b)Tx ≥ 0, ∀x ∈ Rn.

Since B is indefinite, h(x) = xTBx takes both positive and negative values.
By the S-lemma with equality for homogeneous quadratic forms,

(∃µ ∈ R) − (Bζ + b)(Bζ + b)T + µB � 0. (65)

Since µB � (Bζ + b)(Bζ + b)T � 0 and B is indefinite, it must be µ = 0 and
thus (Bζ + b)(Bζ + b)T = 0. It implies that Bζ + b = 0.
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27. Pólik, I., Terlaky, T.: A Survey of the S-lemma. SIAM Rev. 49(3), 371–418 (2007)
28. Polyak, B.T.: Convexity of quadratic transformations and its use in control and

optimization. J. Optimiz. Theory App. 99(3), 553–583 (1998)
29. Pong, T.K., Wolkowicz, H.: The generalized trust region subprobelm. Comput. Op-

tim. Appl. 58(2), 273–322 (2014)
30. Shor, N.Z.: Quadratic optimization problems. Sov. J. Comput. Syst. Sci. 25, 1–11

(1987)
31. Sturm, J.F., Wolkowicz, H.: Indefinite trust region subproblems and nonsymmetric

eigenvalue perturbations. SIAM J. Optim. 5, 286–313 (1995)
32. Sturm, J.F., Zhang, S.: On cones of nonnegtive quadratic functions. Math. Oper.

Res. 28(2), 246–267 (2003)
33. Tuy, H., Tuan, H.D.: Generalized S-lemma and strong duality in nonconvex quadratic

programming. J. Global Optim. 56(3): 1045-1072 (2013)
34. Wang, S., Xia, Y.: Strong Duality for Generalized Trust Region Subproblem: S-

Lemma with Interval Bounds. Optim. Lett. (2014) DOI:10.1007/s11590-014-0812-0



34 Yong Xia et al.

35. Xia, Y., Sheu, R.L., Fang, S.C., Xing, W.: Double well potential function and its
optimization in the n-dimenstional real space – Part II, Math. Mech. Solids (2015)
DOI:10.1177/1081286514566723

36. Yakubovich, V.A.: S-procedure in nonlinear control theory. Vestnik Leningrad. Univ.
1, 62–77 (1971) (in Russian)

37. Yakubovich, V.A.: S-procedure in nonlinear control theory. Vestnik Leningrad. Univ.
4, 73–93 (1977) (English translation)

38. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14,
245–267 (2003)


	1 Introduction
	2 The S-lemma with equality when Assumption ?? fails 
	3 The S-lemma with equality when Assumption ?? holds
	4 Application to solve (QP1EQC)
	5 Application to Convexity of Joint Numerical Range
	6 Concluding remarks

